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BTB-X: A Storage-Effective BTB
Organization

Truls Asheim, Boris Grot", and Rakesh Kumar

Abstract—Many contemporary applications feature multi-megabyte instruction
footprints that overwhelm the capacity of branch target buffers (BTB) and
instruction caches (L1-1), causing frequent front-end stalls that inevitably hurt
performance. BTB is crucial for performance as it enables the front-end to
accurately resolve the upcoming execution path and steer instruction fetch
appropriately. Moreover, it also enables highly effective fetch-directed instruction
prefetching that can eliminate many L1-I misses. For these reasons, commercial
processors allocate vast amounts of storage capacity to BTBs. This letter aims to
reduce BTB storage requirements by optimizing the organization of BTB entries.
Our key insight is that today’s BTBs store the full target address for each branch,
yet the vast majority of dynamic branches have short offsets requiring just a
handful of bits to encode. Based on this insight, we organize the BTB as an
ensemble of smaller BTBs, each storing offsets within a particular range. Doing so
enables a dramatic reduction in storage for target addresses. We also compress
tags to reduce the tag storage cost. Our final design, called BTB-X, uses an
ensemble of five BTBs with compressed tags that enables it to track 2.8x more
branches than a conventional BTB with the same storage budget.

Index Terms—Server, microarchitecture, branch target buffer (BTB), instruction
cache, prefeteching
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1 INTRODUCTION

CONTEMPORARY server applications feature massive instruction
footprints stemming from deeply layered software stacks. These
footprints may far exceed the capacity of the branch target buffer
(BTB) and instruction cache (L1-I), resulting in the so-called front-
end bottleneck. BTB misses may lead to wrong-path execution,
triggering a pipeline flush when misspeculation is detected. Such
pipeline flushes not only throw away tens of cycles of work but
also expose the fill latency of the pipeline. Similarly, L1-I misses
cause the core front-end to stall for tens of cycles while the miss is
being served from lower-level caches.

BTB stands at the center of a high-performance core front end
for three key reasons: it determines the instruction stream being
fetched, it identifies branchs for the branch predictor, and it affects
the L1-I hit rate. Specifically, by identifying control flow divergen-
ces, the BTB ensures that the branch predictor can make predic-
tions for upcoming conditional branches. For predicted-taken and
unconditional branches, the BTB supplies targets to which instruc-
tion fetch should be redirected. Finally, the BTB together with the
direction predictor enables an important class of instruction pre-
fetchers called fetch-directed instruction prefetchers (FDIP) [6], [7],
[9], which rely on the BTB to discover L1-I prefetch candidates.

Considering the criticality of capturing the large branch working
sets of modern workloads, commercial CPUs feature BTBs with
colossal capacities, a trend also observed by [5]. Thus, IBM z-series
processors [3], AMD Zen-2 [11], and ARM Neoverse N1 [8] feature
24K-entry, 8.5K-entry, and 6K-entry BTBs. With each BTB entry
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requiring 10 bytes or more (Section 2), BTB storage costs can easily
reach into tens and even hundreds of KBs. Indeed, the Samsung
Exynos M6 mobile processor allocates a staggering 529KB of on-
chip storage to BTBs [4]. While such massive BTBs are effective at
capturing branch working sets, they do so at staggering area costs.

This work seeks to reduce BTB storage requirements by increas-
ing its branch density, defined as branches per KB of storage. To that
end, we aim to reorganize individual BTB entries to minimize their
storage cost. Our key insight is that branch offsets, defined as delta
between the address of the branch instruction and that of its target,
are unequally distributed but tend to require significantly fewer
bits to represent than full target addresses. Our analysis reveals
that 37% of dynamic branches require only 7 bits or fewer for offset
encoding, while a meager 1% of branches need 25 bits or more to
store their offsets.

