
Server Architecture from Enterprise to Post-Moore
Babak Falsafi1, Michael Ferdman2, Boris Grot3

1EPFL 2Stony Brook University 3University of Edinburgh

Abstract—Luiz Barroso started his career at DEC, investi-
gating workload-optimized multiprocessor server architectures
marketed to enterprises in the 1990s. These high-margin low-
volume products lost their market to more cost-effective en-
terprise servers built from high-volume desktop CPUs riding
Moore’s Law. The enterprise market has slowly transitioned
to the cloud, where desktop PCs have formed the backbone of
computing in datacenters since the early 2000s to minimize cost
and maximize the return on investment. Moving forward, with
the absence of Moore’s Law, future servers require a clean-
slate cross-stack design to scale in compute, communication
and storage capacity while reducing operational, capital and
environmental costs.

Index Terms—datacenters, server architecture, workloads,
metrics

I. INTRODUCTION

Today, datacenters form the backbone of all digital services.
Datacenter growth is fueled by the global availability of online
services, digitalization of industries, sustained data deluge,
and Artificial Intelligence. At the heart of datacenters are
volume servers that trace their roots back to the desktop PCs
of the 90s, running Linux and other open source software.
Scaling computing with inexpensive PCs as building blocks
to maximize the return on investment is analogous to RAID
storage in the 1980s replacing high-margin enterprise disks
with an array of cost-effective PC disks.

For the past two decades, datacenters have enjoyed riding
Moore’s Law and improvements in chip density and efficiency
to scale their services while minimizing construction growth
and overall energy consumption. Modern datacenters heavily
rely on consolidation of workloads, virtualization, compres-
sion, and emerging software construction paradigms (e.g.,
microservices, serverless) to maximize server utilization while
maintaining service-level contracts.

Unfortunately, with a slowdown in Moore’s Law1 and chip
efficiency, power consumption in servers is witnessing an
unprecedented growth. Figure 1 depicts Thermal Design Power
(TDP), a measure for the maximum amount of heat a chip
can dissipate, for several generations of CPUs and GPUs
from 2008 through 2023. While the figure does not plot TDP
ratings before 2008, CPU TDPs remained flat, at 100-150W,
for roughly two decades. Since 2019, CPUs are experiencing
a sharp rise in TDP suggesting that future improvements in
design will be accompanied with higher power consumption
with implications on datacenter growth. GPUs’ TDP is rising
even faster because of their much higher arithmetic density as
compared to CPUs.

1https : //en.wikipedia.org/wiki/Transistor count.

Fig. 1. Increasing TDP in server CPUs and GPUs.

The insatiable appetite for computing continues to grow,
driven by, on one hand, the expansion in data collection,
storage, and analysis, and on the other, the proliferation of
artificial intelligence. In the absence of Moore’s Law, these
trends demand building and operating more servers, with a
commensurate impact on overall server energy consumption
and environmental impact through operational and embodied
emissions.

To maximize silicon efficiency, post-Moore servers require
a clean-slate approach to the design of the computing stack,
from algorithms down to hardware. Much like the enterprise
multiprocessor servers of the 1990s, post-Moore server de-
sign requires proper resource provisioning for workloads, and
precise metrics and measurement methodologies to quantify a
server design’s output based on the provisioned resources.

In this article, we reflect on the convergence of server
architecture from integrated enterprise-class multiprocessors of
the 1990s to the modern-day cloud server architecture. We then
present requirements for metrics to evaluate the performance
and efficiency of post-Moore servers, emerging workloads,
services and computational paradigms in datacenters, and
trends in the design of post-Moore servers.

II. FROM ENTERPRISE TO CLOUD

Server architecture has undergone a major transformation
from the enterprise servers of the 90s to the cloud servers
today. These transformations have been the result of exponen-
tial improvements in CPU performance and memory density,
thanks to Moore’s Law, the demand for scalability from enter-
prise IT to public cloud, and the focus on return on investment
in datacenters. In this section, we will briefly go over these
transformations, Luiz’s contributions to these transformations,

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3418975

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on October 20,2024 at 10:34:38 UTC from IEEE Xplore. Restrictions apply.

and our work during this period on introducing cloud-native
server architecture.

