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Abstract

Instruction-grain monitoring is a powerful approach
that enables a wide spectrum of bug-finding tools. As
existing software approaches incur prohibitive runtime
overhead, researchers have focused on hardware support
for instruction-grain monitoring. A recurring theme in
recent work is the use of hardware-assisted filtering so as
to elide costly software analysis. 

This work generalizes and extends prior point solu-
tions into a programmable filtering accelerator affording
vast flexibility and at-speed event filtering. The pipelined
microarchitecture of the accelerator affords a peak filter-
ing rate of one application event per cycle, which suffices
to keep up with an aggressive OoO core running the moni-
tored application. A unique feature of the proposed design
is the ability to dynamically resolve dependencies between
unfilterable events and subsequent events, eliminating
data-dependent stalls and maximizing accelerator’s per-
formance. Our evaluation results show a monitoring
slowdown of just 1.2-1.8x across a diverse set of monitor-
ing tools.

1. Introduction

Software robustness poses a key challenge to applica-
tion developers as modern systems become increasingly
complex, leading to more bug-prone software [22].
Because bugs and security vulnerabilities proliferate, pro-
grammer’s productivity suffers and security breaches
intensify, eventually resulting in catastrophic system fail-
ures. Dynamic instruction-grain monitoring is a powerful
approach to improve software robustness: by monitoring
individual program instructions at runtime [21], dynamic
instruction-grain monitoring allows for detection of erro-
neous behavior, such as bugs [12] and security
vulnerabilities [17].

Software dynamic instruction-grain monitoring tools
afford high flexibility, but they slow down program execu-
tion by up to two orders of magnitude [16]. The high
slowdown is due to the numerous monitoring actions taken
per application instruction (e.g., perform correctness
checks and bookkeeping). As high runtime overhead lim-
its opportunities for deployment, prior work considered
trading off flexibility for performance through custom
hardware targeting specific monitoring functionality [5, 7,
8, 23]. While both architectural details and targeted moni-
tors vary widely among the various proposals, many tend
to employ some form of filtering as a task-specific
approach for reducing the monitoring load. For instance,
HardBound filters out non-pointer application data by
accessing and checking the relevant metadata with custom
hardware [7]; FlexiTaint employs rule-based filtering to
determine whether taint propagation can be performed in
dedicated logic avoiding software analysis [23].

The key contribution of this paper is in developing a
general filtering accelerator to support a broad range of
monitoring tasks with high filtering coverage and low
hardware overhead. We generalize and extend earlier
observations regarding filterable events by linking them to
common application and monitoring activities, such as ini-
tializing a stack frame on a function call. We observe that
unfilterable events, which require processing by the moni-
toring software, often contain dependencies on subsequent
filterable events, thus lowering filtering efficiency due to
stalls. In response, we develop monitor-agnostic architec-
tural extensions that enable concurrent filtering and
processing of unfilterable events. We also observe high
non-uniformity in the arrival rate of filterable and non-fil-
terable events alike. However, we demonstrate that
shallow queues are sufficient to buffer the event bursts.

Using a suite of diverse monitors, we show that: 
• The average monitoring load rarely exceeds one event

per cycle, indicating that a single-issue filtering accel-
erator with a throughput of one event per cycle suffices. 

• Instruction and stack-update events dominate the moni-
toring load. Instruction events require fine-grained
accesses to monitor’s metadata, most of which can be
filtered through (1) hardware-executed checks of meta-
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data state against an invariant, and (2) detection and
elimination of redundant updates that leave the meta-
data state unmodified. Stack-update events perform
bulk metadata initialization in response to function
calls and returns and can be efficiently handled with a
simple state machine.

• Maintaining a high filtering rate requires that filtering
takes place concurrently with the processing of unfil-
tered events, a task that is complicated due to
dependencies between unfilterable and subsequent fil-
terable events. To decouple filtering and the processing
of the unfiltered events, we observe that there is only
minimal state that is critical for deciding if a dependent
event is filterable. We show that this state can be
updated for unfilterable events directly in the accelera-
tor with simple hardware extensions.

• Both filterable and unfilterable events arrive in bursts
that must be buffered to reduce stalls due to backpres-
sure. Shallow queues of 16 to 32 events are sufficient
for this purpose and allow for decoupling of the filter-
ing accelerator from the core running the application.

Building on the observations above, this paper develops
an architecture, along with full microarchitectural support,
for a flexible at-speed Filtering Accelerator for Decoupled
Event processing, or FADE. Using full-system cycle-accu-
rate simulation, we show that FADE is highly effective,
filtering out 84-99% of events that would otherwise be
handled in software, thereby reducing the application
slowdown to only 1.2-1.8x (versus 1.6-7.4x for unacceler-
ated execution). In the 40nm technology, FADE requires
0.12mm2 of area and 273mW of power at peak.

2. Motivation

Instruction-grain monitoring is a powerful analysis
technique with the ability to observe the application
actions in fine detail. The monitoring tools observe
dynamic application events (e.g., instructions, function
calls) to identify erroneous, anomalous, and otherwise
interesting behaviors. In doing so, monitors check whether
a predefined program invariant holds. Invariants may
specify that every accessed memory location has been
allocated, or that the value used as a jump target is not spu-
rious. To assist analysis, monitors maintain bookkeeping
information, or metadata, about the state of the application
memory and registers. Based on the event, the relevant
metadata are checked against the invariant and/or updated
with a new value. 

