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BuMP: Bulk Memory Access Prediction and Streaming

Abstract—With the end of Dennard scaling, server power has
emerged as the limiting factor in the quest for more capable
datacenters. Without the benefit of supply voltage scaling, it is
essential to lower the energy per operation to improve server
efficiency. As the industry moves to lean-core server processors,
the energy bottleneck is shifting toward main memory as a chief
source of server energy consumption in modern datacenters.
Maximizing the energy efficiency of today's DRAM chips and
interfaces requires amortizing the costly DRAM page activa-
tions over multiple row buffer accesses. 

This work introduces Bulk Memory Access Prediction and
Streaming, or BuMP. We make the observation that a signifi-
cant fraction (59-79%) of all memory accesses fall into DRAM
pages with high access density, meaning that the majority of
their cache blocks will be accessed within a modest time frame
of the first access. Accesses to high-density DRAM pages
include not only memory reads in response to load instructions,
but also reads stemming from store instructions as well as mem-
ory writes upon a dirty LLC eviction. The remaining accesses
go to low-density pages and virtually unpredictable reference
patterns (e.g., hashed key lookups). BuMP employs a low-cost
predictor to identify high-density pages and triggers bulk trans-
fer operations upon the first read or write to the page. In doing
so, BuMP enforces high row buffer locality where it is profit-
able, thereby increasing row buffer hit ratio by 3x and reducing
DRAM energy per access by 23%, and improves server
throughput by 11%.

I. INTRODUCTION

Today's scale-out datacenters use thousands of servers to
host the popular online applications and serve these to a
global audience. In order to maintain real-time response
latencies, the applications that run in these datacenters rely
on large per-server DRAM pools to keep significant frac-
tions of their vast datasets from spilling to disks [40].
Similarly, back-end processes that update the information
stores also rely on massive memory capacities to minimize
the time it takes for integration of new data with existing
content. As a result, the majority of server power in today's
datacenters is consumed by the combination of processors
and memory [2, 24, 35].

With the slowdown in Dennard scaling [13], server power
has become the limiting factor in datacenter expansion [11],
thus requiring improvements in energy consumed per server
per operation. On the processor side, the industry is transi-
tioning to chip multiprocessors featuring a large number of
lean cores [53, 54]. Such designs are well-suited for exploit-
ing the rich request-level parallelism of server applications,
while providing greater energy efficiency in the face of fre-

quent long-latency memory stalls [13, 32]. With lean-core
designs being effective at minimizing processor energy con-
sumption, the energy-efficiency bottleneck is shifting to
DRAM that must serve frequent accesses from many cores.

DRAM memory uses a page-based organization, whereby
the first access to a page must activate (or open) the page,
requiring significant energy. Once a page is open, subse-
quent accesses to that page are served from the row buffer,
avoiding the high energy and latency cost of a page activa-
tion. Row buffer hits on today's DDR3 memory require 3x
less energy than accesses requiring a page activation [37].

Our analysis of server applications shows that a large frac-
tion of the DRAM accesses goes to DRAM pages with a
high access density, meaning that once cache block A on the
DRAM page is accessed, the majority of other blocks on that
page will be accessed within the lifetime of block A in the
last-level cache. Critically, this observation applies not only
to DRAM reads triggered by load instructions, but also to
reads resulting from store instructions (which fetch a block
from DRAM to bring it to on-chip caches), as well as
DRAM writes (triggered upon a dirty LLC eviction).

In theory, accesses to high-density DRAM pages should
be served from the row buffer, thus minimizing the number
of costly page activations. In practice, we find that this rarely
happens as accesses to any given page are interleaved with a
stream of accesses to other pages, hence destroying DRAM
row buffer locality [1, 46, 47, 57]. Keeping pages open and
prioritizing accesses to an open page helps only to some
extent, as accesses to different blocks within a page are often
separated by a distance that is beyond the reach of the mem-
ory controller’s scheduling window or occur in a data-
dependent fashion [51]. As row buffer locality is poorly
exploited in existing designs, we find activations to be a
major contributor to memory energy consumption.

One way to minimize activation energy is through modifi-
cations to DRAM chips or interfaces [1, 47, 59]. Historically,
such disruptive proposals have failed to gain traction in the
DRAM industry, which is focused on commoditization and
adheres to rigid standards to ensure broad compatibility. A
non-disruptive approach to improving DRAM energy effi-
ciency is to increase the fraction of DRAM accesses that hit
in the row buffer, thus eliminating redundant page activa-
tions. Advanced prefetchers can enforce row buffer hits by
predicting spatial footprints of load-triggered memory reads
within a page [4, 25, 44]; however, these proposals carry a
high storage overhead (60KB per core) and ignore store-trig-
gered memory reads and LLC writebacks. Eager writeback
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mechanisms [27, 28, 45] can improve row buffer locality for
writebacks, but only to a limited degree as they schedule
writebacks of only a few adjacent cache blocks at a time.
Maximizing row buffer locality calls for a comprehensive
mechanism that targets all types of memory accesses while
incurring a nominal area and energy cost.

In this paper, we introduce Bulk Memory Access Predic-
tion and Streaming, or BuMP. BuMP builds on the critical
insight that server applications access memory at either
coarse (few kilobytes) or fine (several bytes) granularities.
The resulting bimodal memory access behavior originates
from the way these applications access their datasets. Server
applications commonly operate on large objects (e.g., data-
base rows or memory-mapped files) that are accessed
through a pointer-intensive indexing data structure (e.g., a
hash table or a tree). For instance, a web search engine uses a
hash table to quickly retrieve metadata pages relevant to
query terms. While metadata pages are accessed at coarse
granularity, finding them requires performing a sequence of
fine-grained pointer-chasing operations through a hash
bucket. As a result, DRAM access density in servers is effec-
tively bimodal, with 59-79% (68% on average) of all DRAM
accesses going to high-density pages and the rest going to
low-density pages.

To accurately predict the density at which a page will be
accessed, BuMP exploits two properties. First, there is high
correlation between code and data. As server software uti-
lizes a set of functions to traverse and manipulate data
objects, the instruction which triggers the first read access to
a page provides information as to whether a coarse-grained
data object resides on the page. Second, the first dirty LLC
eviction within a coarse-grained data object is a good indica-
tor that the entire data object will be written back to memory.
As such, DRAM reads and DRAM writes can be accurately
predicted as going to low- or high-density pages.