A. Enterprise Servers

The primary driver for server architecture innovation in
the 1990s was commercial server software, initially in the
database management market and eventually the web server
market. With increasing data volumes, the growing gap be-
tween DRAM and disk, and exponential reductions in the cost
of DRAM, these workloads primarily became in-memory.

At the higher end of the premium enterprise servers, vendors
like Sun Microsystems, HP, DEC, and Silicon Graphics started
building mid- (e.g., 4-16 CPUs) to large-scale (e.g., 128 CPUs)
shared-memory multiprocessors to enhance memory capacity
and ride Moore’s Law with DRAM and RISC CPUs. At the
lower end of the premium market, x86 servers, whose CPU
performance was competitive with their RISC counterparts,
was riding the same Moore’s Law while benefiting from the
economies of scale of desktop CPU volumes.

Many in the academic community were evaluating commer-
cial server workloads on enterprise servers of the time and
pointing out the mismatch between the workloads’ require-
ments and the CPU microarchitecture, leading to underutilized
silicon. These studies indicated that commercial server work-
loads benefited from more capacity in the cache hierarchies,
because of larger instruction and data working sets, but showed
limited instruction-level parallelism due to dependent accesses
to memory.

Luiz was among those who carefully evaluated this mis-
match [2], and then argued and demonstrated through DEC
Piranha the case for custom multicore processors for com-
mercial workloads. These multicore processors could exploit
thread-level (rather than instruction-level) parallelism with
older generation (scalar) RISC pipelines and unusually large
cache hierarchies required for commercial workloads.

While RISC CPUs had a phenomenal penetration in the
embedded and mobile platform market, they eventually lost
ground to x86 CPUs in the enterprise server market. The
RISC servers’ high margins and low volumes rendered them
economically unsustainable. Instead, Intel and AMD created
a portfolio of CPUs that included enterprise server CPUs to
help transition the market to x86.

B. Transition to Cloud

The decade of 2000 witnessed the emergence of datacen-
ters as warehouse-scale computers, built with stripped-down
volume servers interconnected with commodity network gear
to implement massive internet services such as search, online
retail, and social networks. The key goal was to build services
with the cheapest building blocks available at the time (i.e., the
desktop PCs) to maximize return on investment. The servers
ran Linux and open-source software and relied on distributed
computing to exploit parallelism and provide fault tolerance.

A key mismatch between volume servers and the services
they were running was rooted in the tight latency requirements
in service-level agreements with customers [4]. The desktop

PC and its OS were either running in the nanosecond time-
scale computing and accessing memory, or in the millisec-
ond time-scale accessing a hard disk through the OS [1].
Meanwhile, the data that services were hosting in memory
was made available through the networks, where switch-based
fabrics operated in the microsecond time-scale. Therefore, all
OS overheads (e.g., thread context switches, interrupts, and
network communication software stacks) in the microsecond
time-scale were directly on the critical path of the services.

IT companies scaled their services throughout this decade
by building more and larger datacenters at an unprecedented
pace while maintaining low server utilization to guarantee
service-level agreements (SLAs). Volume servers are inher-
ently not energy-proportional and, as such, low utilization
implies high electricity consumption. More datacenters also
meant higher capital expenditure and overall lower return on
investment.

In the decade of 2010, datacenter operators continued riding
Moore’s Law with DRAM and CPUs, focusing on efficiency in
infrastructure to maximize electricity delivery and optimizing
software stacks to increase performance per dollar while main-
taining SLAs. The two key technologies that improved server
utilization were consolidation of workloads and virtualization,
allowing for multi-tenancy to sell unused resources to cloud
customers.

C. Cloud-Native Server Architecture

With Dennard Scaling ending and Moore’s Law slowing
down, many academics continued evaluating opportunities
to design servers that matched commercial server software
requirements, including database and web workloads. These
included analyses of the core complexity, various forms of
multi-threading, and capacity provisioning in multicore cache
hierarchies.