The powerful analysis enabled through instruction-
grain monitoring comes with the downside of high perfor-
mance overhead. Software-only schemes, such as Valgrind
[16], provide flexibility. However, the flexibility comes at
a steep performance penalty of up to two orders of magni-

tude [16], as for each application event, a software handler
is dispatched to check and/or update metadata. Several
optimizations have been proposed to lower the runtime
overhead through analysis-specific optimizations [9], sam-
pling of application activity [10], and hot-path analysis
[18], but they either incur considerable slowdown or are
not widely applicable.

Filtering of application events that trigger monitoring
activity has been proposed as a way to reduce the high
runtime overhead. Prior work has identified the potential
of filtering and has introduced hardware-based mecha-
nisms to achieve high monitoring performance [2, 7, 19,
23]. However, prior work treats filtering as a trade-off
between flexibility and performance. Filtering mecha-
nisms that achieve high efficiency and low runtime
overhead are focused on a narrow set of monitoring analy-
ses (e.g., only taint flow analysis [23], or only memory
safety analysis [7]). Filtering mechanisms that aim at high
flexibility fail to considerably lower the slowdown [2].
Moreover, a number of existing filtering proposals either
require intrusive modifications to the core microarchitec-
ture (e.g., a new pipeline stage [23]) or have high resource
overheads, needing a dedicated core for the monitoring
task [2, 19].

This work makes the observation that filtering does not
have to trade flexibility for performance, and can be effec-
tive at accelerating a wide range of monitoring tools.
Furthermore, filtering can be independent of the underly-
ing system and monitoring architecture while
accommodating different design points in terms of the
core microarchitecture and the execution substrate for pro-
cessing of unfilterable events. 

3. Design Considerations

Figure 1 shows the main entities involved in the event
processing flow of a monitoring system with filtering sup-
port. The application generates events as instructions
retire and enqueues the events of interest (i.e., monitored
events) in the event queue. The rest of the events (i.e.,
unmonitored events) do not require further processing. The
filtering accelerator (FA) dequeues events from the head
of the event queue and checks whether the filtering condi-
tion is satisfied. If so, events are filtered and no further
action is required. As further processing is necessary for
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Figure 1. A monitoring system with filtering support.
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the rest of the events (i.e., unfiltered events), the filtering
accelerator places them into the unfiltered event queue.
Finally, the unfiltered event consumer dequeues and han-
dles the unfiltered events completing the monitoring
analysis. 

3.1. Event Producer

As the application instructions retire, they generate
events. However, monitoring analyses do not require all
application events to be processed. As a result, software
[16] and hardware [2, 6] monitoring frameworks include
support to eliminate1 the unmonitored events. We define
monitoring load as the ratio of monitored events to all
committed instructions. 

Based on the types of the monitored instruction events,
monitoring analyses can be broadly categorized into two
types: memory tracking, which process only memory
instructions, and propagation tracking, which may track
any instructions types and propagate a metadata value
from the source operand(s) to the destination operand. The
exact instruction types being monitored depend on the
monitor’s task. For instance, MemLeak, which identifies
memory leaks [13], monitors instructions that may propa-
gate a pointer value, such as arithmetic and load/store
instructions, but eliminates floating-point instructions. 

To quantify the load on different monitors, we measure
the applications’ monitored IPC on an aggressive 4-way
OoO core (we detail the benchmarks and monitors in
Section 6). In Figure 2(a), we present the per-monitor
results averaged across benchmarks. For instance, for
AddrCheck, the average application IPC (including both
monitored and unmonitored instructions per cycle) is 1.1,
out of which 0.4 (monitored instructions per cycle) require
a monitoring action to be taken. 

In general, the monitoring load of memory-tracking
monitors is lower compared to the monitoring load of

propagation-tracking monitors, because propagation-
tracking monitors tend to process more events. As a result,
the former have a low monitored IPC (up to 0.4 event per
cycle), while the opposite holds for the latter (up to 0.68
event per cycle). 

Figure 2(b), shows the per-benchmark results for Addr-
Check, a memory tracking monitor, which checks whether
an access goes to allocated memory [16]. For all bench-
marks, the monitored IPC is significantly below 1.0, with
an average of 0.24. In contrast, Figure 2(c) shows the per-
benchmark results for MemLeak, a propagation tracking
monitor. While most benchmarks also have a monitored
IPC of below 1.0, with an average of 0.68, the monitored
IPC of MemLeak is 2.8x higher than AddrCheck, under-
scoring the differences in monitoring load.

The monitored IPC indicates the event generation rate
of the applications and dictates the rate at which events
must be consumed by the filtering accelerator. The pre-
sented analysis shows that the monitored IPC is below 1.0
for a range of monitors, even when the event stream is pro-
duced by an aggressive OoO core. We thus conclude that a
filtering accelerator with a processing capability of one
event per cycle can keep up with the event producer. 