Building on the properties above, BuMP employs a sim-
ple, low-cost, and effective predictor that identifies high-
density pages and triggers bulk transfers upon a first read or
write access to the page, thus guaranteeing high row buffer
locality. The bimodal memory access behavior of server
applications allows for a predictor that needs to track a small
number of memory instructions (only those that are corre-
lated with high-density pages), thereby affording a design
with small cost and low complexity.

We use cycle-accurate full-system simulation of a wide
range of contemporary server applications to show that:

• The majority (57-75%) of DRAM reads go to pages
with high access density;

• DRAM writes account for a significant share (21-38%)
of memory traffic, and the majority of those (62-86%)
belong to pages with high access density;

• A simple predictor can identify high-density pages and
enforce bulk transfer operations upon the first read or
write to a page, with minimal on-chip power (50mW)
and low storage (14KB) overhead;

• BuMP reduces memory energy per access by 23% over
a system that employs a conventional stride prefetcher
with FR-FCFS open-row policy while improving
server throughput by 11%. Compared to state-of-the-art
spatial prefetching [44] and eager writeback [45] mech-
anisms, BuMP reduces memory energy per access by
20% and 13%, while improving server throughput by
3% and 9%, respectively.

II. BACKGROUND AND MOTIVATION

A. Datacenter Trends

Slowdown in Dennard scaling and the emergence of
memory-intensive applications arise as two inflection points,
which affect datacenter design. With the semiconductor
industry approaching the physical limits of voltage scaling
[8, 13, 15], power becomes the main limiting factor to data-
center expansion. Servers are the major contributor to the
datacenter power, accounting for up to 85% of the total
power draw [24]. Therefore, system architects need to
improve server energy efficiency by building servers that
match the main characteristics of server applications.

Server applications have two chief characteristics which
directly affect server design [9, 10]. First, these applications
exhibit abundant request-level parallelism with low instruc-
tion- and memory-level parallelism within each thread. As a
result, server designers are turning to many-core processors
based on lean-core microarchitectures [53, 54]. Second,
server applications operate on vast DRAM-resident datasets,
thus requiring efficient memory systems [40].

To uncover opportunities for improving server energy
efficiency, we examine chief sources of server energy con-
sumption when running server applications [9] on a lean-
core CMP with 16 cores and 16 GB of memory (Section V.A
details the chip organization, methodology, and applica-
tions). We focus our analysis on processors and memory as
these components dominate server power [33, 35]. 

Figure 1 shows the relative energy consumption of cores,
network-on-chip (NOC), caches, memory controllers, and
main memory. We account for both dynamic and static com-
ponents of energy. Overall, memory energy is the single
largest energy consumer, responsible for 48-62% of total
energy. Because server applications operate on vast memory-
resident datasets with poor temporal locality, (a) servers
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require large amounts of memory, which comes at a high
static (or Background) DRAM energy cost (up to 37% of the
total), and (b) frequent memory accesses by many cores con-
sume significant dynamic DRAM energy (up to 38% of the
total). Together, these trends indicate that the memory sys-
tem is key to server energy efficiency.

B. DRAM Basics

As memory systems are central to improving server
energy efficiency, we briefly review the basics of today’s
main memory architecture.

A DRAM chip houses multiple memory arrays organized
in a set of banks. Each bank operates at the granularity of a
row, also referred to as a DRAM page. Today’s DDR3 mem-
ory chips employ a row size of 1024 bytes. A set of DRAM
chips, called a rank, is activated together upon a memory
access to achieve high bandwidth through parallelism given
pin-limited DRAM chips. Multiple DRAM chips are pack-
aged on a DIMM, and multiple DIMMs comprise a memory
channel managed by a processor-side memory controller.

Memory operations comprise DRAM reads, triggered by
processor load or store requests, and DRAM writes, which
occur upon a dirty eviction from the last-level cache (LLC).
A typical memory access consists of two operations. The
first is a DRAM page activation, which involves copying an
entire DRAM page into the so-called row buffer. The second
is the transfer of data to/from the row buffer, consisting of
two sub-operations, a burst and the actual I/O activity.
Because a DRAM page activation operates at a granularity
of a row while a transfer is per cache block, a page activation
consumes 3x more energy than a transfer [37].

One way to lower the relative energy expense of activat-
ing a page is by amortizing the activation energy over
multiple row buffer accesses. For instance, assuming that a
processor will access 16 cache blocks within a DRAM row,
up to 65% of the memory energy can be saved by fetching all
cache blocks at once with a single row activation.

C. DRAM Row Buffer Locality in Servers

The challenge in maximizing row buffer hits is in discov-
ering accesses to the open DRAM page before that page is
closed and a new one is opened. Part of the challenge stems
from the over-subscribed memory subsystems in many-core
server processors, whereby memory requests from different
cores contend for resources and destroy whatever row buffer
locality may be present in another thread’s request stream
[46]. Another challenge is the frequent occurrence of data-
dependent accesses in server workloads [9], which delays
requests to a given DRAM page. Finally, massive data work-
ing sets of server workloads further compromise row buffer
locality by minimizing the likelihood of temporal reuse in
the row buffer across application threads.

We quantify the ability of today’s servers to exploit
DRAM row buffer locality in Figure 2. The baseline system
integrates a conventional stride prefetcher and employs FR-
FCFS open-row policy to exploit row buffer locality by

keeping pages open and prioritizing requests to already open
pages [41]. Moreover, we include a system that integrates
Spatial Memory Streaming [44], a state-of-the-art spatial
prefetcher, referred to as SMS. We also include a system that
augments the baseline system with Virtual Write Queue [45],
a state-of-the art eager writeback mechanism [27, 28],
referred to as VWQ. Finally, we include an ideal system that
exhibits maximal row buffer locality — i.e., it exploits all
row buffer locality that exists in an access stream of a thread.

Across all workloads, the baseline system achieves a row
buffer hit ratio of 21% as compared to 77% of the ideal sys-
tem. As a result, DRAM page activation energy accounts for
a significant fraction of dynamic memory energy (Figure 1),
corroborating prior work [1, 46, 57] and demonstrating that
row buffer locality is not fully exploited in server CMPs and
calling for techniques to maximize row buffer hits.

