
LLC Dead Block Prediction Considered Not Useful

Priyank Faldu Boris Grot

University of Edinburgh

Abstract

Dead block predictors (DBPs) improve cache
efficiency by identifying blocks that have ex-
hausted their useful lifetime in the cache and
prioritizing them for eviction regardless of how
much reuse these blocks have experienced. In
doing so, DBPs go beyond insertion policies that
target only those blocks that have no cache re-
use. But how much value do DBPs add over
insertion policies?

This work examines the opportunity for DBP
at the LLC and concludes that its value-add is
low over a state-of-the-art insertion policy. Our
key result is that LLC evictions are dominated
by blocks having no reuse. Even with the op-
timal replacement policy that maximizes cache
reuse through perfect knowledge of the future,
an average of 78% of LLC evictions have not
experienced any hits. For the remaining evic-
tions that experience LLC reuse, only a fraction
is predicted by a state-of-the-art DBP scheme,
and the accuracy of these predictions is low.
Our first-order limit study shows that a likely
coverage ceiling for DBP over the best perform-
ing insertion policy is just 6.9% of all LLC evic-
tions. Based on these findings, we argue that
the higher complexity of DBP is not justified.

1 Introduction

Existing cache management strategies can be di-
vided into two categories: dead block predictors
(DBP) and insertion policies. DBPs try to pre-
dict when a block has reached the end of its
useful lifetime on chip and turn it into a re-
placement target before it has reached the end

of the LRU chain [1, 2, 3, 4, 5, 6, 7, 8]. Insertion
policies seek to identify blocks that do not see
any reuse in the cache (i.e., are dead on arrival)
and prioritize them for eviction [9, 10, 11].

In principle, both DBPs and insertion policies
improve cache performance by rapidly evicting
and/or entirely bypassing blocks that will not
be useful in the near future in order to allow
other blocks to persist and see further hits. The
difference, of course, is that insertion policies are
limited to just those blocks that have no cache
reuse at all, referred to as 0-hit blocks, whereas
DBPs can predict dead both 0-hit and 1+hit
blocks (i.e., those that get one or more hits).
Since DBPs can cover a wider range of blocks
than insertion policies, they intuitively appear
more powerful and, therefore, more useful.

In this work, we characterize reuse behavior
at the LLC for SPEC’06 workloads to under-
stand the potential opportunity of DBP over
insertion policies. We consider Belady’s opti-
mal replacement policy (OPT) [12] to draw an
upper bound on block reuse. Even with per-
fect knowledge of the future, 78% of the blocks
evicted under OPT have no reuse and would not
need DBP for prediction.

To understand a more realistic distribution,
we consider a state-of-the-art DBP – the Sam-
pling Dead Block Predictor (SDBP) – and ob-
serve that the vast majority of blocks that it pre-
dicts dead are actually 0-hit blocks. Moreover,
the majority of the evicted blocks that SDBP
does not predict dead are also 0-hit blocks. On
average, 84% of all blocks evicted under SDBP
does not see LLC reuse. As such, they can be
easily managed using a simple insertion policy
and do not require a DBP.

1

The opportunity for DBP is thus limited to
the blocks that see LLC hits but are eventu-
ally evicted. While SDBP predicts dead the
majority of these blocks, the accuracy of these
predictions is considerably lower than that of
predictions for 0-hit blocks. A limit study for
the prediction opportunity for 1+hit blocks un-
der best performing insertion scheme shows that
just 6.9% of all LLC evictions are a likely cover-
age ceiling for DBP. Thus, our key conclusion is
that the opportunity for DBPs to improve upon
insertion policies is small.

Given that blocks that enjoy LLC reuse rep-
resent the minority of LLC evictions while be-
ing difficult to predict with high accuracy, we
argue that simple LLC insertion and/or bypass
schemes are superior to DBPs, especially when
storage costs and design complexity are taken
into account. Thus, rather than focusing on
high-complexity DBP schemes, improving the
coverage and accuracy of predictions for 0-hit
blocks may be more profitable. To prove our
point, we show that enhancing a state-of-the-
art insertion policy, SHiP [11], with LLC bypass
improves coverage, accuracy, and performance
at virtually no extra hardware cost.