3.2. Event Queue

We next examine the buffering requirements between
the event producer and the filtering accelerator. For the
purpose of our study, we assume a filtering accelerator that
processes one event per cycle and has an infinite event
queue. In Figure 3(a, b), we present the cumulative distri-
bution of the event queue’s occupancy for (a) AddrCheck,
a memory-tracking monitor, and (b) MemLeak, a propaga-
tion-tracking monitor, on an aggressive 4-way OoO core.

For memory-tracking monitors (Figure 3(a)), the moni-
tored IPC is low, resulting in small bursts of events that
can be captured in an 8-entry queue. For propagation-
tracking monitors (Figure 3(b)), the monitored IPC is con-
siderably higher, resulting in longer bursts. Depending on
the benchmark’s monitored IPC, the queueing require-
ments range from 128 entries (mcf – low monitored IPC)
to 8K entries (omnetpp – higher monitored IPC). For

1.  The term filtering has been used in prior work [6] to refer to elimina-
tion of unmonitored events. We do not use the term filtering in this con-
text because no monitoring task is associated with unmonitored events.

(b) (c) unmonitored
monitored

0.0

0.5

1.0

1.5

2.0

Addr
Check

Atom
Check

Mem
Check

Mem
Leak

Taint
Check

A
pp

. I
PC

(a) propagation 
tracking

memory 
tracking

Figure 2. Breakdown of application IPC to monitored and unmonitored: (a) averaged across benchmarks for each
monitor, and per-benchmark for (b) AddrCheck and (c) MemLeak.



4

benchmarks with a monitored IPC greater than one, such
as bzip, queueing cannot help, as the filtering rate (1.0
event per cycle) is below the event generation rate (1.2
events per cycle). 

We next compare the performance loss stemming from
finite queues over an infinite event queue. We evaluate
two queue sizes: (1) 32K entries, which can accommodate
the bursts based on our analysis, and (2) 32 entries, which
is a practical-sized queue. In Figure 3(c), we present
results for MemLeak, a monitor that exerts the greatest
pressure on the queue due to its high monitored IPC. We
observe that the 32K-entry queue can fully accommodate
the bursts (resulting in no slowdown) for all benchmarks
but bzip and gcc, corroborating the burstiness analysis in
Figure 3(b). Meanwhile, a much smaller queue of only 32
entries results in a slowdown that ranges from none (mcf,
astar, libq.), to 1.17x (gombk). Queueing cannot help with
bzip (monitored IPC over 1.0) resulting in a 1.33x slow-
down for a 32K-entry queue and a 1.36x slowdown for a
32-entry queue. For gcc, queueing reduces the slowdown
from 1.1x (32-entry queue) to 1.04x (32K-entry queue).
We conclude that a small (e.g., 32-entry) event queue
allows for insignificant slowdown caused by bursts.

3.3. Filtering Accelerator

The filtering accelerator aims at reducing the overhead
of common monitoring activities, which mainly happen in
response to two categories of application events: (1)
instructions, (2) function calls and returns. The monitors
also process high-level events (e.g., malloc, fopen, mmap).
The filtering accelerator does not target high-level events,
as they are infrequent and require complex handling.

The vast majority of monitoring activity is due to
instruction events requiring accesses, checks, and updates
to the metadata of the instruction operands. Nearly all
remaining monitoring activity is due to function calls and
returns. At each function call (return), a frame is allocated
(deallocated) on the application stack. We refer to both
types of activity as a stack update. Stack updates must be
shadowed by the monitor to properly track which portion

of the application memory has been allocated. Therefore,
the monitor sets a region of metadata memory to a known
value (e.g., allocated and uninitialized on a call, unallo-
cated on a return). 

Figure 4(a) breaks down the monitors’ execution time
into instruction (classified into RU and CC, explained
later) and stack-update handling. While instructions domi-
nate the execution profile, in two out of five studied
monitors stack updates consume up to 17% of the execu-
tion time and represent an attractive acceleration target. 

3.4. Unfiltered Event Queue and Consumer

Events that cannot be handled by the filtering accelera-
tor (i.e., unfiltered events) require further processing by
the monitoring system. An ideal unfiltered event consumer
should be able to support a wide variety of monitoring
tools for comprehensive bug coverage. This requirement
argues for a programmable substrate, such as a general-
purpose core (e.g., LBA [2]) or a reconfigurable fabric [6].

Nearly all unfiltered events arise as a result of (1) mem-
ory allocation, deallocation, or initialization; and (2)
traversals of tainted data structures or files in taint-track-
ing monitors. In general, these actions involve multiple
memory words and, as a result, trigger a burst of metadata
updates that cannot be filtered.