SMS utilizes spatial footprint prediction [25, 44] to iden-
tify repetitive access patterns and to fetch only the predicted
useful cache blocks within a page. As SMS is effective in
capturing regular and irregular access patterns, row buffer hit
ratio increases to 30%. However, its row buffer hit ratio is
limited as it targets only memory accesses that are critical to
performance (i.e., load-related traffic), ignoring store-trig-
gered memory reads and memory writes (store misses are
hidden through store buffers whereas LLC writebacks are
not on the critical path of the processor). As store-triggered
reads and memory writes compromise a significant share of
memory activity, SMS’s energy-efficiency gains are small.

VWQ generates writebacks of adjacent cache blocks upon
every dirty LLC eviction, thereby exploiting writeback
locality and increasing row buffer hit ratio to 36%. However,
the row buffer hit ratio is still low as VWQ (a) exploits low
degree of read row buffer locality (similar to the baseline
system), and (b) performs lookups for a small number of
cache blocks within an open row so as to minimize increase
in LLC traffic.

D. Summary

Server applications require large memory capacities,
resulting in high memory energy consumption. As dynamic
memory energy is dominated by row activations, it is essen-
tial to increase the fraction of accesses served by the row
buffer to improve average memory energy per access.
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III. MEMORY ACCESS CHARACTERIZATION OF 
SERVER APPLICATIONS

Memory energy efficiency can be improved by exploiting
row buffer locality. To uncover opportunities for increasing
the row buffer hit ratio, we define region access density as
the fraction of cache blocks in a memory region accessed
between the first access to the region and the first LLC evic-
tion of a block belonging to the region. The first eviction is a
good indicator that the coarse-grained software object is
dead with regard to its on-chip usefulness. Intuitively, high-
density regions see most of their cache blocks accessed
within a modest time window of the first access. Conversely,
low-density regions have just one or a few blocks accessed.

We study both DRAM reads (triggered by load and store
instructions) and DRAM writes (triggered by LLC write-
backs) as both components are important in servers. Figure 3
breaks down memory traffic into reads and writes, illustrat-
ing that writes account for 21-38% of memory accesses.

A. DRAM Reads

Server applications organize and access data at either fine
(several bytes) or coarse (few kilobytes) granularities.
Examples of fine-grained operations are key lookups in key-
value data stores and file systems, hash table walks in data
stores [23], and pointer-chasing across software objects and
operating system structures. Examples of coarse-grained
operations include index page traversals in web search, data
copying from media files into network packets in streaming
servers, row (column) accesses in NoSQL (column-oriented)
data stores, and object accesses in object caching systems.

An example that illustrates the phenomenon of operations
on fine- and coarse-grained objects is demonstrated in
Figure 4, which presents the organization of the inverted
index in Web Search. The inverted index keeps query terms
in a hash table and associates each term with a set of index
pages. Index pages store all web pages that contain the term
along with rank metadata (e.g., term frequency in the web
page). Upon a search query, web pages that contain the term
are ranked based on their relevance to the term. First, the
term of interest (e.g., IMDB) is looked up in the hash table to
find the index pages that contain the term. The hash table
walk requires traversing a pointer chain over a large memory
space, resulting in low DRAM page access density. Once the
matching term is found, the rank metadata for all web pages
containing the term is extracted from the index page and
used for computing the relevance of each web page. The
read of the index page leads to high DRAM page access den-
sity due to the contiguous layout of the rank metadata in
application memory.

Intuitively, operations on coarse-grained software objects
have high DRAM page access density. However, accesses to
fine-grained software objects with good spatial locality also
result in high DRAM page access density, offering opportu-
nity for exploiting row buffer locality. 

Figure 5 shows the region access density of the examined
applications. We use a region of 1KB as larger regions do not
provide much opportunity in amortizing the energy cost of
DRAM page activations (Section V.E). Each segment repre-
sents the percentage of cache blocks touched within the
region prior to the first LLC eviction of one of its cache
blocks. The three segments correspond to high (≥50%),
medium (25-50%), and low (<25%) access density.

We observe that memory reads to high-density regions
account for a significant fraction of memory accesses, rang-
ing from 57% to 75% (66% on average). Due to their high
spatial locality, these regions can be fetched in bulk to maxi-
mize row buffer locality. Low-density regions account for
most of the remaining accesses, ranging from 17% to 36%
(25% on average). Accesses to these regions, such as hashed
key look-ups, are difficult to predict and offer little opportu-
nity for exploiting row buffer locality. Finally, a small
fraction of accesses go to medium-density regions. Of these,
a considerable fraction is attributed to coarse-grained soft-
ware objects unaligned to region boundaries.

0%

25%

50%

75%

100%

Data
Serving

Media
Streaming

Online
Analytics

Software
Testing

Web
Search

Web
Serving

D
R

A
M

 A
cc

es
se

s

Reads: Load-triggered Reads: Store-triggered Writes

Figure 3.  DRAM accesses broken down into reads (load-
and store-triggered) and writes (LLC writebacks).

Term Hash Table

hash(IMDB)

BOB

... ...

IMDB

Term List

Index Page

Pointer (8B)
ALICE

Read

Figure 4.  The inverted index in Web Search. Terms are
associated with index pages and rank metadata.

0%

25%

50%

75%

100%

R W R W R W R W R W R W

Data
Serving

Media
Streaming

Online
Analytics

Software
Testing

Web
Search

Web
Serving

D
R

A
M

 A
cc

es
se

s

low (<25%) medium (25% to 50%) ��������	
�

Figure 5.  Region access density for a region size of 1KB.
R: DRAM reads, W: DRAM writes.



In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2014)

5

Exploiting row buffer locality on DRAM reads requires
identifying accesses to high-density regions upon the first
read to the region. Due to high correlation between code and
data, the instruction triggering the first access to a region
provides information whether the region belongs to a coarse-
grained software object. For instance, software developers
use a set of functions to access software objects. As such, the
first call of those functions can be used to identify accesses
to software objects of the same type.

Implications. The majority of DRAM reads fall into
high-density regions. By identifying such regions using code
correlation and by fetching them in bulk, row buffer locality
can be improved. The rest of the reads offer little opportunity
for exploiting row buffer locality.

B. DRAM Writes

Server applications have a high incidence of store-related
DRAM traffic from high-density regions. Often, spatially
clustered stores arise when coarse-grained software objects
are manipulated. For instance, web servers and NoSQL data
stores allocate web pages and frequently-used rows in soft-
ware caches. Other examples include per-client buffers in a
media streaming server to store media packets, and sockets
for inter-process communication. While the store instruc-
tions themselves result in DRAM reads that allocate blocks
in the cache, the subsequent writeback of modified blocks
evicted from the LLC trigger DRAM writes.