In 2011, Hardavellas et al. [8] revisited workload-centric
server architecture. They demonstrated that, for the combi-
nation of stringent chip power constraints, emerging high-
bandwidth and energy-efficient memory fabrics, and the abun-
dance of request-level parallelism in server workloads, a
custom manycore CPU would be optimal for throughput,
power, and area in servers. Unlike conventional CPU designs,
such custom CPUs would have minimal on-chip memory (i.e.,
MBs) to hold the instruction working set of deep server soft-
ware stacks, and minimal complexity (i.e., power, area) cores
to access off-chip data and exploit request-level parallelism
across server threads.

Ferdman et al., [5] studied the mismatch between volume
server architecture in the cloud and scale-out services based
on open-source software stacks. In particular, they listed
several microarchitectural characteristics salient in scale-out
workloads that were drastically different from desktop work-
loads: (1) instruction supply bottleneck due to large instruction
working sets in server software stacks, (2) low instruction-level
(ILP) and memory-level (MLP) parallelism in server software
stacks, (3) secondary data working sets that are orders of mag-
nitude larger than on-chip memory, and (4) low on- and off-

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3418975

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on October 20,2024 at 10:34:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Server CPU microarchitecure/workload mismatch.

chip per-thread memory traffic. The workloads were also found
to make minimal use of floating-point arithmetic and vector
operations. These characteristics were at odds with state-of-
the-art volume servers at the time, which were being shipped
with half a dozen ILP-centric desktop x86 cores padded with
12MB of LLC per socket, with two sockets serving 10s of GB
of DRAM. Figure 2 illustrates the silicon mismatch between
the needs of scale-out services and a Westmere die.

These results laid the foundation for the first-generation
of cloud-native server CPUs [9] called Scale-Out Processors.
Scale-out processors integrated multiple server “pods” sharing
memory and I/O ports on a single die. Figure 3 illustrates the
anatomy of a 64-core scale-out processor with four pods. Each
pod was optimized for throughput per area of silicon and uses
3-way out-of-order 64-bit ARM cores modeled after Cortex
A15, the flagship out-of-order ARM core at the time. The
L2 was judiciously sized to capture the instruction working
set and accelerate instruction supply while accommodating
data reuse in the OS and application metadata. The cores
were interconnected with a crossbar to statically interleaved
L2 banks, memory controllers and I/O bridges.

Lotfi-Kamran et al. further studied the on-chip network
traffic for scale-out workloads and concluded that there is little
(e.g., < 2% on average) on-chip coherence traffic. The major-
ity of traffic is either supplying instructions from the LLC, or
checking whether data is available on-chip and fetching it from
off-chip, because of the large disparity between on-chip and
off-chip memory capacity. To maximize silicon efficiency and
optimize interconnect topology, the authors proposed a custom
on-chip interconnect for each pod to connect the cores in a col-
umn of request/reply relays to statically interleaved L2 banks.
The L2 banks were fully connected with memory controllers
and I/O bridges through a flattened butterfly network.

Each pod ran a full software stack and had its data sharded
across physical memory partitions. Because pods operated as
independent servers with no contention on microarchitectural
resources, optimally sizing a pod and scaling the number of
pods per chip would allow for a linear increase in throughput
while maintaining the proper core-to-cache ratio and optimiz-

Fig. 3. A scale-out processor with 4 16-core pods.

ing overall datacenter costs at the board and system level.
Compared to the contemporary designs, Scale-Out Proces-

sors provided a much higher level of thread-level parallelism,
more silicon area given to cores than caches, and a much faster
instruction supply. The first-generation of Cavium ThunderX
followed this chip organization with a crossbar, in-order MIPS
cores (retrofitted with an ARM decoder) and larger L1 in-
struction caches for better instruction supply. Fast forward to
now, with Intel announcing their Sierra Forest line of cloud-
optimized processors featuring 144 single-threaded cores or-
ganized in 4-core clusters that share an L2, and a shared LLC
with a per-core capacity under 1MB. The architecture of Sierra
Forrest reflects the design philosophy of Scale-Out Processors
in terms of more cores, leaner cores, and less cache per core
compared to conventional server CPUs.