Figure 4(b) plots the distance, as a cumulative distribu-
tion, between unfiltered events for MemLeak. Results are
similar for other monitors. The distance is measured in
events. We observe that two unfiltered events are typically
separated by up to 16 filterable events. Based on this anal-
ysis, we define an unfiltered burst as a sequence of
unfiltered events, each of which is separated by at most 16
filterable events. Figure 4(c) shows the average burst size
(measured in unfiltered events) for each monitor and
benchmark pair. We observe that the bursts are small, with
an average size of 16 or fewer unfiltered events for the
majority of benchmarks and monitors. We thus conclude
that a small (e.g., 16-entry) unfiltered event queue is effec-
tive at accommodating the bursts.
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An important implication of our analysis is that because
filterable events are interleaved between pairs of unfilter-
able event, it is essential to perform filtering concurrently
with the processing of unfiltered events. However, inter-
event dependencies mandate in-order event processing,
forcing a naïve filtering accelerator design to stall when an
unfiltered event is processed by the unfiltered event
consumer. 

3.5. Summary

Our study of a broad range of applications and monitors
shows that the monitoring load rarely exceeds one event
per cycle even with an aggressive OoO core producing
events. While instructions dominate the event stream,
stack updates also contribute to the monitoring load. Event
production is bursty, mandating queueing for pending
events; however, a small queue is sufficient for good per-
formance. Unfiltered events are also bursty and are
sparsely spaced within an otherwise filterable event
stream. 

These results point to a programmable filtering acceler-
ator able to keep up with an average monitoring load of
one event per cycle, capable of filtering concurrently with
unfiltered event processing, and loosely coupled through
shallow queues to both application and monitoring sys-
tems. The next two sections present our design for such an
accelerator. We first present a design that does not support
filtering concurrent with the processing of unfiltered
events (Section 4), and then extend it to support Non-
Blocking Filtering (Section 5).

4. Baseline Filtering Accelerator

We introduce our baseline Filtering Accelerator for
Decoupled Event processing, or FADE. FADE is com-
posed of two building blocks: (1) the Filtering Unit, which
filters instruction events (Section 4.1), and (2) the Stack-
Update Unit, which accelerates stack-update events
(Section 4.2). Without loss of generality, we assume that

unfiltered events are processed in software on a general-
purpose core. 

4.1. Filtering Unit

To elide software execution, the Filtering Unit supports
two filtering actions, clean checks (CC) and redundant
updates (RU). Clean checks are based on the observation
that most of the time applications behave as expected and
the metadata match the expected invariant (e.g., memory
references are to initialized memory). Redundant updates
are based on the observation that metadata are stable as
propagation handlers commonly update the metadata with
the same value (e.g., initialized memory remains initial-
ized even when the actual value in application memory
changes). Figure 4(a) breaks down the execution time of
instruction events into clean checks and redundant
updates.

The Filtering Unit handles an instruction event either as
a clean check or as a redundant update. To maximize flex-
ibility and applicability, the Filtering Unit implements
three modes of operation: (1) Single-shot filtering either
performs a clean check or identifies a redundant update,
(2) Multi-shot filtering chains multiple single checks
together to determine whether an event is filterable, (3)
Partial filtering filters a part of the software handler func-
tionality in hardware, thus reducing the handler’s length.

FADE’s hardware is fully programmable and allows for
per-event definition of the filtering rules. In FADE, pro-
grammability is achieved by configuring two structures:
(1) the event table, which includes per-event filtering
rules, and (2) the Invariant Register File (INV RF), which
keeps invariant values related to the monitoring task (e.g.,
unallocated, allocated, and initialized states for Mem-
Check). These structures are memory-mapped and
programmed on a per-application basis.

Figure 5 shows the baseline filtering pipeline, which
consists of four stages. Note that striped structures, includ-
ing the Metadata Write stage, are only for Non-Blocking
Filtering as discussed in Section 5. The pipeline works as
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follows. First, the filtering rules are read from the event
table. Next, the control unit uses the event information and
the filtering rules to produce the control signals for subse-
quent stages. Then, the Filtering Unit accesses the
metadata register file (MD RF) and a dedicated metadata
cache (MD cache) to obtain metadata. The Filtering Unit
may also access the INV RF to obtain monitor-specific
invariants, if necessary. Finally, in the Filter stage, the fil-
ter logic checks whether the filtering condition is satisfied. 

Stage 1: Event Table Read. The filtering accelerator
dequeues an event (Figure 6(a)) from the event queue and
accesses the event table with the event ID to obtain the
event’s filtering rules. An event table entry (Figure 6(b))
includes the following information for each operand (i.e.,
s1, s2 and d): (1) the valid bit and the mem bit to denote
the evaluated operands and the memory operands, respec-
tively; (2) the number of MD bytes to be evaluated; (3) a
mask to extract the appropriate bits. Each entry also
includes the PC of the software handler to be invoked for
unfiltered events. 

Each entry includes the CC bit and the INV id for clean
checks, and the RU field for redundant updates. The INV
id indicates the invariant registers (one for each operand)
to be used upon a clean check. The RU field encodes three
options. In case of one source operand, the source meta-
data are directly compared to the destination metadata. In
case of two source operands, the source metadata are com-
posed using either OR or AND and then compared to the
destination metadata. The rest of the fields are described
later.

Stage 2: Control. The control unit processes the infor-
mation obtained from the event table and uses
combinational logic to generate control signals for subse-

quent stages (e.g., filter logic mux controls, selects and
enables for MD RF). 