As noted earlier, DRAM writes account for 21-38% of
memory traffic. As Figure 5 shows, these writes share simi-
lar region density characteristics with DRAM reads. We
quantify the fraction of DRAM writes going to high-density
regions by measuring the number of modified blocks in a
kilobyte-sized region. Across our applications, 62-86%
(73% on average) of writes go to high-density regions.

Exploiting row buffer locality on DRAM writes requires
eagerly writing back to DRAM all modified cache blocks of
a memory region, upon the region’s first dirty LLC eviction.
Such optimization is effective only if the set of stores defin-
ing a memory region as high density have actually
completed, meaning that their respective cache blocks have
been modified by the time the first block is evicted. We
quantify this phenomenon and summarize our results in
Table I. On average, only 8% of the blocks of a high-density
region are modified after the first dirty LLC eviction within
that region. As such, the first dirty LLC eviction is a good
indicator that the coarse-grained software object will not be
modified in the future.

Implications. DRAM writes offer significant opportunity
for exploiting row buffer locality in the context of high-den-

sity modified regions. The first dirty eviction is a good
indicator that the entire region can be written back.

IV. BULK MEMORY ACCESS PREDICTION AND 
STREAMING

As shown in Section III, 59-79% (68% on average) of all
memory accesses go to high-density regions. As memory
energy per access can be improved by exploiting row buffer
locality upon accesses to high-density regions, we propose
Bulk Memory Access Prediction and Streaming, or BuMP.
We identify DRAM accesses (both reads and writes) to high-
density regions and trigger bulk transfers upon a first access
to the region, thus eliminating redundant row activations.

A. BuMP Design Overview

Figure 6 illustrates an overview of the BuMP design.
BuMP employs three microarchitectural components shared
by all the cores: (a) the region density tracking table to iden-
tify high-density regions, (b) the bulk history table to keep
prediction metadata for high-density regions, and (c) the
dirty region table to keep track of cache-resident high-den-
sity modified regions. As BuMP monitors LLC activity, it
benefits from being physically near the LLC but is a stand-
alone component. Therefore, BuMP is not on the critical
path of the processor.

BuMP uses the region density tracking table (RDTT) to
identify high-density regions. The RDTT monitors the LLC
access and eviction streams to track accessed and modified
cache blocks within active memory regions. A memory
region is considered active in the time interval between its
first access (triggering) and its first LLC eviction. Upon an
eviction in an active region, the region is terminated.

For terminated regions identified as having high access
density, the RDTT informs the bulk history table with pre-
diction metadata associated with high-density regions. For
high-density modified regions terminated due to a clean LLC
eviction, the RDTT also informs the dirty region table.

Table I. Fraction of cache blocks of a high-density 
region that are modified after its first LLC eviction.

Workload Value Workload Value

Data Serving 8% Software Testing 3%

Media Streaming 11% Web Search 6%

Online Analytics 6% Web Serving 9%
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Figure 6.  BuMP design overview.
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The bulk history table (BHT) monitors LLC misses and
uses its prediction metadata to predict if an LLC miss falls
into a high-density region. For an access predicted as going
to a high-density region, the BHT informs the access genera-
tion logic to launch access requests for the region’s blocks.

The dirty region table (DRT) monitors LLC evictions.
Upon identifying a dirty LLC eviction falling into a high-
density modified region, the DRT utilizes the writeback gen-
eration logic to trigger eager writeback requests for each of
the cache blocks in the region.

B. Bulk DRAM Read Prediction and Streaming

BuMP employs the RDTT to track the access density of
cache-resident regions. Internally, the RDTT is comprised of
two tables: the trigger table and the density table. The trigger
table tracks regions with a single accessed block whereas the
density table tracks the density of regions with more than
one accessed block. Splitting the RDTT into two tables
allows for (a) reducing interference between regions with a
single access from high-density regions, and (b) reducing
energy per access over a unified and larger table as most of
the RDTT accesses hit in the density table — most of
accesses go to high-density regions (Section III).

The trigger and density tables are built as set-associative
structures to minimize conflicts and are accessed using the
region address. The region address is calculated by shifting
the physical address by the number of region offset bits to
the right.

The benefit of BuMP hinges on its ability to accurately
identify DRAM accesses to high-density regions. To do so,
BuMP’s prediction mechanism relies on the observation that
there is a high correlation between code and software objects
that lead to high-density regions (Section III). To account for
misalignment of a software object with the beginning of a
region, the BuMP predictor augments the PC of the instruc-
tion triggering the memory access with the offset, defined as
the distance between the triggering cache block and the
beginning of the region. For a kilobyte-sized region, the off-
set is 4 bits. The PC and offset combination is similar to that
used in spatial footprint prediction [4, 44].

The RDTT associates each entry with a PC,offset tuple.
The PC is carried with LLC requests. When an RDTT region
identified as having high access density is terminated due to
an eviction, an entry is allocated in the bulk history table.
Doing so simply requires indexing the bulk history table
(BHT) with the PC,offset tuple and setting a valid bit. 

On an LLC miss, the BHT is probed using PC,Offset. In
case of a BHT hit (identified through a tag match), BuMP
generates cache block requests for the entire region (except
for the triggering block) and forwards them to the LLC.

Bulk DRAM read tracking example. Figure 7 illustrates
the operation of the RDTT in detail. In event 1, the triggering
instruction requests the block A+2, missing in both the den-
sity and the trigger tables. This results in an allocation in the
trigger table. The allocated entry consists of the region
address A, and the PC,Offset.

In event 2, the second access to region A, A + 3, hits in the
trigger table, thus requiring the transfer of the entry to the
density table. The density table entry enhances the trigger
table entry with a bit vector (noted as pattern) that summa-
rizes the cache blocks that have been accessed within a
region. In our example, the third and fourth bits are set to one
to indicate that the corresponding blocks of the region have
been accessed. Subsequent access to region A in event 3 hits
in the density table and updates the pattern accordingly.

Upon an LLC eviction within an active region or upon a
table conflict, the corresponding entry in the density table is
invalidated and a simple logic checks if the corresponding
region has a high access density, by (a) counting the number
of bits set in the pattern, and (b) comparing the resulting den-
sity to a pre-defined threshold (event 4 in Figure 7). If the
resulting density is high, the PC,Offset is inserted into the
bulk history table; otherwise, it is only invalidated.