III. METRICS

Regardless of the goal of a processor design the primary
target is always to maximize performance, while staying
within the target engineering costs and technology limitations.
As such, a principled approach to designing next-generation
cloud-native processors must first define and measure perfor-
mance, and then incorporate performance into metrics that
will be used to optimize performance within the constraints
of capital and operational cloud server expenditure.

A. Defining Performance

Luiz’s work at DEC was among the first to consider servers
as a separate class of systems with a unique set of character-
istics [2], demonstrating that server performance is dominated
by memory stalls and limited instruction level parallelism. On
real systems, a barrage of simulated client requests can be
used to assess the peak throughput the server can achieve
measured in queries or requests served per second. In simula-
tion, measuring multiple server requests end-to-end would be
prohibitively slow. Moreover, the de facto CPU performance
metric, IPC (instructions per cycle) allowing for fine-grain
measurements of tens to hundreds of thousands of instructions
at a time, would not be applicable in multiprocessor server

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3418975

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on October 20,2024 at 10:34:38 UTC from IEEE Xplore. Restrictions apply.

workloads because synchronization in the software stack with
threads spinning perturbs IPC.

While metrics such as MLP (memory level parallelism)
could help indicate memory bottlenecks in workloads, they
fell short of offering tight estimates on overall performance.
Wenisch et al., [11] instead showed that U-IPC, the number of
user instructions per cycle, is proportional to server throughput
for a wide range of server applications, such as running OLTP,
DSS and web workloads generating dynamic content, because
threads spin in the OS. As such, U-IPC could be used reliably
as a microarchitectural metric for throughput with simulation.

With the transition to the cloud and the birth of global
IT services from search, to social media, retail and media,
customer experience in terms of response time became a
negotiated metric in cloud Service Level Agreements (SLAs).
Strict quality of service (QoS) requirements were set on
response time of servers, setting bounds not just on the average
latency, but on request tail latency. Queuing theory dictates that
tail effects become prominent at high server utilization. As a
direct consequence, cloud operators must sacrifice throughput
to meet tail latency constraints, intentionally running servers
at reduced utilization to meet latency targets.

Today, the key metrics for cloud workloads are peak
throughput at a given QoS target, where the target is defined
as a maximum acceptable end-to-end latency for a specified
fraction (e.g., 95th percentile) of the requests. Luiz’s work at
Google pointed to the cumulative impacts of tail latencies at
scale compounding into large end-to-end latencies. His work
showed the critical impact of tail latencies in datacenters [4],
where backend services must meet much stricter QoS targets
(e.g., 99.9th percentile) to permit end-to-end latency targets
(e.g., 95th percentile) to be met. In practice, production servers
rarely operate at their peak theoretical throughput, highlighting
the need to design processors that specifically target the
relevant metrics so as to optimize for efficiency and overall
cost.

B. Silicon Efficiency

The widening gap between mainstream CPUs and the needs
of cloud workloads inspired a critical look at how to quantify
the performance and efficiency of cloud-native processors.
With silicon area being a direct reflection of the processor cost,
we proposed the performance density metric, which relates
the QoS-conscious peak throughput that can be achieved by
a square millimeter of silicon. Using performance density as
a roadmap to understanding the cloud-native CPU landscape
suggests processors with many lean cores and limited cache
capacity [9]. The reluctance of the dominant server CPU
vendors to shift toward designs with higher performance
density and make more effective use of silicon led to a rapid
emergence of a number of competing CPU designs targeting
the cloud market, including the Cavium ThunderX, Amazon
Graviton, link Altra, and Huawei TaiShan.

As chip power envelopes continue their exponential increase
and Moore’s Law crawls toward its ultimate demise, cloud-
native processor design is approaching another inflection point.