Based on this insight, we propose to store offsets in the BTB rather
than full target addresses, which can be up to 64 bits long depending
on the size of virtual address space. To accommodate the varied dis-
tribution of branch offsets, we partition the BTB into several smaller
BTBs, each storing only those branches whose target offsets can be
encoded with a certain number of bits. Because the target field
accounts for over half of each entry’s storage budget in a conventional
BTB (Fig. 1), this optimization brings significant storage savings. We
further observe that the tag field is the second-largest contributor to
each BTB entry’s storage requirement. To reduce this cost, we pro-
pose compressing the tags through the use of hashing.

Our final design, called BTB-X, uses an ensemble of five BTBs,
each with 16-bit tags. The BTBs differ only in the number of bits
they allocate for branch target offsets. Our evaluation shows that
BTB-X can track over 2.8x more branches than a conventional BTB
with the same storage budget. Conversely, BTB-X can accommo-
date the same number of branches as existing BTBs while requiring
2.8x less storage.

2 BACKGROUND

2.1 Branch Target Buffer (BTB)

BTB is used in the core front-end to identify whether a program
counter (PC) corresponds to a branch instruction before the instruc-
tion itself is even fetched. As depicted in Fig. 1, each BTB entry is
composed of tag, type, and target fields. BTB is indexed with the
lower order PC bits and tag field of the indexed entry is compared
with the higher order PC bits. A match indicates that the PC belongs
to a branch instruction. The type field of the indexed BTB entry
determines whether the branch is a call, return, conditional, or
unconditional branch. The branch type determines whether the
branch direction (taken/not taken) needs to be predicted and where
its target address is found. Call, return, and unconditional branches
are always taken, whereas for conditional branches, a direction pre-
dictor is used to predict their direction. If the branch is predicted to
be taken, target field in the BTB entry provides the address for the
next instruction, except for returns. This is because a given function
can be called from different call sites; as such, the return address is
call-site dependent. Therefore, a return address stack (RAS) is typi-
cally employed to record return addresses at call-sites. On a func-
tion call, the call instruction pushes the return address to RAS,
which is later popped by the corresponding return instruction.

2.2 The Cost of a BTB Miss

A BTB miss for a branch instruction means that the branch is unde-
tected and the front-end continues to fetch instructions sequen-
tially. Whether or not the sequential path is the correct one
depends on the actual direction of the missed branch. Unless the
missed branch is a conditional branch that is not taken, the
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Fig. 1. BTB entry composition in a conventional BTB.
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Fig. 2. FDIP microarchitecture.

sequential path is incorrect. When the wrong path is eventually
detected by the core, all the instructions after the branch that
missed in the BTB are flushed, fetch is redirected to the branch tar-
get and pipeline is filled with correct-path instructions. BTB misses
are thus highly deleterious to performance as they result in a loss
of tens of cycles of work and expose the pipeline fill latency.

2.3 BTB’s Role in Instruction Prefetching

Fetch-directed instruction prefetchers are a class of powerful L1-I
prefetchers that intrinsically rely on a BTB. These prefetchers are
highly effective and, when coupled with a sufficiently large BTB,
outperform the winner of the recently-concluded Instruction Pre-
fetching Championship [2], as reported by Ishii et al. [5]. Variants of
these prefetchers have been adopted in commercial products, for
example in IBM z15 [10], ARM Neoverse N1 [8] etc.

Fig. 2 shows a canonical organization of a fetch-directed instruc-
tion prefetcher (FDIP) [9]. As originally proposed, FDIP decouples
the branch-prediction unit and the fetch engine via the fetch target
queue (FTQ). This decoupling allows the branch prediction unit to
run ahead of the fetch engine and discover prefetch candidates by
predicting the control flow far into the future. With FDIP, each
cycle, the branch prediction unit identifies and predicts branches
to anticipate upcoming execution path and inserts corresponding
instruction addresses into the FTQ. Consequently, the FTQ con-
tains a stream of anticipated instruction addresses to be fetched by
the core. The prefetch engine scans the FTQ to identify prefetch
candidates and issue prefetch requests.

For FDIP to be effective, the BTB needs to accommodate the
branch working set, otherwise frequent BTB misses will cause
FDIP to prefetch the wrong path as FTQ will be filled with wrong
path instruction addresses. This is one of the key reasons why com-
mercial processors deploy massive BTBs, as also observed by [5].