Our contributions are as follows (all numbers
are averages):

• 78% of all LLC evictions are of blocks that
see no LLC hits for optimal replacement
policy. Such blocks can bypass the LLC
entirely and do not require a DBP.

• SDBP [4], a state-of-the-art DBP, predicts
85% of all LLC evictions. Of these, only
12% observe LLC hits and require DBP for
prediction. However, the prediction accu-
racy for these blocks is low (67%) as com-
pared to that for 0-hit blocks (78%).

• A simple LLC bypass scheme on top of
SHiP [11], a state-of-the-art insertion pol-
icy, predicts 75% of all blocks brought
on chip with 81% accuracy. By min-
imizing LLC pollution through bypass-
ing while avoiding premature evictions of
blocks that enjoy LLC reuse, our bypass
scheme achieves the highest performance

gain of 6.6% over LRU, compared to 4.9%
for SDBP and 5.6% for baseline SHiP.

2 Evaluated Techniques

Our study considers a state-of-the-art dead
block predictor, Sampling Dead Block Predictor
(SDBP), a state-of-the-art insertion policy, PC
Signature-Based Hit Predictor (SHiP), and Be-
lady’s Optimal Replacement Policy (OPT) [12].

SDBP[4] is a dead block predictor that cor-
relates “last touch” to the block with the PC
of the memory instruction making the touch.
SDBP is trained by a separate structure called
a sampler with fewer sets and relatively smaller
associativity than the LLC. While the sampler
implements LRU replacement, the cache can use
any insertion/replacement policy. The blocks
that are dead-on-arrival are not inserted into
the LLC and, instead, are directly bypassed to
the higher level cache. If such blocks map to the
sampler sets, they are inserted into the sampler
to provide continuous training.

SHiP[11] is a state-of-the-art insertion tech-
nique that combines the RRIP [10] replacement
policy with history of re-reference behavior of
the blocks’ previous lifetime on chip. For the
latter, SHiP correlates a block’s re-reference be-
havior at the LLC (i.e., whether it saw any hits
during its previous on-chip residency) with the
PC of the instruction that brought the block on
chip. Blocks that are not likely to see LLC hits
are inserted with a distant re-reference interval
prediction that prioritizes them for eviction over
blocks that are likely to see a future hit.

We also consider a bypass-only policy that
avoids allocating dead-on-arrival blocks in the
LLC altogether. To implement the policy, we
combine SHiP with bypassing for blocks pre-
dicted to have a distant re-reference interval.
Since bypassed blocks do not get an opportunity
to see hits (i.e., they cannot get re-trained), we
override the bypass decision for a fraction of the
blocks and insert them into the cache.

Finally, we study OPT which uses its per-
fect knowledge of the future to replace the block
whose next use is the farther in a given set.

2

Core Model OoO: 8-stage 4-wide pipeline
128-entry ROB

Private 32KB
L1I Cache 4-way, 64B-blocks

2-cycle load-to-use

Private 32KB,
L1D Cache 8-way 64B-blocks

2-cycle load-to-use

Private, Unified
L2 Cache 256KB, 8-ways, 64B-blocks

10-cycle hit latency

Shared, Unified
L3 Cache 2MB per core, 16-way, 64B-blocks

30-cycle hit latency

Main Memory 200-cycle access latency

Table 1: System parameters for simulation of
SPEC’06 applications

OPT provides a lower bound on misses for a
given memory trace and cache configuration.
By exploiting its knowledge of future references,
OPT also maximizes cache reuse, thus increas-
ing the number of hits that a block may see.

3 Methodology

3.1 Infrastructure and Benchmarks

We study SPEC CPU 2006 benchmarks us-
ing a modified version of CMP$im [13] pro-
vided with the JILP Cache Replacement Cham-
pionship [14]. Table 1 summarizes the features
of the simulated processor.

We use SimPoint [15] to identify up to 6 sim-
points of one billion instructions each represent-
ing a different phase of a workload. The weights
used to calculate the overall performance are
generated by the SimPoint tool. Each program
is run with the first ref input provided by run-
spec command. For each run, the simpoint is
used to warm microarchitectural structures for
500 million instructions, then measures and re-
port the result for the subsequent one billion in-
structions. The result reported for each bench-
mark is the weighted average of the results for
the individual simpoints.