C. Bulk DRAM Write Prediction and Streaming

BuMP relies on LLC dirty evictions to enforce bulk
DRAM writes. In particular, BuMP leverages the observa-
tion that the first LLC dirty eviction is a good indicator that a
high-density modified region will not be modified prior to its
eviction from the last-level cache (Section III).

BuMP uses the region density tracking mechanism to
identify modified high-density regions by extending the den-
sity and trigger tables with a dirty bit which is set upon
receiving a write/writeback request from the L1 data cache.
Upon an LLC dirty eviction within an RDTT region identi-
fied as modified high-density region, BuMP triggers bulk
writeback requests to the LLC for the entire region. This
operation is denoted by the dashed line labelled as Dirty
Region Address in Figure 6.

In practice, we find that most region terminations in the
density table occur due to a table conflict — before the first

LLC event stream:

Trigger Table
Tag D

A

PC,Offset

PC,2

1 2 3 4

1

Allocate

Density Table

Tag Pattern D

PC,2A 1100

PC,Offset

Transfer

Read Request A+2 Read Request A+3 Read Request A Evict A+2

Trigger Table
Tag PC,Offset D

2
3

Update

High-density
region

4

Density Table

Tag Pattern D

A

PC,Offset

To Bulk
History Table

1101PC,2

Figure 7.  Example for region density tracking and identifying instructions that access high-density regions.
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dirty LLC eviction within the region. Therefore, to minimize
premature writebacks, BuMP employs the dirty region table
(DRT) to keep track of cache-resident high-density modified
regions that are evicted from the density table. The DRT is
set associative and is accessed using the region address. 

Upon an LLC dirty eviction, BuMP probes the DRT to
check whether the cache block belongs to a high-density
region. In case of a DRT hit, BuMP generates bulk write-
backs (except for the already evicted block), forwards them
to the LLC, and invalidates the corresponding DRT entry.

D. BuMP Configuration and Hardware Cost

BuMP employs a region size of 1KB, which corresponds
to 16 cache blocks and allows for amortization of the DRAM
page activation energy. The threshold for labeling regions as
having high access density is eight cache blocks. This con-
figuration balances the opportunity for energy savings by
targeting a large fraction of DRAM accesses with limited
tolerance for overfetch (Section V.E).

Memory controller. BuMP employs FR-FCFS open-row
policy [41] with region-level address interleaving. BuMP
maps an entire region to one DRAM row by using the
addressing scheme Row:ColumnHigh:Rank:Bank:Channel:
ColumnLow:ByteOffset, where ColumnHigh is 3 bits and
ColumnLow is 7 bits (complements the region offset).
Although BuMP’s addressing scheme diminishes parallelism
(accesses to consecutive cache blocks within a kilobyte-
sized region are serialized) accesses to a high-density region
serve as prefetches that counter-act the serialization delay.

Hardware cost. For our server workloads, an RDTT with
256-entry trigger table (2.5KB) and 256-entry (3KB) density
table provides almost the same accuracy as a predictor with
unlimited storage (results not shown) except for Software
Testing. Both DRT and BHT employ 1024 entries each to
minimize premature writebacks and to maximize prediction
accuracy, for 4.25KB and 4.5KB of storage, respectively. All
structures are 16-way set-associative. In total, BuMP
requires ~14KB.

V. EVALUATION

We first evaluate BuMP’s accuracy in identifying high-
density regions. Then, we examine the energy and perfor-
mance implications of bulk memory streaming including
BuMP’s on-chip energy and bandwidth overheads. Finally,
we include a comparison between BuMP and prior proposals
on prefetching and eager writeback mechanisms.

A. Methodology

Baseline systems. We evaluate BuMP in the context of a
lean-core CMP with 16 cores, a modestly sized last-level
cache, and a crossbar-based NOC that minimizes the delay to
the LLC. Prior research has shown that large LLC capacities
are counter-productive for server workloads and that a fast
path to the LLC is critical to server processor performance
[9, 10, 32, 43]. The chip is modelled in 22nm technology
with high-performance process for all the components
except the LLC which uses low-leakage process. The chip
features two DDR3-1600 channels. Cores are modelled after
a  high-end  mobile-class  three-way  out-of-order  core  [12]. 
Table II details the parameters for the processor.

Our baseline systems employ a stride prefetcher that pre-
dicts strided accesses if two consecutive addresses accessed
are separated by the same stride, and prefetches the subse-
quent four cache blocks into the last-level cache.

We consider two memory controller configurations for
our baseline systems: (a) FR-FCFS close-row policy with
block-level address interleaving, referred to as Base-close,
and (b) FR-FCFS open-row policy with region-level address
interleaving, referred to as Base-open, same as BuMP’s.
Base-close maximizes channel-/rank-/bank-level parallel-
ism by distributing consecutive cache blocks across
channels/ranks/banks, thereby reducing serialization delays
upon sequential accesses. This is accomplished by using the
addressing scheme Row:ColumnHigh:Rank:Bank:Channel:
ColumnLow:ByteOffset, where ColumnHigh is 7 bits and
ColumnLow is 3 bits (complements the cache block offset).

We also evaluate SMS, a state-of-the-art spatial prefetcher
[44]. SMS was originally designed for performance and was
integrated next to the core at a storage cost of 60KB per core.
In this work, we incorporate SMS next to the LLC. This opti-
mization allows for higher energy-efficiency gains due to

Table II. Architectural parameters.
Parameter Value

Technology 22nm, 2.5 GHz

CMP size 16 cores

Core 3-way OoO, 48-entry ROB and LSQ

L1-I/D caches 32KB, 2-way, 64B blocks
2-cycle load-to-use, 10 MSHRs

LLC
Unified, 4MB, 16-way, 64B blocks, 

8 banks, 8-cycle hit latency
Stride prefetcher with degree of four

NOC 16x8 crossbar, 5 cycles

Main Memory

16GB, 4 ranks per memory channel
2Gbit, x8, 8 banks per rank, 8KB row buffer

2 DDR3-1600 channels (Max. BW: 25.6GB/s)
 close- and open-row FR-FCFS policy [41]
64-entry transaction and command queues

tCAS-tRCD-tRP-tRAS
tRC-tWR-tWTR-tRTP

tRRD-tFAW

11-11-11-28
39-12-6-6

5-24

Table III. Power and energy for system components.
Parameter Value

Core Peak Dynamic Power: 700mW
Leakage Power: 70mW

LLC Read/Write Energy: 0.63nJ/0.70nJ
Leakage Power: 750mW

NOC Peak Dynamic Power: 55mW
Leakage Power: 30mW

Memory Controller Dynamic Power @ 12.8GB/s: 250mW

DRAM
(per 2GB rank and
64-byte transfer)

Background Power: 540-770mW
Activation Energy: 29.7nJ

Read/Write Energy: 8.1nJ/8.4nJ
I/O Termination (Read/RRead):1.5nJ/3.8nJ
I/O Termination (Write/RWrite):4.6nJ/4.6nJ
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higher prediction accuracy while reducing the storage costs
as prediction metadata can be shared across cores. The mem-
ory controller is configured the same way as BuMP’s.