Throughput/mm2 Throughput/Watt
Zen 3 Altra Zen 3 Altra

Data Analytics 1.38 3.87 1.46 2.53
Data Caching 1.28 2.06 1.35 1.34
Data Serving 1.22 1.94 1.29 1.27
DSB Media Service 0.89 1.53 0.95 1.00
Graph Analytics 1.55 3.31 1.65 2.16
In-memory Analytics 1.52 3.86 1.61 2.52
Media Streaming 1.09 1.82 1.16 1.19
Web Search 1.46 4.06 1.54 2.65
Web Serving 1.37 4.04 1.46 2.64

TABLE I
SINGLE-CORE PERFORMANCE DENSITY AND PERFORMANCE/POWER FOR

AMD ZEN 3, AMPERE ALTRA NORMALIZED TO INTEL ICE LAKE.

Integrating more silicon per server node increases fabrication
cost, but with increasing clock frequencies and diminishing
improvements in memory density, the design constraints shift
away from processor silicon area, toward overall power con-
sumption and memory bandwidth.

Table I compares performance density and perfor-
mance/power on CloudSuite 4.0 and DeathStarBench Media
Service for a single core of AMD Zen 3 and Ampere Altra,
both normalized to Intel Ice Lake. Ice Lake, Zen 3, and Altra
are 6.2, 4.0 and 1.40 mm2 in area per core in comparable
technology nodes. The TDP of each chip is divided by the
number of cores to get 5.78, 3.52, and 2 watts respectively for
each Ice Lake, Zen 3, and Altra core. The cores are all run at
2.4 5GHz. Throughput is measured for a single query (i.e., for
data, media, web services) or entire workload execution time
(i.e., for analytics).

The figure indicates that due to its more efficient x86 core
design, Zen 3 on average improves both metrics over Ice
Lake. Altra, utilizing a narrower out-of-order ARM pipeline,
improves performance density by up to 4x and perfor-
mance/power by up to 2.65x. These numbers for Ampere are
conservative because Altra uses stock ARM cores. AmpereOne
with custom ARM cores for servers is slated to have higher
silicon efficiencies.

IV. EMERGING WORKLOADS & PARADIGMS

At Google, Luiz helped architect the scale-out workload
paradigm. Scale-out emerged from the need to cost-effectively
deliver online services to a global base of users. By their very
nature, these services were complex (e.g., web search) yet
needed to meet tight latency constraints and unprecedented
throughput objectives. Luiz and colleagues demonstrated that
scalability can be achieved by decomposing complex appli-
cations into stand-alone logical components, each of which
can be deployed and scaled independently to offer the desired
performance and reliability objectives in software.

While the scale-out paradigm enabled greater degrees of
scalability and modularity compared to traditional enterprise
monoliths, typical scale-out architectures featured just two or
three tiers, with each tier responsible for a significant degree
of the overall functionality. With increasing complexity and
commoditization of online services, there emerged a need for

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3418975

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on October 20,2024 at 10:34:38 UTC from IEEE Xplore. Restrictions apply.

greater modularity and elasticity at the software level, giving
rise to microservices.

Microservices ushered in an era of truly disaggregated appli-
cations, each deployed as a graph of tens or even hundreds of
nodes communicating via remote procedure calls (RPC). The
high degree of modularity endemic in microservices facilitated
composability, whereby off-the-shelf pieces of software (po-
tentially written in different programming languages) could be
mixed and matched to rapidly engineer and deploy complex
services. High modularity also enabled greater degrees of
elasticity, empowering developers to scale different parts of
their application separately as a function of the load placed
on each microservice.

A performance analysis of microservices by Gan et al. [6]
observed that the network stack accounted for a significant
fraction of cycles, due to frequent RPC calls – the price of
disaggregation. The trends at the microarchitectural largely
echoed those for scale-out and enterprise workloads, with a
high fraction of stall cycles in the core front-end and long-
latency accesses to main memory for data, both of which
contribute to low IPC [5]. Microservices also amplify the tail
latency problem, because a single slow server in a long chain
of RPC calls can compromise the end-to-end latency.

In recent years, serverless computing has emerged as a
popular way to deploy complex services in the cloud. Similar
to microservices, a serverless application comprises a graph of
loosely connected functions that communicate over RPC. In
serverless, however, functions are stateless, with any mutable
state maintained in a separate service.