For the sake of understanding the source of
improvement for different cache management
techniques, we classify all 29 SPEC’06 applica-

Category Applications

High Gain mcf, cactusADM, soplex,
astar, sphinx3, xalancbmk

Mixed Gain perlbench, bzip2, bwaves,
milc, zeusmp, gromacs,
leslie3d, dealII, calculix,
hmmer, sjeng, GemsFDTD,
libquantum, h264ref, tonto,
omnetpp, wrf

No Gain gcc, namd, gobmk, lbm,
gamess, povray

Table 2: Classification of SPEC’06 applications

tions into three categories - High Gain, Mixed
Gain, and No Gain. If application’s perfor-
mance improves by more than 10% thanks to
either SDBP or SHiP, it is classified into the
High Gain category. If the performance differ-
ence is within 0.5% for both techniques, it is
classified into the No Gain category. The rest
of the applications are classified into the Mixed
Gain category. Finally, we found that the work-
ing set for gamess and povray fits entirely in the
2MB cache, so no evictions are observed. As a
result, we exclude these two benchmarks from
our studies. Table 2 shows the classification of
each benchmark.

3.2 Cache Management Schemes

OPT: We implement Belady’s MIN replace-
ment policy [16] with bypassing. If the next
reuse of a block that missed on-chip is farther
than the next reuse of all the blocks in a set,
the block is bypassed to the higher level cache
without getting allocated in LLC.

SDBP: We use SDBP implementation avail-
able on the JILP Cache Replacement Champi-
onship website. SDBP implements a 13-way set
associative sampler with a 3-level prediction ta-
ble of 2-bit confidence counter each. There are
128 sampler sets.

SHiP: We use the RRIP code provided on the
JILP Cache Replacement Championship web-
site and extend it to implement SHiP. Our im-

3

plementation uses a 2-bit RRIP replacement
policy with 3-bit confidence counters in the pre-
diction table. We find that SHiP benefits from
sampling to filter out the noise. Empirically, we
determine that 128 sets work best for our sim-
ulated processor.

SHiP+Bypass: We augment the baseline
SHiP policy as described above with LLC by-
passing for PCs predicted to have a distant re-
reference interval. To ensure continuous train-
ing, a fraction of bypassable blocks is inserted
into the LLC using the normal SHiP policy; i.e.,
with distant re-reference interval, making them
quickly eligible for eviction if they don’t see a
hit. We empirically determine that overriding
the bypass decision for 20% of the predicted
blocks maximizes performance.

For both SDBP and SHiP-based schemes, we
use PC-indexed prediction tables. As we are in-
terested in understanding the full potential of
each policy, we do not limit the number of PCs
that can be tracked, effectively eliminating ta-
ble conflicts as a source of performance loss. In
practice, we found that tables with 16K entries
provides a nice balance between performance
and storage cost, corroborating prior work [11].

We also evaluated a Counting dead block pre-
dictor (CDBP) [3]. However, we found it to be
vastly inferior to SDBP in coverage, accuracy,
and performance, corroborating prior work [4].
Thus, we do not include results for CDBP in
our analysis, but note that the trends and con-
clusions for CDBP parallel those for SDBP.

4 Results

Effectiveness of a cache management technique
can be measured by its prediction coverage and
accuracy. Coverage is defined as the ratio of pre-
dictions to evictions. A high coverage (trending
toward 1.0) indicates that the majority of LLC
evictions were predicted dead. Accuracy is the
fraction of predictions that is correct.

To provide insight into the behavior of the
different cache management schemes, we clas-
sify all evictions into four categories - Predicted

0-hit, Not-predicted 0-hit, Predicted 1+hit and
Not-predicted 1+hit. If DBP predicts a block
dead, the block is classified into a Predicted cat-
egory. If it does not find a dead block, an LRU
block is evicted and classified as Not-Predicted.
For SHiP, the block predicted to have a distant
re-reference interval (i.e., not expected to hit
in LLC) is classified into a Predicted category.
Because SHiP only predicts 0-hit blocks, it does
not have a Predicted 1+hit category.

To measure the accuracy of the prediction,
we maintain a separate Shadow Victim Cache
(SVC) with the same number of sets and asso-
ciativity as the original cache. When a block
is evicted from the cache, it is inserted into the
SVC with a bit indicating whether the block
was predicted dead. Upon an LLC miss, the
SVC is queried to check if the block was re-
cently evicted. If the block hits in SVC and
was predicted dead in LLC, the block is marked
as a wrong prediction and is removed from the
SVC. If, on the other hand, the predicted block
is evicted from the SVC without a hit, the pre-
diction is considered correct.