Finally, we consider a state-of-the-art eager writeback
mechanism [45], referred to as VWQ. The writeback mecha-
nism generates eager writeback requests for three adjacent
cache blocks upon a dirty LLC eviction. The memory con-
troller is configured the same way as BuMP’s.

Energy modeling framework. We use energy consumed
per instruction as our energy-efficiency metric. To measure
energy per instruction, we develop a custom energy model-
ing framework to include various system components, such
as cores, network-on-chip (NOC), caches, memory control-
lers, and main memory. Our framework, summarized in
Table III, draws on several specialized tools to maximize
fidelity through detailed parameter control.

We estimate dynamic core power by scaling published
measurements of dynamic power on a high-IPC workload by
the ratio of the actual workload IPC and the reference IPC
[1, 16, 29]. We measure core leakage power using McPAT
[30]. We use CACTI’s models to obtain LLC read and write
energy estimates and we account for advanced LLC leakage
reduction techniques [29, 38]. We obtain NOC power from
McPAT, finding it to be negligible compared to other system
components; hence, we assume constant NOC power. We
use McPAT to measure memory controller’s dynamic power
at peak memory bandwidth. We estimate DRAM back-
ground power and energy per operation based on Micron
models as implemented in DRAMSim2 and Micron data
sheets [36, 37].

Simulation infrastructure. We evaluate BuMP using
full-system simulation using Flexus [52]. Flexus models the
SPARC v9 ISA and runs unmodified operating systems and
applications. Flexus extends the Simics functional simulator
with timing models of out-of-order cores, caches, on-chip
protocol controllers and interconnect, and DRAM. DRAM is
modeled by integrating DRAMSim2 [42] directly into
Flexus. DRAMSim2 is instantiated with data borrowed from
commercial DDR3 device specifications [36]. Table II
details the simulated architecture.

We evaluate BuMP using contemporary server workloads.
The workloads, taken from CloudSuite 2.0 [5, 9], include

Data Serving, Media Streaming, Web Search, and Web Serv-
ing (frontend). We evaluate online analytics on a commercial
database. In particular, we run a mix of queries 1, 6, 13, and
16 from the TPC-H benchmark on IBM DB2. Queries 1 and
6 are scan-bound, Query 16 is join-bound, and Query 13
exhibits a mixed behavior [14]. We also consider a large-
scale scientific task that might run in cloud datacenters. In
particular, we benchmark one instance per core of the Klee
SAT Solver, an important component of CloudSuite 2.0’s
Software Testing workload.

For energy and performance evaluation of BuMP, we run
cycle-accurate simulations using the SMARTS sampling
methodology [56]. Our samples are drawn over the entire
query execution for Online Analytics, and over an interval of
10-30 seconds of simulated time for the rest of the work-
loads. For each measurement, we launch simulations from
checkpoints with warmed caches and branch predictors, and
run 800K cycles (2M cycles for Data Serving) to achieve a
steady state of detailed cycle-accurate simulation prior to
collecting measurements for the subsequent 400K cycles. To
measure performance, we use the ratio of the aggregate num-
ber of application instructions committed to the total number
of cycles (including cycles spent executing operating system
code); this metric has been shown to reflect system through-
put [52]. Performance is measured at a 95% confidence level
and an average error below 2%.

B. BuMP Prediction Accuracy

We evaluate BuMP’s ability to exploit reads to high-den-
sity regions by measuring the number of cache blocks that
are correctly fetched prior the processor’s request, referred to
as predicted DRAM reads. Similarly, for writebacks we mea-
sure the fraction of blocks that are timely written back to
memory, referred to as predicted DRAM writes. To show the
importance of triggering bulk transfers only upon accesses to
high-density regions, we include a system that always trig-
gers bulk transfers [31, 55], referred to as Full-region.

DRAM reads. Figure 8 (left) plots the fraction of pre-
dicted DRAM reads as well as the overfetch rate. Across all
applications except for Software Testing, BuMP predicts 45-
55% of DRAM reads at the cost of a small overfetch rate (5-
22%) due to its ability to identify accesses to high-density
regions and to enforce bulk transfers upon an LLC miss.
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For Software Testing, BuMP predicts only 28% of DRAM
reads, despite having a high fraction of memory accesses to
high-density regions (52%). This disparity is attributed to the
large number of active regions that compete for space in the
region density tracking table (RDTT). Our analysis (not pre-
sented due to space constraints) of an RDTT with 256-entry
and 2048-entry trigger and density tables showed that BuMP
can predict up to 44% of DRAM reads.

Figure 8 also plots the coverage and overfetch rate of
Full-region, a design that fetches the entire region upon the
first access to the region. The coverage increases from 50%
(BuMP) to 63% (Full-region), on average. However, the
small increase in coverage comes at the cost of prohibitive
overfetch (4.3x, on average) and cache thrashing. In case of
workloads with a high number of accesses to low-density
regions (Data Serving), Full-region loses coverage compared
to BuMP due to excessive cache thrashing.

DRAM writes. Figure 8 (right) plots the BuMP coverage
(i.e., fraction of predicted DRAM writes) as well as the extra
writebacks that result from premature writebacks and pres-
sure to the last-level cache due to overfetched cache blocks.

On average, BuMP predicts 63% of DRAM writes,
matching our observation that most of the writeback traffic
comes from high-density regions. Similar to DRAM reads,
BuMP achieves the lowest coverage for Software Testing.

The increase in writeback traffic due to BuMP is low, less
than 10% across all applications, as the first LLC dirty evic-
tion within a high-density region is a good indicator that the
region will not be modified (Section III.B).