3 BTB-X

To reduce the overall storage cost, this work seeks to minimize the
storage requirements of the costliest fields making up each BTB entry,
i.e. target and tag, through two ideas: partitioning and hashing.

3.1 Partitioned BTB

As Fig. 1 shows, the largest contributor to storage cost is the target
field, which stores the branch target address. For instance, in the
ARMVS ISA, which uses a 32-bit fixed length instruction encoding,
the target address is 46 bits long with a 48-bit virtual address space.
Our key insight is that targets of most branches lie relatively close
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Fig. 3. Distribution of branch target offsets.
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Fig. 4. BTB entry composition for BTB-X partitions.

in the virtual address space to the branch itself. As a result, encod-
ing the distance to the target, in the form of an offset from the
branch instruction, instead of a full target address, can provides
drastic storage savings.

Fig. 3 plots the distribution of offsets in the branch working sets
of our workload traces. Offsets are calculated in instruction words,
which are 32 bits in the ARM v8 ISA. The data includes both condi-
tional and unconditional branches; hence, it comprehensively cov-
ers the full branch working set. The X-axis shows the number of
bits required to encode the offset, while the Y-axis plots the fre-
quency of occurrence. Note that, in addition to bits for encoding
the offset, an additional bit is required for the direction of the offset
(forward /backward).

As the figure shows, short offsets dominate the distribution with
37% of branches requiring only seven bits or fewer for their offsets. A
further 30% of branches only require between 8 and 14-bits to repre-
sent their offsets. The reason why such a high fraction of offsets is short
is that conditional branches dominate the dynamic branch working
set, and they tend to have short offsets [6]. This is because conditional
branches generally guide the control flow only inside a function;
meanwhile, software engineering principles favor small functions,
thus restricting conditional branch offsets to short distances.

Perhaps surprisingly, Fig. 3 also shows that very few branches
require a large number of bits to encode their offset. Indeed, a meagre
1% of branches requires 25 bits or more for their offset encoding. The
sum of these results indicates that reserving space for the full 46-bit
target address results in an appalling under-utilization of BTB stor-
age, since 99% of branches need at most half the number of bits
needed to represent the full target address if offsets are used instead.

Based on these insights, we propose to partition a single logical
BTB into multiple physically-separate BTBs. The BTBs differ
amongst themselves only in the size of the offset. When the branch
prediction unit queries an address, all BTB partitions are accessed
in parallel, hence presenting a logical equivalent of a monolithic
BTB. If the core queries the BTB with n addresses per cycles, each
BTB-X partition must be accessed with all » addresses.

Fig. 4 shows the BTB partitions used by our proposed BTB orga-
nization, called BTB-X. It uses five different BTBs with offset field
sizes of 0, 7, 14, 24 and 46 bits. The BTB with no offset field (i.e., 0-
bit offset) tracks only return instructions. Recall from Section 2 that
return instructions read their target address from RAS; as such,
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TABLE 1
Microarchitectural Parameters

Core 6-wide O00, 128-entry FTQ, 128 reservation stations,

352-entry ROB, 128-entry load queue, 72-entry store queue

Branch Predictor Hashed Perceptron
L1-1 32 KB, 8-way, 4 cycle latency, 8 MSHRs
L1-D 48 KB, 12-way, 5 cycle latency, 16 MSHRs

L2 512 KB, 8-way, 14/15 cycle latency, 32 MSHRs

LLC 2MB, 16-way, 34/35 cycle latency, 64 MSHRs
TABLE 2
Storage Breakdown for Conventional BTB
Entries Organization Entry size (bits) Total (bytes)
1K 128-set, 8-way 87 10.875K
2K 256-set, 8-way 86 21.5K
4K 512-set, 8-way 85 42 5K
8K 1024-set, 8-way 84 84K
16K 2048-set, 8-way 83 166K

there is no need to allocate space for targets of returns in the BTB.
Further, as all instructions in this BTB are returns, it does not
require the branch type field either. Other branches are allocated
entries in one of the remaining four BTBs based on the minimum
number of bits required to encode their offsets. For example, if a
branch requires 10 bits for encoding its target offset, it is allocated
an entry in the BTB with target offset field size of 14 bits.