Stage 3: Metadata Read. The Filtering Unit accesses
the MD RF, the INV RF and the MD cache, to obtain
metadata and invariants values. As application and moni-
tor processes use different address spaces (a desirable
feature that enhances system security and reliability),
metadata accesses necessitate a translation from the appli-
cation to the monitor address space. We fold the address
translation into the MD cache access. The TLB of the MD
cache, similar to M-TLB [2], contains the translation from
a virtual application page to the physical page that con-
tains the associated memory metadata. The M-TLB misses
are serviced in software.

Stage 4: Filter. The Filtering Unit supports three
modes of operation to filter events.

Single-shot Filtering. In a single cycle, the Filtering
Unit compares up to three distinct operand metadata to an
invariant (clean check), or compares the operand metadata
to each other (redundant update). 

Examples of single-shot filtering are shown in the first
two entries of Figure 6(b). The first event table entry cor-
responds to a load instruction for MemLeak. FADE
handles the event as a clean check (CC=1) and filters the
event when both operands are not pointers. In doing so,
the metadata of the event operands (i.e., the memory oper-
and s1 and the register operand d) are compared to the
non-pointer invariant, which is stored in the third entry of
the INV RF (INV id=2). The evaluated metadata are one
byte (MD bytes=1). The second event table entry corre-
sponds to a load instruction that is handled as a redundant
update.

Figure 7 details the filter logic, which is organized as
three identical two-operand comparison blocks (labeled
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f1, f2, and f3 in the figure). Each block can compare any
one of three event operands (i.e., s1, s2, and d) to another
operand or to an invariant. Together, the three blocks allow
for a single-cycle evaluation of the most complex single-
shot condition (i.e., comparing each of the three
operands – s1, s2, and d – to a different invariant). 

Multi-shot Filtering. To accommodate complex moni-
tors that require multiple checks to determine whether an
event is filterable, FADE supports multi-shot filtering. The
Filtering Unit processes multi-shot events in multiple
cycles by performing one check per cycle, and maintains
one entry in the event table per check, thus keeping each
entry simple. To encode multi-check events, each event
table entry requires two additional fields (shown in
Figure 6(b)): (1) the next entry field, which contains a
pointer to the next entry in the event table; and (2) the
multi-shot bit (MS), which enables multiple checks to be
chained by allowing the previous filtering outcome to be
considered in the final filtering outcome. As shown in
Figure 7, the associated circuit (in bold) includes a clocked
register and a multiplexer, controlled by the MS bit.

Partial Filtering. Partial filtering affords a part of the
handler functionality to be executed in hardware, reducing
the length of the software handler. A software handler may
first perform a check and based on the check’s outcome,
executes either an update or a more complex routine
including multiple checks and updates. FADE accelerates
such cases by performing the initial check in hardware. To
support partial filtering, each event table entry includes a
partial bit (P) (shown in Figure 6(b)), which drives the
selection of the handler PC.

An example of partial filtering appears in AtomCheck,
where the filter logic checks whether a shared memory
location was last referenced by the same thread. Com-
monly, the check succeeds, and a simple software handler
is dispatched to update metadata. Otherwise, a complex
handler runs to check whether there is a potential atomic-
ity violation. While both cases require software execution,
the hardware check eliminates the code associated with the
check itself, control flow, and register spills and fills. 

4.2. Stack-Update Unit

Stack-update events, which set consecutive metadata
addresses to a predefined value in response to function
calls and returns, are handled in FADE via a dedicated
Stack-Update Unit (SUU). The SUU implements a finite
state machine that takes the stack frame’s starting address
and length as parameters to calculate the address(es) of the
metadata block(s) covered by the stack frame. The SUU
issues writes to the MD cache to set the target range of
addresses to one of two predefined values (one value on
function calls and another on function returns), which are
stored in the INV RF. 

5. Non-Blocking FADE

5.1. Observations

Due to true dependencies between monitored instruc-
tions, baseline FADE must stall filtering when an
unfiltered event is encountered. Filtering resumes when
the monitoring system completes the unfiltered event pro-
cessing and the updated metadata become available. This
organization penalizes performance because filtering and
execution of unfiltered event handlers cannot overlap.

To overcome the serial processing of unfiltered events
and subsequent dependent events, we make a critical
observation: while monitors often maintain detailed meta-
data to support complex monitoring analyses, there is a
subset of metadata, which we call critical, that includes
sufficient information to decide whether a subsequent
dependent event is filterable. Importantly, this critical state
can be updated for unfilterable events directly in hardware
in the Filtering Unit. These updates are non-speculative
and are based on predefined rules that can be implemented
in simple hardware.

For instance, for MemLeak, which performs reference
counting to identify memory leaks, an event is filterable
when its operands are not pointers. Therefore, just check-
ing the pointer/non-pointer status of a memory location or
a register suffices to make the filtering decision. For
example, in case of a load instruction, if the source mem-
ory location has a pointer status, the destination register
obtains a pointer status as well. However, to perform refer-
ence counting, MemLeak maintains additional metadata
per register and memory location, which consist of a
pointer to the context (explained in Section 6) of the corre-
sponding malloc. While fundamental to MemLeak’s
monitoring algorithm, these additional metadata are non-
critical from the perspective of the filtering task. 