The figure also plots the coverage of DRAM writes for
Full-region. Full-region triggers bulk writeback requests to
the last-level cache upon every dirty LLC eviction. As a
result, the DRAM write coverage increases from 63%
(BuMP) to 73% (Full-region). However, this increase comes
at the cost of an increase in writeback traffic — from 7% to
22%, on average, due to premature writebacks. This is
because the first eviction within a low-density region is not a
good indicator as cache blocks within low-density regions
belong to different software objects.

Overall. BuMP predicts 55% of all memory accesses at a
small increase in memory traffic (11%). By doing so, BuMP
recovers 87% of the locality that exists in high-density
regions, thus achieving high row buffer hit ratio (Table IV).

C. Energy Efficiency

We examine the implications of bulk memory streaming
on memory system energy efficiency. Figure 9 illustrates the
memory energy consumed per access for BuMP normalized
to our baseline systems: Base-close and Base-open.

Compared to Base-close, Base-open increases row buffer
hit ratio to 21%, as it keeps pages open and prioritizes
requests to already open pages (Figure 2). The increase in
row buffer hit ratio allows for reducing memory energy by
14%. However, the row buffer hit ratio is low due to inter-
leaving of accesses among cores, preventing the memory
controller from exploiting high row buffer locality.

BuMP achieves high gains in energy efficiency compared
to the baseline systems. On average, BuMP reduces energy
per access by 34% and 23% compared to the close- and
open-mode baseline systems, respectively, thanks to its abil-
ity to exploit high row buffer locality upon an access to a
high-density region. 

Figure 9 also plots the memory energy consumption of
Full-region, showing that Full-region achieves the worst
energy efficiency due to excessive overfetch. Furthermore,
we find that for bandwidth-intensive workloads (Data Serv-
ing, Online Analytics, and Software Testing), contention in
queuing structures in the LLC and the memory controller
prevents requests within the same region to arrive within the
memory controller’s scheduling window. Thus, the memory
controller cannot fully exploit the open-mode benefits of
DRAM. Furthermore, this phenomenon results in a high
number of additional row activations even for blocks that
will not be accessed by the processor. In the extreme case
(Data Serving), the combination of additional row activa-
tions and extreme LLC thrashing results in higher activation
energy for Full-region than for the baseline systems.

D. Performance Implications

While our primary motivation in this work is to improve
energy efficiency, we find that BuMP also improves system
performance. Figure 10 plots the performance improvement
of various systems over Base-close, a system that employs a
stride prefetching scheme and maximizes DRAM parallel-
ism. Base-open delivers 1-2% lower performance than Base-
close as it delays precharging open pages, penalizing future
accesses going to a different page in the bank. BuMP outper-
forms Base-close by 9% and Base-open by 11%, as bulk
transfers from memory allow for fetching cache blocks prior
to the processor’s demand, thus hiding a fraction of off-chip
memory stalls. Media Streaming exhibits the smallest perfor-
mance improvement as most of the predicted memory

Table IV. BuMP’s DRAM row buffer hit ratio.
Workload Value Workload Value

Data Serving 54% Software Testing 34%

Media Streaming 64% Web Search 62%

Online Analytics 57% Web Serving 56%
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accesses exhibit high memory-level parallelism, and hence
the out-of-order processor is able to overlap a significant
fraction of off-chip memory stalls. Compared to SMS and
VWQ (results not shown), BuMP improves performance by
3% and 9%, on average, due to higher read coverage.

On the other hand, Full-region hurts performance by 67%
(up to 4x for Data Serving), due to oversaturation of memory
bandwidth, highlighting the importance of avoiding bulk
transfer operations upon accesses to low-density regions.

E. BuMP Design Space Exploration

Figure 11 illustrates the improvement in memory energy
per access for various BuMP configurations. We vary both
the region size and threshold for labeling regions as high-
density. BuMP with region size of 1KB and threshold of
eight cache blocks (noted as 50%) maximizes energy
improvements as it targets a higher fraction of DRAM
accesses, thus amortizing a higher degree of row activations
compared to configurations with smaller regions while
exhibiting lower overfetch rate than configurations with
larger regions.

F. On-chip Bandwidth and Energy Overheads

We examine BuMP’s on-chip bandwidth and energy over-
heads focusing on the LLC, NOC, and BuMP’s structures.

Last-level cache. The LLC traffic increases due to (a)
data overfetch (b) bulk read and writeback requests, and (c)
extra writeback traffic. Figure 12 plots the LLC traffic of
BuMP normalized to the baseline system. BuMP increases
LLC traffic by 10%, on average. The increase in LLC band-
width utilization has small impact on system performance as
such a small traffic overhead is easily absorbed by the LLC.

The increase in LLC traffic comes at the cost of modest
LLC energy overheads (7% on average). As the LLC energy
accounts for only 3% of server energy, on-chip LLC energy
overheads contribute to less than 0.3% of server energy
while LLC power overheads are small (on average, 32mW).

Network-on-chip. The NOC traffic increases due to (a)
L1-D requests to the LLC are augmented with the virtual
address of the associated instruction (PC), (b) LLC data
accesses and evictions have to be forwarded to BuMP, (c)
BuMP-generated access and writeback requests have to be
forwarded to LLC, and (d) data overfetch and extra write-
back traffic. As shown in Figure 12, network traffic
increases by 11%, on average. Similar to traditional server
workloads [48], the NOC bandwidth utilization is low. Thus,
the extra traffic is absorbed by the NOC, and consequently
does not affect the system performance.

The increase in NOC traffic comes at the cost of 13%
higher NOC energy — half of which is due to the transfer of
the PC. As NOC accounts for a small fraction of server
energy and power, BuMP’s NOC energy and power over-
heads (~8mW) are negligible.

BuMP structures. BuMP introduces multiple structures
for region density tracking, summarizing high-density modi-
fied regions, and bookkeeping the virtual address of
instructions that trigger access to high-density regions. We
model these structures using CACTI, and find energy per
access to be ~2pJ for the region-density tracking tables and
~4pJ for the bulk history and dirty region tables. In total,
energy consumed to access the structures accounts for 0.1%
of server energy. On-chip power consumption is 10mW.

Summary. BuMP on-chip energy overheads account for
less than 0.4% of server energy, negligible compared to the
registered memory energy gains. On-chip power overheads
are smaller than 50mW. Finally, on-chip bandwidth over-
heads are small, and do not impact performance.