Serverless offers solutions to key drawbacks of microser-
vices. First, traditional microservice instances are often housed
within full-featured virtual machines (VMs) that can take
considerable time to boot. This prolonged boot time can
compromise latency targets, especially during sudden load
spikes. Developers often provision additional VM instances
as a precaution against load fluctuations, leading to overpro-
visioning and unnecessary costs as VMs are billed regardless
of whether they are idle or active.

Serverless addresses these challenges by leveraging its state-
less nature and lightweight micro-VMs, facilitating rapid on-
demand scaling with instance boot times measured in seconds
rather than minutes. Moreover, developers are billed solely
for the actual runtime and memory usage of their functions,
encouraging them to optimize instances’ runtime and memory
footprints. Consequently, serverless functions exhibit short
execution times, often in milliseconds, and small memory
footprints [10], enhancing server utilization through efficient
bin packing. However, as serverless adoption increases, it
will necessitate adjustments in OS and hardware to efficiently
handle the growing number of tasks and remote data access,
ensuring optimal performance and resource utilization while
managing potential inefficiencies in the software stack.

AI workloads represent a substantial portion of datacenters’
computational resources and energy consumption, with antici-
pated growth driven by the rise of generative AI technologies.
To address these requirements, major cloud providers such

as Google, Microsoft, Amazon, and Huawei have introduced
AI accelerators, offering higher silicon efficiency compared to
CPUs. AI workloads also align with trends favoring disintegra-
tion for the scalability of services and resource optimization,
leading to their deployment as microservices and serverless
instances. However, this trend also underscores the need
for solutions capable of managing diverse requirements for
computational resources, while also supporting frequent use of
OS (e.g., memory management and scheduling) and network
services (e.g., RPC).

V. POST-MOORE SERVERS

There are many opportunities to optimize silicon efficiency
in the post-Moore era. These opportunities can bridge the
gap between the workloads and emerging silicon technologies
to minimize both capital expenditure (i.e., amount of silicon
used) and operational expenditure (i.e., energy used) in data-
centers [3].

Today’s servers inherit their hardware and operating sys-
tem from the desktop PCs of the 1990s, where silicon is
fragmented across the hardware and OS boundary lines. This
architecture fundamentally suffers from the same mismatch
between the nanosecond time-scale of CPU and memory with
the millisecond time-scale of OS services handling I/O devices
(mentioned in II). Because datacenters’ primary function is
processing, managing and storing distributed data, to access
this data hosted in the server’s memory requires CPU and OS
intervention. Moreover, discrete I/O devices require their own
memory (and CPU in the case of network interface cards)
fragmenting silicon across the server and creating multiple
copies of data. Finally, because the flow of data among
services is not exposed to the OS within the server, the OS is
oblivious to how CPU resources are scheduled and is unable to
minimize OS scheduling overhead and maximize instruction
and data affinity.

To reduce data’s overall required silicon footprint, there are
three post-Moore design pillars for servers: (1) integration,
tightly connecting functionality with data in memory to reduce
movement, (2) specialization, tailoring silicon resources for
common functionality for data, and (3) approximation, opti-
mize silicon resources based on the expected output quality
for computation. In the following, we present examples of
opportunities to pursue with these pillars to optimize silicon
efficiency in post-Moore servers.

A. Compute

While silicon density continues to improve slowly with
new fabrication technologies, these technologies are becoming
increasingly expensive. Chiplets have emerged as a promising
approach to reduce the cost of fabrication both through en-
hancing yield (because yield is a function of die area) and
the use of older technology nodes for the less latency-critical
functionality. Chiplets also present an opportunity to build a
single server node with disaggregated specialized functional-
ity and tighter integration to reduce data movement across
services. Services with large instruction supply bottlenecks,

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3418975

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on October 20,2024 at 10:34:38 UTC from IEEE Xplore. Restrictions apply.

large off-chip datasets, and little instruction- and memory-level
parallelism can use a scale-out pod [9] chiplet architecture with
more logic-to-memory silicon provisioning. To accommodate
a larger number of cores per chiplet, chiplet design can be
tailored with a minimal frequency to achieve the desired
tail latency in a disaggregated service. Microservices and
serverless workloads would benefit from a chiplet architecture
with hardware support for core-to-core connectivity, RPC
operations and a tighter integration with the network interface.