We further make use of the data in Fig. 3 to size each of the
BTBs. Because very few branches require more than 24 bits to
encode their target offsets, the BTB with the 46-bit offset field is
allocated the fewest entries. Meanwhile, the BTBs corresponding to
7-, 14-, and 24-bit offset are allocated a similar number of entries,
as the frequency of 1-7 bit, 8-14 bit, and 15-24 bit offsets is about
same — 37%, 30% and 32% respectively.

3.2 Tag Compression

Tags comprise the second largest source of storage overhead in
each BTB entry, requiring 39 bits in the baseline design. To further
reduce the storage requirement, BTB-X uses a compressed 16-bit
tag in all of its BTBs. Our compression scheme maintains the 8 low-
order bits same as in the full tag. The remaining bits of the full tag
are folded, using the XOR operator, in blocks of eight to compute
the 8 higher-order bits for the compressed tag. As our evaluation
shows, the performance impact of this scheme is negligible as the
hashing function (folded XOR) preserves most of the entropy
found in the high-order bits.

3.3 Applicability to Basic-Block-Based BTBs

While this work describes BTB-X in the context of an instruction-
based BTB organization (i.e., the BTB is accessed using individual
instruction addresses), our insights and design are equally applica-
ble to basic-block-based BTBs (BB-BTBs) [6], [7], [9]. BB-BTBs are
similar to instruction-based ones but are accessed using a basic-
block address. Because existing BB-BTB designs store full branch
targets and offsets, they would benefit from optimizations described
in this work.

4 EVALUATION

We use ChampSim [1], an open-source trace-driven simulator, to
evaluate the efficacy of BTB-X on server and client workload traces
from IPC-1 [2]. We warm up microarchitectural structures for 50M
instructions and collect statistics over the next 50M. The microarch-
itectural parameters for the modeled processor are listed in Table 1.

TABLE 3
Storage Breakdown for BTB-X. The Storage Budget is Comparable to
That of a 1K-Entry Conventional BTB

Partition Entry size Entries Storage
0-bit offset 16-bits 768 1.5KB
7-bit offset 25-bits 768 2.34KB
14-bit offset 32-bits 640 2.5KB
24-bit offset 42-bits 640 3.28KB
46-bit offset 64-bits 80 0.625KB
Total 2,896 10.25KB
TABLE 4
Storage and Entries in Conventional BTB and BTB-X
Conventional BTB BTB-X

Storage Entries Storage Entries
10.875KB 1K 10.25KB 2,896
21.5KB 2K 20.5KB 5,792
42.5KB 4K 41KB 11,584
84KB 8K 82KB 23,168
166KB 16K 164KB 46,336

4.1 Storage Breakdown

The storage requirements for a conventional BTB for different
number of BTB entries are presented in Table 2 assuming a 48-bit
virtual address space. We increase the number of sets in the BTB to
increase the number of entries while keeping the associativity
same (8-way). Notice that the entry size reduces by one bit while
doubling the number of entries. This is because the tag size reduces
as more bits are needed to index the BTB.

Table 3 presents the allocation of the storage budget among the
five BTB-X partitions. For this analysis, the storage budget is
capped at that of a 1K-entry conventional BTB. As the table shows,
the partition for 46-bit offsets gets the smallest amount of storage
as very few branches need to be allocated there. Meanwhile, the
remaining partitions get relatively more storage with a roughly
similar number of entries in each partition.

When presented with a larger storage budget, we follow the
same strategy for scaling up BTB-X as for a conventional BTB.
Thus, we double the number of sets in each BTB partition to double
the capacity while maintaining the associativity (i.e., 0-bit and 7-bit
offset partitions are 6-way, others are 5-way).

Table 4 shows the number of entries that a conventional BTB
and BTB-X can accommodate for several storage budgets. As is evi-
dent from the table, for a given storage budget, BTB-X can store
about 2.8x more entries than the conventional BTB. Note that since
the number of sets have to be a power of 2, we are not able to pre-
cisely match the storage of conventional BTB and BTB-X — the con-
ventional BTB gets a slightly higher storage.