4.1 0-hit Blocks Dominate Evictions

Figure 1 quantifies the dominance of 0-hit blocks
as a fraction of all the evicted blocks (including
bypass) under SDBP, SHiP & OPT. The three
groups of bars in each figure correspond to High
Gain, Mixed Gain, and No Gain application cat-
egories, in that order.

OPT, knowing the future, allows maximum
number of blocks to incur hits. Still, on an av-
erage, 78% of the evicted blocks do not see any
reuse. The fraction is higher for both SDBP
and SHiP, with 84% and 89%, respectively, of
all blocks evicted from the LLC having 0 hits.

The reason why the fraction of 0-hit LLC
evictions is higher for practical schemes is two-
fold. First, they do not have the perfect knowl-
edge of the future, which fundamentally lim-
its their ability to anticipate reuse for blocks
(or PCs) lacking a regular behavior. Secondly,
blocks that are predicted 0-hit are evicted early,
depriving them of the opportunity to see future
hits. For instance, on calculix, SDBP predicts

4

High Gain Mixed Gain No Gain

0.0

0.2

0.4

0.6

0.8

1.0

m
cf

ca
ct
us

AD
M

so
pl
ex

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

pe
rlb

en
ch

bz
ip
2

bw
av

es
m

ilc

ze
us

m
p

gr
om

ac
s

le
sl
ie
3d

de
al
lI

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

to
nt

o

om
ne

tp
p

w
rf

gc
c

na
m

d

go
bm

k
lb
m

av
er

ag
e

0
 -

 h
it
 b

lo
c
k
s

SDBP SHiP OPT

Figure 1: Fraction of 0-hit blocks

0
.0

0
.4

0
.8

0
.2

0
.6

1

m
cf

ca
ct
us

AD
M

so
pl
ex

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

pe
rlb

en
ch

bz
ip
2

bw
av

es
m

ilc

ze
us

m
p

gr
om

ac
s

le
sl
ie
3d

de
al
lI

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

to
nt

o

om
ne

tp
p

w
rf

gc
c

na
m

d

go
bm

k
lb
m

av
er

ag
e

Predicted (0-hit) Not Predicted (0-hit) Predicted (1+hit) Not Predicted (1+hit)

(a) SDBP

0
.0

0
.4

0
.8

0
.2

0
.6

1

m
cf

ca
ct
us

AD
M

so
pl
ex

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

pe
rlb

en
ch

bz
ip
2

bw
av

es
m

ilc

ze
us

m
p

gr
om

ac
s

le
sl
ie
3d

de
al
lI

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

to
nt

o

om
ne

tp
p

w
rf

gc
c

na
m

d

go
bm

k
lb
m

av
er

ag
e

Predicted (0-hit) Not Predicted (0-hit) Predicted (1+hit) Not Predicted (1+hit)

(b) SHiP

Figure 2: Break up of blocks evicted from the LLC

90% of the blocks as 0-hits; however, the accu-
racy of these predictions is poor at just 12%.
In contrast, OPT observes that only 41% of all
LLC evictions have 0-hits.

4.2 Dissecting Existing Techniques

In this section, we analyze the effectiveness of
SDBP and SHiP by dividing the predicted evic-
tions into 0-hit and 1+hit categories. We sim-
ilarly divide the not-predicted evictions to un-
derstand the further potential of these schemes.