G. Summary

In Figure 13, we plot the DRAM row buffer hit ratio and
energy per access of BuMP, averaged across all workloads,
compared to the close- and open-mode baselines (both with a
stride prefetcher), a system with SMS, a system with VWQ,
a system with SMS and VWQ, and an ideal system that
exhibits maximal row buffer locality — i.e., it exploits all
row buffer locality that exists in an access stream of a thread.
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The open-mode baseline system exploits a low degree of
DRAM row buffer locality, thus achieving a row buffer hit
ratio of 21%. The SMS-enabled system provides a row buf-
fer hit ratio of 30% as it is able to predict irregular access
patterns. However, the row buffer locality improvement is
small as it targets only load-triggered reads. The VWQ-
enabled system improves row buffer hit ratio to 36%, as it
exploits a high degree of writeback locality. When SMS and
VWQ are combined, row buffer hit ratio increases to 44%.

BuMP improves row buffer hit ratio to 55%, outperform-
ing systems with SMS and/or VWQ. Compared to SMS,
BuMP increases row buffer hit ratio by ~2x at 3x lower stor-
age requirements. BuMP reduces storage cost as (a) it
correlates triggering instructions with coarse-grained regions
instead of individual cache blocks, and (b) few instructions
trigger accesses to high-density regions. Compared to VWQ,
BuMP increases row buffer hit ratio by an additional 19% as
VWQ (a) exhibits poor read row buffer locality, and (b) per-
forms lookups for a small number of cache blocks within an
open row, thus failing to maximize open-mode gains.
Finally, BuMP improves row buffer hit ratio by an additional
11%, compared to the SMS+VWQ system, as it maximizes

open-mode gains upon accessing a high-density region.1

BuMP achieves high row buffer locality, improving mem-
ory energy efficiency by 23-34%. BuMP improves memory
energy efficiency by 20% and 13% over SMS- and VWQ-
enabled systems. Compared to SMS+VWQ, BuMP reduces
memory energy per access by 10%. Finally, BuMP’s mem-
ory energy efficiency is within 73% of the ideal system.

VI. DISCUSSION

Memory access scheduling policy. FR-FCFS open-row
policy [41] employed by BuMP can hurt system fairness in
systems running multiprogrammed and parallel applications
due to memory behavior variation [22, 39]. Server applica-
tions execute almost identical instruction sequences across
requests and cores [20], and hence cores exhibit almost same
memory behavior. Thus, row buffer locality can be maxi-
mized with small impact on system fairness. Nevertheless,
scheduling policies that trade off row buffer hit ratio for sys-
tem fairness [18] can be used complementary with BuMP.

Design scalability. BuMP can scale well with the CMP
size, requiring the following modifications for larger config-
urations: (a) the region density tracking table needs to
increase linearly with the number of cores to support a
higher degree of interleaving among cores, and (b) the dirty
region table needs to increase linearly with the LLC size to
support a higher number of active modified regions.

Server virtualization. BuMP is applicable to server
applications running in a virtualized environment. In doing
so, the bulk history table needs to increase to accommodate
the triggering instructions of all active workloads. Even with
extreme heterogeneity (one workload per core), the storage
requirement of the bulk history table is 72KB in a 16-core
system, for total storage requirement of 5KB per core.

VII. RELATED WORK

Prior research has identified DRAM to be a significant
contributor to server power. Based on the observation that
off-chip memory bandwidth is often not utilized, prior work
has either applied voltage frequency scaling to the memory
controller and frequency scaling to the memory interface and
devices [6, 7], or proposed using low-power, low-speed
memory interfaces [34, 57]. However, emerging many-core
processors saturate memory bandwidth [13, 17, 32], thereby
mandating high-speed memory interfaces to maximize per-
pin available bandwidth. Nevertheless, memory frequency
scaling can be employed for server applications that exhibit
lower off-chip memory bandwidth consumption.

Leveraging the observation that applications access only a
few words within a cache block, researchers have proposed
re-engineering the processor/memory interface to allow for
activating only the DRAM chips at which the requested
words are stored [1, 16, 58, 59]. While potentially effective
in the server context as well, these proposals require disrup-
tive changes to commodity memory technology.

Sudan et al. [46] have observed that desktop and parallel
applications consist of a small number of OS pages (~100)
that account for a high fraction of memory accesses (~25%)
and that these accesses are centered around only a few cache
blocks. To improve row buffer locality, the authors have pro-
posed mechanisms that identify and merge such pages.
However, server applications operate on vast datasets and a
large number of accesses go to pages that were not previ-
ously visited. Any energy gains of this technique would
come at the cost of high storage requirements as it has to
track an enormous number of pages.

Prior work has proposed hardware and software mecha-
nisms to guide page-based prefetching [3, 49]. Stealth pre-
fetching requires keeping address-related metadata (hun-
dreds of KBs per core) to decide what fraction of a page
should be fetched after a certain number of cache blocks are
accessed within the page [3]. Our work makes the observa-
tion that page density is code-correlated, thus allowing for
fetching high-density pages with the first read to the page as
opposed to multiple reads (Stealth prefetching) while intro-
ducing much lower storage overhead.
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1. BuMP can be combined with VWQ to exploit higher writeback locality
by targeting memory writes to non-high-density memory regions.
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Guided region prefetching [49] uses compiler hints to
direct both spatial and non-spatial (e.g., pointer-chasing)
prefetches. However, rapid dataset changes in server applica-
tions present a challenge for static and profile-based
approaches. Moreover, these approaches require application
changes or recompilation, while our work is software trans-
parent and adapts to changing application behavior.

Instruction-based predictors have been extensively used
in the context of data prefetching [25, 44], cache-coherence
action prediction [19], NOC power reduction [21], last-write
prediction [50], on-chip granularity prediction [26], and off-
chip bandwidth reduction [17, 58]. However, none of these
works has targeted improving row buffer locality by predict-
ing the memory page access density.

VIII. CONCLUSION

With lean-core servers being effective at minimizing pro-
cessor energy, the energy-efficiency bottleneck is shifting to
DRAM that must serve frequent memory accesses from
many cores. Our analysis illustrated that server applications
frequently access memory in bulk and that this behavior is
not fully exploited by today's DRAM, resulting in high page
activation energy. In response, we introduced BuMP, a pre-
dictor that identifies accesses to high-density pages and
triggers bulk transfers upon the first read or write to a page.
Using cycle-accurate full-system simulation of a 16-core
server, we demonstrated that BuMP reduces memory energy
per access by 23% and improves server throughput by 11%.
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