Moreover, the energy required to fetch a word of off-chip
memory is four or more orders of magnitude larger than a
fixed-point add operation. Popular analytic operators (e.g.,
in Apache Spark) filter, map, aggregate, join, or sort data
in memory which is distributed over multiple servers. These
operators are embarrassingly parallel, require only fixed-point
arithmetic, can easily consume the available memory band-
width, and do not exhibit much reuse in the cache hierar-
chy. Custom chiplets for analytic operators can be properly
integrated both near memory to utilize the available memory
bandwidth and near the network interface card to stream the
results out in case of a request from a remote server.

Finally, numerical encoding is a fundamental enabler in
reducing data’s overall computational, communication and
storage requirements. There is a difference of two orders
of magnitude in energy and area footprint for 2-bit vs. 32-
bit arithmetic operations. Much computation centered around
data operates on data that is statistical in nature (e.g., origi-
nating from sensors or simulation). Similarly, computational
outcome is often statistical in nature, gauged by a given quality
metric (e.g., training, inference, statistical ranking, media).
Identifying algorithmic techniques for approximation together
with innovation in numerical encoding and microarchitecture
can help maximize computational density, and minimize the
required memory capacity and bandwidth. Modern GPUs
are increasingly supporting both multiple scaled numerical
formats and sparsity to allow algorithms to minimize the
computational, memory capacity and bandwidth requirements
of large language models.

B. Memory

Memory is roughly 50% of the cost of the server today
and has been highly cost-sensitive since the inception of
datacenters. In recent years, the cost per GB has plateaued
due to the slowdown in Moore’s Law, further pushing up the
overall memory price per server. There are many opportunities
to explore technologies that enable both a more efficient use
of memory and its capacity, directly improving the return on
investment in servers.

Memory pooling is one such paradigm that has great
potential. Many studies in the past have examined rack-level
memory pooling to mitigate a load imbalance in data serving
software stacks due to a skew in partitioning or object popular-
ity. Recent research suggests that, in the cloud environment,
memory is wasted in rented VMs because customers don’t
fully use the memory capacity, and in rented physical servers
where all CPUs are rented and memory can be stranded.

Tighter integration of network interface with the CPU would
enable the OS to implement memory pooling and optimize
capacity management. CXL also offers a promising scalability
path for memory pooling with transaction-oriented serial links
in future generation PCIe protocols as traditional parallel
interfaces in DDR are prohibitively pin-intensive.

Virtualization is a foundational technology built on top
of virtual memory to provide isolation for both conven-
tional cloud containers and emerging serverless/microservices
paradigms. Confidential computing also fundamentally relies
on virtualization for protection. Modern page-based virtual
memory dates back to the 1960s and its current incarnations
not only incur significant silicon footprint for TLBs (now
in thousands of entries per core) but also operate on a
microsecond time-scale for page-based memory management
operations (e.g., changing permissions).

Intermediate address spaces are a promising approach to en-
abling nanosecond-scale memory management operations [7]
while eliminating the silicon footprint of page-based vir-
tual memory. Emerging workloads such as microservices,
serverless functions and virtualized network functions can
forego virtualization and specialize hardware/software for
nanosecond-scale compartments using an intermediate address
space. The ability to grant and revoke access to memory on
the nanosecond time-scale means that data can be supplied
from across multiple domains from the same physical copy,
thereby eliminating data copy operations and providing a
tighter integration between the application and the system.

C. Datacenter Tax

A common set of operations in datacenters accounts for 30%
of all CPU cycles. These operations, referred to as datacenter
tax, are centered around the management and communication
of data. These include CPU cycles in the datacenter spent
moving and operating data among the CPU, memory, and
the network. Both DDR and CXL (with PCIe) bandwidth
are slated to grow by more than 20% per year by 2030.
Network bandwidth is also slated to grow by 20% in the
next decade thanks to emerging fabrics. With these bandwidth
trends, the sequential software running on the CPU to perform
the datacenter tax will be a growing bottleneck. Mitigating the
datacenter tax requires proper integration of specialized logic
among the CPU, memory, and the network to accelerate these
operations and minimize data movement.