Figures 2a and 2b show the breakdown for

5

0.00

0.25

0.50

0.75

1.00

m
cf

ca
ct
us

AD
M

so
pl
ex

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

pe
rlb

en
ch

bz
ip
2

bw
av

es
m

ilc

ze
us

m
p

gr
om

ac
s

le
sl
ie
3d

de
al
lI

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

to
nt

o

om
ne

tp
p

w
rf

gc
c

na
m

d

go
bm

k
lb
m

av
er

ag
e

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y

SDBP (1+hit) SDBP (0-hit) SHiP

Figure 3: Prediction Accuracy for SDBP and SHiP

SDBP and SHiP, respectively. On average,
SDBP has higher coverage than SHiP (85% vs
74%). This is expected as SHiP is limited to
predicting only 0-hit blocks, whereas SDBP can
predict both 0-hit and 1+hit blocks. However,
only 11% of SDBP’s evictions are predictions
to 1+hit blocks (solid grey slices in the figure);
the vast majority (74%) of evictions are pre-
dictions to 0-hit blocks (solid red slices in the
figure) that are also covered by SHiP. If we only
consider the High Gain applications (left-most
group of bars), SDBP’s coverage improves to
93%, of which 1+hit comprise just 8% of total
evictions. This indicates that DBP offers lit-
tle additional coverage over an insertion scheme,
particularly for workloads that stand to benefit
the most from cache management.

We further analyze the blocks that are
evicted without prediction (Not-Predicted 0-hit
and Not-Predicted 1+hit – shown with angled
stripes in the figure) to understand the remain-
ing opportunity for DBP. Together, these two
categories account for 15% of LLC evictions un-
der SDBP; of these, just a third are due to Not-
Predicted 1+hit (grey angled stripes), meaning
that in the limit, a DBP could predict only an
extra 5% of LLC evictions. For High Gain work-
loads, that fraction shrinks to just 3%.

Figure 3 shows prediction accuracy of SDBP
and SHiP. For SDBP, we show the accuracy of 0-
hit and 1+hit predictions separately to gain in-
sight into predictability for each kind of blocks.
For 0-hit blocks, SDBP achieves a 78% predic-
tion accuracy, closely tracking SHiP’s accuracy
of 81%. However, prediction accuracy of 1+hit

blocks (67%) is significantly lower than that of
0-hit blocks. This gap is even wider if we look at
the High Gain applications where SDBP’s aver-
age prediction accuracy for 0-hit blocks is 84%
versus 63% for 1+hit blocks.

Summary: Our results show that DBP’s op-
portunity is limited not only by the low fraction
of 1+hit LLC evictions, but also by the chal-
lenge of accurately predicting these blocks. In
contrast, 0-hit blocks represent the majority of
the evictions and present an easier prediction
target in terms of accuracy. Furthermore, these
0-hit blocks do not require DBP and, instead,
can be successfully predicted through a simple
insertion scheme.

4.3 SHiP+Bypass

While SHiP provides much of the coverage of
SDBP, a small gap remains due to SDBP’s pre-
dictions for 1+hit blocks. In this section, we
investigate whether a simple enhancement to
SHiP can partly close the coverage gap.

We observe that SHiP allocates all blocks in
the LLC, including those that are predicted to
not see any hits. Since such blocks represent
the majority of all allocations, we investigate
whether we can improve cache efficiency by by-
passing these blocks, thereby avoiding an un-
necessary eviction.

Our results show that SHiP+Bypass yields
a small coverage improvement to 75%, ver-
sus 74% for SHiP. For High Gain applications,
SHiP+Bypass improves the coverage from 88%
to 91%. The accuracy of SHiP+Bypass remains

6

0.8

1.0

1.2

1.4

m
cf

ca
ct
us

AD
M

so
pl
ex

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

pe
rlb

en
ch

bz
ip
2

bw
av

es
m

ilc

ze
us

m
p

gr
om

ac
s

le
sl
ie
3d

de
al
lI

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

to
nt

o

om
ne

tp
p

w
rf

gc
c

na
m

d

go
bm

k
lb
m

ge
om

ea
n

N
o
rm

a
liz

e
d
 I
P

C

SDBP SHiP SHiP+Bypass

Figure 4: Normalized IPC for SPEC’06 applications over LRU

0.00

0.25

0.50

0.75

1.00

m
cf

ca
ct
us

AD
M

so
pl
ex

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

pe
rlb

en
ch

bz
ip
2

bw
av

es
m

ilc

ze
us

m
p

gr
om

ac
s

le
sl
ie
3d

de
al
lI

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

lib
qu

an
tu

m

h2
64

re
f

to
nt

o

om
ne

tp
p

w
rf

gc
c

na
m

d

go
bm

k
lb
m

av
er

ag
e

0
 -

 h
it
 b

lo
c
k
s

1MB 2MB 4MB 8MB

Figure 5: Fraction of 0-hit blocks under OPT

the same as that of baseline SHiP – 81%.