Overall, we observe that (1) there is critical (minimal)
state that can be checked to determine the filtering out-
come in a non-speculative way, and (2) this state can be
updated in simple hardware based on simple pre-defined
rules. Based on these observations, the filtering decision
and the handling of unfiltered event can be decoupled,
thus enabling the design of a Non-Blocking filtering unit
that can continue filtering past an unfiltered event.

5.2. Extensions to the Baseline Pipeline

Figure 5 shows the pipeline extensions (striped) to sup-
port Non-Blocking Filtering. We introduce two new
structures; the metadata (MD) update logic, which per-
forms updates to the filtering-critical metadata for
unfilterable events, and the filter store queue (FSQ), which
stores the updated memory metadata. We also introduce a
new pipeline stage, Metadata Write, where updates to
metadata take place.



8

Processing of instruction events. Consider an unfilter-
able event that just enters the pipeline. The processing in
the first three stages (Event Table Read, Control, and
Metadata Read) is the same as in the baseline pipeline. In
the Filter Stage, while the filtering condition is evaluated,
the MD update logic computes the new value for the filter-
ing-critical metadata. The new metadata value is
subsequently used only if the filtering condition evaluates
to false, indicating an unfilterable event. Otherwise, the
new metadata value is discarded. 

To determine the logic for critical metadata updates, we
observed that critical metadata have minimal state and
their propagation follows simple rules. Based on the stud-
ied monitors, we provide support for the following rules:
(1) propagating the source metadata (s1 or s2) to the desti-
nation; (2) composing the new destination metadata from
the two source metadata using OR or AND; (3) setting the
destination metadata to a constant value, which is stored in
an INV register denoted by the Non-Blocking/INV id field
in the event table (see Figure 6(b)); and (4) conditionally
performing one of the above actions after comparing the
source operands to each other, to the destination, or to a
constant.

In the Metadata Write stage, the Filter Unit commits
updated metadata to the MD RF (for register) or to the
FSQ (for memory). Subsequent events with a true depen-
dence on the updated metadata can then obtain them from
the MD RF or the FSQ in Metadata Read stage. For mem-
ory metadata, the FSQ is searched in parallel with the MD
cache. If a matching FSQ entry is found, it is used to sat-
isfy the dependence; otherwise the metadata from the
cache are used. To accommodate back-to-back dependen-
cies, forwarding from the Metadata Write stage to the
Filter stage is supported. 

Eventually, the unfiltered event handler executes and
updates both the critical and the non-critical metadata for
registers and memory. Once the handler completes, the
MD cache contains the updated value for the critical mem-
ory metadata (if any) and the corresponding FSQ entry is
discarded. Subsequent accesses to these metadata are
served by the MD cache.

Processing of stack-update events. As stack updates
change the metadata state, filtering must stop upon a
stack-update event to allow the SUU to set the stack frame
metadata. Moreover, as pending unfiltered events may ref-

erence stack frame-related metadata, the unfiltered event
queue must be drained by the consumer prior to stack-
update processing. 

6. Methodology

Evaluated designs. We evaluate two FADE-enabled
systems, shown in Figure 8. The two-core monitoring sys-
tem (Figure 8(a)) executes the application and monitor
threads on separate cores to maximize concurrency [2].
Filtering takes place next to the monitor core. The single-
core monitoring system (Figure 8(b)) is based on a fine-
grained, dual-threaded core with a dedicated hardware
thread for the application and monitor processes. This
design point minimizes resource requirements, but results
in higher slowdown because the core resources are shared
between the application and monitor.

We also evaluate two unaccelerated systems, similar to
the single- and two-core systems presented in Figure 8 but
without FADE. In these systems, the application and the
monitor communicate through a single queue.

System configuration. Table 1 summarizes the config-
uration of the evaluated systems. Additionally, FADE-
enabled systems have a 4KB, two-way MD cache with
one-cycle access latency, and a 16-entry Metadata TLB. A
sensitivity analysis for these two structures (excluded due
to space limitations) shows that this design point offers the
best cost-performance ratio. The event table has 128
entries, covering the heavily used subset of the modeled
ISA (SPARC). The event queue and the unfiltered event
queue is 32 and 16 entries, respectively. Unless, otherwise
specified, experiments use Non-Blocking FADE.

Simulation. We use Flexus [26] for cycle-accurate full-
system simulation. Flexus extends Simics with timing
models of multithreaded cores, caches, and interconnect.
For our evaluation, we use the SMARTS sampling meth-
odology [27]. Our samples are drawn over one billion
instructions of the monitored application. As our bench-
marks are organized as a collection of loops, we sample
over an execution interval that covers multiple iterations.
For the parallel benchmarks, we follow the same approach
to cover a representative part of the benchmark’s parallel

App.

Monitor

Ti
m

e
(a) two-core, 

single-threaded

FADE

(b) single-core, 
dual-threaded

Figure 8. Evaluated systems.

Table 1. Simulation setup.