Many common datacenter tax operations are related to
memory management. These include memory allocation, copy-
ing, compression/decompression, encryption/decryption, and
scatter/gather operations. Because RPC is the most common
mechanism of communication, the datacenter tax also includes
data serialization/deserialization to allow microservices to
translate their object formats in memory as they communi-
cate. Recent products such as Intel Sapphire Rapids started
incorporating examples of such accelerators.

There are promising avenues to co-design custom processors
for RPC [12]. These processors, when integrated with the
network interface and the CPU in the same coherence domain,

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3418975

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on October 20,2024 at 10:34:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The anatomy of the Cerebros RPC processor.

can minimize data movement. Figure 4 depicts the anatomy
of the Cerebros RPC processor tightly integrated with the
network interface logic and CPU. The processor executes the
RPC layer (e.g., Apache Thrift or Google Protobuf) and acts
as an intermediary stage between the network interface and
the microservice running on the CPU. The processor not only
processes RPC requests at line rate (e.g., 100 Gbps), it also op-
timizes service throughput by monitoring and balancing load
on cores, and using affinity scheduling to improve locality.

Beyond memory allocation and management, common OS
operations such as thread scheduling and interrupt delivery
also consume a significant fraction of CPU cycles. Modern
servers consolidate thousands of threads, which the OS has to
manage within a coherence domain. Most importantly, the OS
cannot maximize affinity and minimize data movement and
interrupt delivery overhead because it has little information
about the application’s communication patterns. The combined
effect of increasing core counts and emerging paradigms
(i.e., microservices and serverless computing) exacerbate the
overhead of thread management, scheduling and interrupt
delivery. Innovation in OS together with microarchitecture will
be instrumental in mitigating the OS-centric datacenter tax.

VI. CONCLUSIONS

Server architecture has undergone major transformations
from the enterprise servers of the 1990s to the cloud servers
of today. These transformations have been the thanks to
exponential improvements in CPU performance and memory
density with Moore’s Law, the demand for scalability from

enterprise IT to public cloud, and the focus on return on
investment in datacenters. Luiz played an indispensable role in
creating and realizing these transformations. Continuing Luiz’s
legacy in the post-Moore era requires a clean-slate approach to
the design of the computing stack, from algorithms all the way
down to hardware, to maximize silicon efficiency and address
the needs of emerging workloads with proper design metrics.

REFERENCES

[1] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
killer microseconds,” Commun. ACM, vol. 60, no. 4, 2017.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system
characterization of commercial workloads,” in Proceedings of the 25th
International Symposium on Computer Architecture, 1998.

[3] L. A. Barroso, U. Hölzle, and P. Ranganathan, The Datacenter as a
Computer: Designing Warehouse-Scale Machines, Third Edition, ser.
Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2018.

[4] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, 2013.

[5] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Quantifying
the mismatch between emerging scale-out applications and modern
processors,” ACM Transactions on Computer Systems, vol. 30, no. 4,
2012.

[6] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019.

[7] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Falsafi, and
M. Payer, “Rebooting virtual memory with midgard,” in Proceedings of
the 48th International Symposium on Computer Architecture, 2021.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, no. 4, 2011.

[9] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
Out Processors,” in Proceedings of the 39th International Symposium
on Computer Architecture, 2012.

[10] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in USENIX Technical Conference, 2020.

[11] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “Simflex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, no. 4, 2006.

[12] A. P. Zarandi, M. Sutherland, A. Daglis, and B. Falsafi, “Cerebros:
Evading the RPC tax in datacenters,” in Proceedings of the 54th
IEEE/ACM International Symposium on Microarchitecture, 2021.

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3418975

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on October 20,2024 at 10:34:38 UTC from IEEE Xplore. Restrictions apply.