4.4 Performance

Figure 4 shows overall performance improve-
ment for all evaluated cache management
schemes over LRU. Our results corroborate
prior work: in general, SHiP matches or out-
performs SDBP. Zeusmp, cactusADM, soplex,
GemsFDTD and libquantum are the only ap-
plications for which SDBP outperforms SHiP
through accurate predictions of 1+hit blocks
(Figure 3).

SHiP+Bypass consistently outperforms SHiP
and also narrows the gap with SDBP for ap-
plications listed above. SHiP+Bypass im-
proves the average performance of all SPEC’06
applications by 6.6%, versus 5.6% for SHiP
and 4.9% for SDBP. For High Gain applica-
tions, the performance improvement is 29.9%
for SHiP+Bypass, 25.7% for SHiP, and 22.5%
for SDBP.

4.5 Sensitivity Analysis

In this section, we perform a sensitivity analy-
sis of 0-hit blocks for different LLC sizes using
OPT. Figure 5 shows 0-hit blocks as a fraction
of all evictions for LLC sizes of 1, 2, 4 and 8 MB.
As cache size increases, blocks stay longer in the
cache, which in turn leads to fewer evictions for
0-hit as well as 1+hit blocks. While the average
fraction of 0-hit blocks reduces for larger cache
sizes, it still significantly dominates all the evic-
tions. On an average, under OPT, 67% of the
evicted blocks have no reuse for 8MB LLC as
compared to 76%, 78% and 81% for 4MB, 2MB
and 1MB LLC respectively.

It is important to point that for many appli-
cations, their working set size largely fits in an
8MB cache, and the distribution of 0-hit and
1+hit blocks stops being meaningful due to the
fact that there are very few evictions. Such
workloads are perlbench, bzip2, gromacs, cac-
tusADM, dealII, hmmer, sjeng, h264ref, tonto
& sphinx3. In this case, any cache management
technique is obviously not useful. On the other

7

hand, when the working set size does not fit
in the cache – which is generally the case for
smaller cache sizes – 0-hit blocks vastly domi-
nate the evictions and can easily be targeted by
simple insertion/bypass optimizations.

5 Discussion

Limits of dead block prediction. Our re-
sults indicate that the vast majority of evicted
blocks do not see hits during their LLC resi-
dency. This is good news from a cache man-
agement perspective, because blocks that con-
sistently do not see hits are easy to identify
and filter from the cache via insertion or bypass
policies. The remaining blocks (i.e., those that
see 1+hits), averaging 11% & 16% in SHiP &
SDBP, serve as the upper bound for the further
opportunity of DBP. In the rest of this section,
we use qualitative reasoning and quantitative
analysis to understand which fraction of these
1+hit blocks is within practical reach of DBP.

First, we focus on 1+hit blocks that are pre-
dicted by SDBP. Such blocks represent 11% of
all LLC evictions (Figures 2a). As noted in Sec-
tion 4.2, the accuracy for these predictions is rel-
atively low, averaging just 67% and indicating
that these blocks are difficult to predict.

We hypothesize that many such blocks that
experience reuse in the LLC represent an in-
herent challenge for DBPs due to noise in their
access streams. This noise includes accesses on
a misspeculated control flow path (i.e., hits that
would not have occurred in the absence of spec-
ulation), accesses on a data-dependent control
flow path (making the occurrence of these ac-
cesses difficult to predict), and conflicts in the
higher-level cache that force additional accesses
to the LLC.

Multi-core processors present two further
sources of uncertainty for DBP. The first is LLC
and directory pressure exerted by the multitude
of threads on chip, which causes early eviction
of cache blocks and makes effective learning of
reuse behavior difficult. The second is inter-
thread data sharing that confounds dead block
prediction due to thread scheduling uncertain-

ties and false sharing.
Because of the above, we believe that dra-

matic improvements in DBP accuracy for blocks
with LLC reuse are unlikely unless coverage is
sacrificed. Naturally, reducing coverage limits
the potential for improvement of DBP versus a
simple insertion or bypass scheme.