4.2 Performance

To assess the effectiveness of BTB-X, we compare its performance
to that of a conventional BTB across different storage budgets.
Recall from Section 2 that a larger BTB can deliver two distinct ben-
efits: 1) reduce the incidence of pipeline flushes by detecting
branches in the upcoming control flow and 2) facilitate instruction
prefetching when coupled with FDIP. Thus, we compare the per-
formance gains achieved by the two competing BTB designs by
evaluating them with FDIP.

Fig. 5 presents the performance gains obtained on server and
client traces. Each bar in the figure shows the contribution to per-
formance of having fewer pipeline flushes and from better instruc-
tion prefetching stemming from larger BTB capacities. The results
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Fig. 5. Performance gain for conventional BTB and BTB-X (both with FDIP) on
(a) server and (b) client traces. Baseline is no-prefetch 1K-entry conventional
BTB. X-axis is storage for a 1K-, 2K-, 4K-, 8K-, and 16K-entry conventional BTB.

are normalized to the performance of a core with a 1K-entry con-
ventional BTB (10.875KB storage budget) and no instruction
prefetching.

As the figure shows, BTB-X provides significantly higher over-
all performance than the conventional BTB for equal storage budg-
ets of up to several tens of kilobytes. The performance advantage
of BTB-X is particularly pronounced on server traces whose large
instruction footprints pressure the BTB and L1-I. For instance,
BTB-X provides 63% performance gain over the baseline compared
to 38% of conventional BTB with 21.5KB storage budget. At large
BTB storage budgets, the branch working sets of many workloads
start to fit in the available BTB capacity, at which point the perfor-
mance gap between the two designs diminishes.

A key take-away from the figure is that BTB-X provides same or
higher performance than the conventional BTB even when BTB-X is
given just half the storage budget of its conventional counterpart.
For example, in Fig. 5a, the conventional BTB improves performance
by 38% with a 21.5KB budget whereas BTB-X provides a 44%
improvement with just 10.875KB of storage. The reason for this phe-
nomenon is that BTB-X accommodates 2.8x more entries than a con-
ventional BTB of equal storage budget; thus, halving BTB-X’s budget
still gives a capacity advantage over the conventional design.

Ignoring instruction prefetching and looking exclusively at per-
formance gains stemming from reduced pipeline flushes, the trends
are similar to above. For storage budgets of up to several tens of KBs,
BTB-X outperforms a conventional BTB even with half of the latter’s
storage budget. For instance, Fig. 5a (blue segments of the bars)
shows that BTB-X provides 13% gain with a 10.875KB budget
whereas a conventional BTB with twice the budget (21.5KB) gains
only 10%.

4.3 Impact of Tag Compression

For assessing the performance loss due to compressed tags, we
compare the performance of BTB-X with 16-bit tags versus full tags
for the smallest BTB size (10.875 KB). We focus on the smallest BTB
as it is likely to suffer the highest degree of aliasing due to tag com-
pression. Our results show that, full tags provide 38.21% perfor-
mance gain, geo-mean across server and client traces, over the
baseline compared to 38.16% with compressed tags, a difference of
only 0.05%. This indicates that our tag compression scheme is able
to preserve the entropy of higher-order bits.

5 CONCLUSION

The multi-megabyte instruction footprints of contemporary server
applications cause frequent BTB and L1-I misses, which have
become major performance limiters. Because BTB capacity greatly
affects front-end performance in terms of flush rate and the efficacy
of fetch-directed instruction prefetching, commercial products allo-
cate tens to hundreds of KBs of storage to BTBs. To reduce the BTB
storage requirements, this paper introduced an optimized BTB
organization. The proposed design, BTB-X, leverages our insight
that branch target offsets vary but tend to be much shorter than
full target addresses. BTB-X uses an ensemble of five BTBs, each
storing offsets of a different length, and also compresses the tags to
track 2.8x more branches than a conventional BTB with an equal
storage budget.
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