Parameter Value

in-order 1-way

Core type lean OoO 2-way/48-entry ROB

aggr. OoO 4-way/96-entry ROB

ISA SPARC v9

L1 Caches 32KB, 2-way, 64B block 2-cycle latency

Shared L2 2MB, 16-way, 64B block, 10-cycle latency

DRAM 90-cycle latency
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section. For each measurement, we launch simulations
from checkpoints with warmed caches (including the MD
cache), and run 100K cycles to achieve a steady state of
detailed cycle-accurate simulation before collecting mea-
surements for the next 50K cycles.

Power and Area. To estimate FADE’s area and power,
we synthesize our VHDL implementation with Synopsys
Design Compiler. We use TSMC 45nm technology (core
library: TCBN45GSBWP, Vdd: 0.9V) scaled down to
40nm half node, and target a 2GHz clock frequency. For
the MD cache, we estimate area, power, and latency with
Cacti 6.5 [14].

Monitors. To demonstrate FADE’s generality, we use a
suite of five diverse monitors that cover a range of mem-
ory, security, and concurrency bugs.

AddrCheck [16] checks whether memory accesses are
to an allocated region. The critical metadata encode two
states (allocated or unallocated) per memory location,
while the non-critical metadata include book-keeping
information for bug reporting. FADE filters accesses to
allocated data through clean checks.

MemCheck [16] extends AddrCheck to detect the use of
uninitialized values, and TaintCheck [17] detects over-
write-related security exploits. For critical metadata,
MemCheck has three metadata states (i.e., unallocated,
uninitialized, and initialized) and TaintCheck has two
metadata states (i.e., untainted and tainted). Non-critical
metadata may include information related to origin track-
ing [1] or other bookkeeping information. FADE performs
clean checks for legitimate accesses and filters redundant
updates when metadata remain unchanged.

MemLeak [13] identifies memory leaks through refer-
ence counting. The critical metadata consist of the pointer/
non-pointer status of each register and memory word.
Non-critical metadata consist of a pointer to the corre-
sponding malloc’s context and a null value otherwise. The
context includes a unique ID, PC, and a reference counter.
FADE performs clean checks to filter events with non-
pointer operand values.

AtomCheck [12] detects atomicity violations by check-
ing access interleavings. For this purpose, it keeps track of
the last access by each thread to each application memory
location. AtomCheck maintains one byte of critical meta-
data per application word with the thread status bit and the
thread id. Furthermore, it keeps non-critical metadata
including the type (Read/Write) of the last access by each
thread in local per-thread tables. AtomCheck is accommo-
dated by Partial filtering, as explained in Section 4.1. 

Benchmarks. For all monitors, except AtomCheck, we
use the SPEC2006 integer benchmarks with reference
inputs. These CPU-intensive benchmarks stress the moni-
toring system with a high event generation rate. For
TaintCheck, we use the benchmarks (astar, bzip, mcf,

omnetpp) that have tainting propagation and we exclude
the rest. For AtomCheck, we use five multithreaded
benchmarks: water and ocean from the SPLASH suite; and
blackscholes, streamcluster, and fluidanimate from the
PARSEC suite. Each benchmark has four threads that run
on one core in a time-sliced manner. All benchmarks use
32-bit binaries.

7. Evaluation

7.1. Filtering Efficiency

Table 2 shows that FADE filters 84-99% of all instruc-
tion event handlers. AddrCheck has the highest filtering
ratio because nearly all instruction events can be filtered
via clean checks as the applications access allocated mem-
ory. In contrast, TaintCheck has the lowest filtering ratio
of 84%, as it performs value propagation that results in
long propagation chains with a higher frequency of meta-
data updates.

7.2. FADE versus Unaccelerated System

Figure 9 depicts the performance of FADE versus the
unaccelerated monitoring system. In both systems, appli-
cation and monitor tasks execute in dedicated hardware
threads of a dual-threaded 4-way OoO core. Performance
is normalized to an unmonitored (application-only)
system.

In general, for the unaccelerated systems, we observe
an average slowdown of 4.1x, across monitors. For mem-
ory-tracking monitors (AddrCheck, AtomCheck), the
average slowdown is 2.5x, while for propagation-tracking
monitors (MemCheck, MemLeak, TaintCheck), the slow-
down is 5.8x. FADE reduces the slowdown significantly
for all monitors, with an average slowdown of 1.5x.
FADE’s slowdown is 1.3x and 1.6x for memory- and prop-
agation-tracking monitors, respectively.

Figure 9(a) shows AddrCheck’s performance, which is
generally good on both systems as the monitor just pro-
cesses non-stack memory instructions. In the
unaccelerated system, AddrCheck’s slowdown ranges
from 1.2x to 2.9x, with an average of 1.6x. FADE reduces
the slowdown to an average of 1.2x by filtering out nearly
all monitored events.