We next try to estimate the upper opportu-
nity bound for DBP by analyzing the re-use
distance of 1+hit blocks under SHiP+Bypass,
the best performing cache management scheme.
SHiP+Bypass minimizes LLC pressure through
high-accuracy bypass, and averages 11% of
1+hit LLC evictions (including bypasses). To
estimate an upper bound of DBP’s improve-
ment over SHiP+Bypass, we analyze what frac-
tion of these evictions could have been dead-
block predicted. To perform this analysis, we
track whether the 1+hit blocks hit in the SVC
following their eviction from the LLC under
SHiP+Bypass. If a block does not observe an
SVC hit, we assume that its next use is distant
and that it should have been dead block pre-
dicted after its last LLC hit.

Figure 6 shows the results of the study. Each
stacked bar corresponds to the fraction of 1+hit
LLC evictions (including bypasses) and is com-
posed of two segments – evictions that should
have been predicted (labeled Opportunity) be-
cause they did not hit in the SVC, and those
that should not be predicted (labeled Non-
Opportunity) because they hit in the SVC,
which indicates that their re-use distance is pos-
sibly within the reach of a well-managed LLC.

On average, the opportunity for DBP is 62%
of all 1+hit blocks, representing 6.9% of all LLC
evictions under SHiP+Bypass. Although we ac-
knowledge that our SVC-based analysis is not a
perfect indication of predictability, we believe it
represents a reasonable estimate of the ceiling
for DBP.

One interesting outlier in the figure is zeusmp,
whose opportunity is 100%. This benchmark
has few PCs that frequently miss in the LLC
and, following each allocation, see exactly one
hit, making it trivially predictable by a DBP.
While it represents a pathology for insertion and
bypass schemes, this behavior supports our as-

8

0
.0

0
.2

0
.4

0
.1

0
.3

0
.5

m
cf

ca
ct
us
AD
M

so
pl
ex

as
ta
r

sp
hi
nx
3

xa
la
nc
bm
k

pe
rlb
en
ch

bz
ip
2

bw
av
es

m
ilc

ze
us
m
p

gr
om
ac
s

le
sl
ie
3d

de
al
lI

ca
lc
ul
ix

hm
m
er

sj
en
g

G
em
sF
D
TD

lib
qu
an
tu
m

h2
64
re
f

to
nt
o

om
ne
tp
p

w
rf

gc
c

na
m
d

go
bm
k
lb
m

av
er
ag
e

Opportunity Non-Opportunity

Figure 6: Opportunity for DBP for ‘Not-Predicted 1+hit’ blocks under SHiP+Bypass as a fraction
of total evictions

sertion that blocks with the highest opportunity
are trivially predictable.

What should future cache management
research focus on? We believe that existing
cache management strategies may be approach-
ing the limits of predictability. While our analy-
sis shows that some further gain is possible, the
question is whether it is worth the trouble. The
performance results in Section 4.4 indicate that
any improvements in coverage should not come
at the cost of accuracy.

We argue that improving the accuracy and
coverage of blocks with short LLC lifetimes may
offer the highest potential for improvement, es-
pecially when hardware costs are taken into
account. The longer the lifetime of a block,
the more challenging it is to predict due to
noise in its access stream. Accounting for hard-
ware costs, insertion schemes seem to offer the
best performance per transistor as they need
to maintain the least amount of state. Our
study with SHiP+Bypass indicates that addi-
tional gains in cache efficiency are possible with
low-cost and low-complexity hardware.

We conclude by urging the authors of future
DBP papers to breakdown their coverage and
accuracy into 0-hit and 1+hit blocks, and to
isolate the contribution of each to performance
to demonstrate where the benefits of their pro-
posal are coming from and whether the choice
of DBP is justified.

6 Conclusion

This work questions the value addition of dead
block prediction over simple insertion based op-
timization for LLC management. Our insight
is that the majority of LLC evictions are 0-hit
blocks that can be predicted without a DBP
scheme. Moreover, we show that blocks that ex-
perience LLC hits and are dead block predicted
often suffer from low prediction accuracy, which
we attribute to noise in the access stream. SHiP,
a state-of-the-art insertion scheme, already out-
performs all the existing DBPs. Using a limit
study under SHiP+Bypass, we established that
just 6.9% of all LLC evictions can further ben-
efit from DBP. When hardware cost and design
complexity are taken into account, we conclude
that simple insertion and/or bypass schemes ap-
pear superior to dead block predictors.

Acknowledgement

We thank Daniel Jiménez for providing us with
simpoint traces of SPEC’06 applications and
Artemy Margaritov for his feedback on the
work. We also thank the anonymous reviewers
for their invaluable feedback.

References

[1] A.-C. Lai and B. Falsafi, “Selective, Ac-
curate, and Timely Self-invalidation Using
Last-touch Prediction,” in Proceedings of

9

the International Symposium on Computer
Architecture, pp. 139–148, 2000.

[2] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-
block Prediction & Dead-block Correlating
Prefetchers,” in Proceedings of the Interna-
tional Symposium on Computer Architec-
ture, pp. 144–154, 2001.

[3] M. Kharbutli and Y. Solihin, “Counter-
Based Cache Replacement and Bypass-
ing Algorithms,” IEEE Trans. Comput.,
vol. 57, pp. 433–447, Apr. 2008.

[4] S. M. Khan, Y. Tian, and D. A. Jimenez,
“Sampling Dead Block Prediction for Last-
Level Caches,” in Proceedings of the Inter-
national Symposium on Microarchitecture,
pp. 175–186, 2010.

[5] H. Liu, M. Ferdman, J. Huh, and
D. Burger, “Cache Bursts: A New Ap-
proach for Eliminating Dead Blocks and
Increasing Cache Efficiency,” in Proceed-
ings of the International Symposium on
Microarchitecture, pp. 222–233, 2008.

[6] S. M. Khan, D. A. Jiménez, D. Burger,
and B. Falsafi, “Using Dead Blocks As a
Virtual Victim Cache,” in Proceedings of
the International Conference on Parallel
Architectures and Compilation Techniques,
pp. 489–500, 2010.

[7] N. Duong, D. Zhao, T. Kim, R. Cam-
marota, M. Valero, and A. V. Veidenbaum,
“Improving Cache Management Policies
Using Dynamic Reuse Distances,” in Pro-
ceedings of the International Symposium on
Microarchitecture, pp. 389–400, 2012.

[8] Z. Hu, S. Kaxiras, and M. Martonosi,
“Timekeeping in the Memory System:
Predicting and Optimizing Memory Be-
havior,” in Proceedings of the Interna-
tional Symposium on Computer Architec-
ture, pp. 209–220, 2002.

[9] A. Jaleel, W. Hasenplaugh, M. Qureshi,
J. Sebot, S. Steely, Jr., and J. Emer,

“Adaptive Insertion Policies for Manag-
ing Shared Caches,” in Proceedings of the
International Conference on Parallel Ar-
chitectures and Compilation Techniques,
pp. 208–219, 2008.

[10] A. Jaleel, K. B. Theobald, S. C. Steely, Jr.,
and J. Emer, “High Performance Cache Re-
placement Using Re-reference Interval Pre-
diction (RRIP),” in Proceedings of the In-
ternational Symposium on Computer Ar-
chitecture, pp. 60–71, 2010.

[11] C.-J. Wu, A. Jaleel, W. Hasenplaugh,
M. Martonosi, S. C. Steely, Jr., and
J. Emer, “SHiP: Signature-based Hit Pre-
dictor for High Performance Caching,” in
Proceedings of the International Sympo-
sium on Microarchitecture, pp. 430–441,
2011.

[12] L. A. Belady, “A Study of Replacement Al-
gorithms for a Virtual-storage Computer,”
IBM Syst. J., vol. 5, pp. 78–101, June 1966.

[13] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Ja-
cob, “CMP$im: A Pin-Based On-The-Fly
Multi-Core Cache Simulator,” in Proceed-
ings of the Workshop on Modeling, Bench-
marking and Simulation, 2008.

[14] A. R. Alameldeen, A. Jaleel, M. Qureshi,
and J. Emer, “JILP Workshop on Com-
puter Architecture Competitions: Cache
Replacement Championship,” 2010.

[15] E. Perelman, G. Hamerly, M. Van Bies-
brouck, T. Sherwood, and B. Calder, “Us-
ing SimPoint for Accurate and Efficient
Simulation,” in Proceedings of the Inter-
national Conference on Measurement and
Modeling of Computer Systems, pp. 318–
319, 2003.

[16] K. Beyls and E. H. D’Hollander, “Reuse
distance as a metric for cache behavior,”
in Proceedings of the IASTED Interna-
tional Conference on Parallel and Dis-
tributed Computing and Systems, pp. 617–
662, 2001.

10