Figure 9(b) shows the results for MemLeak, a heavy-
weight propagation-tracking monitor. In the unaccelerated
system, we observe slowdown ranging from 3.4 to 11.5x,
with an average of 7.4x. We note that the benchmarks with
a high monitored IPC (e.g., 1.2 for bzip) generate events
faster than those with a low monitored IPC (e.g., 0.2 for

AddrCheck AtomCheck MemCheck MemLeak TaintCheck

99.5% 85.5% 98.0% 87.0% 84.0%

Table 2. FADE’s filtering efficiency.
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mcf), resulting in higher slowdown due to the increased
pressure on the monitor. FADE significantly reduces the
slowdown to an average of 1.8x, thanks to its high filtering
ratio and the hardware-accelerated stack-update unit. The
highest slowdown is observed on astar (2.2x) and gcc
(3.3x), which are characterized by a low filtering ratio
(70%) and must frequently drain the unfiltered event
queue at function call/return boundaries (Section 5.2).

Figure 9(c) presents results for AtomCheck. Although
AtomCheck is a memory-tracking monitor with a low
event generation rate, it has an average slowdown of 3.9x
(8.2x max) in the unaccelerated system because the events
are costly due to numerous monitoring actions. In contrast,
FADE benefits from a high filtering ratio, resulting in an
average slowdown of 1.6x (1.9x max). 

Finally, FADE reduces the slowdown to an average of
1.4x for MemCheck (similar to MemLeak) and 1.6x for
TaintCheck (similar to AtomCheck). Detailed results for
these monitors are omitted due to space limitations.
Across the five evaluated monitors, FADE reduces the
monitoring slowdown to an average of 1.5x, versus 4.1x
for the unaccelerated system.

7.3. Performance for Different Core Types

To better understand the effects of core microarchitec-
ture on monitoring performance, we evaluate the
unaccelerated and FADE-enabled systems with different
core types. Figure 10 summarizes the performance for
three core microarchitectures; in-order, 2-way OoO, and
4-way OoO averaged across all benchmarks. 

For the unaccelerated monitoring systems (dashed
bars), we observe a reduction in performance ranging from
7% to 51% for simpler core microarchitectures as com-
pared to the 4-way design. Although the applications
generate up to 2x fewer events per cycle on the in-order
core than on the 4-way OoO core, each event handler exe-
cutes up to 3x faster on 4-way OoO because event
handlers consist of instruction sequences with high cache
locality, resulting in high IPC on aggressive cores. Thus,

we conclude that monitors are sensitive to the core micro-
architecture. 

In the FADE-enabled system (solid bars), performance
is less dependent on the core type. For example, Mem-
Check performs marginally better on the simple
microarchitecture (average slowdown of 1.2x on in-order
versus 1.4x on 4-way OoO), showing that filtering leaves
little work for the monitor core and the core microarchitec-
ture is less important.

7.4. Single-Core versus Two-Core System 

Prior work [2, 25] has suggested utilizing otherwise
idle cores to accelerate the monitoring task. We next eval-
uate this design point in the context of FADE. 

Figure 11(a) compares the performance of single-core
(dual-threaded) and two-core monitoring systems. Both
are FADE-enabled and feature a 4-way OoO microarchi-
tecture. The results indicate that the two-core design
outperforms the single-core option by 15% on average
(28% max) by eliminating resource contention between
monitor and application threads. As the second core is
expected to provide a theoretical speed-up of 2x over the
single core, we investigate the reason for the limited bene-
fit of the second core.

Figure 11(b) breaks down the utilization of the two-
core system into three categories: cycles in which (1) the
application core is idle because the event queue is full, (2)
the monitor core is idle because FADE filters all events,
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and (3) both application and monitor cores are utilized. As
the figure shows, 48% to 97% of the time, one of the two
cores is idle, as FADE either filters the incoming event
stream (idling the monitor core), or the monitor core pro-
cesses unfiltered events (backpressuring the application
core). With both cores utilized only 22% of the time, on
average, the benefit of the second core is clearly limited. 

7.5. Benefits of Non-Blocking Filtering

To show the benefit provided by Non-Blocking Filter-
ing, Figure 11(c) compares the performance of Non-
Blocking FADE (used in the studies above) to the baseline
FADE that stalls on each unfiltered event. 

We observe that Non-Blocking Filtering improves the
performance by 2x for AtomCheck, MemLeak and Taint-
Check, which have relatively low filtering ratios (<87%),
and by 1.1x for AddrCheck and MemCheck, whose filter-
ing ratio is high (>98%). The benefit of Non-Blocking
FADE comes from overlapping the filtering actions with
the unfiltered events processing.

7.6. Area and Energy Efficiency

To model FADE’s area and power costs, we synthesized
our RTL design in TSMC 40nm technology. Our design
includes a 128-entry event table, a 32-entry event queue,
and a 16-entry unfiltered event queue. Synthesis results
show an area of 0.09mm2 and a peak power consumption
of 122mW. To estimate the area and power requirements
of the 4KB MD cache, we use CACTI. We find the area
cost of the cache to be 0.03mm2, peak power of 151mW,
and an access latency of 0.3ns.

8. Related Work

Prior work proposed hardware support for instruction-
grain monitoring. Early proposals sacrifice flexibility by
hardwiring the monitoring policy [4, 21]. Other proposals
[5, 23, 24] allow for a number of different monitoring pol-
icies but their pipelines can only accommodate fixed-size
metadata. Monitor-specific proposals include support for

race detection [8], and spatial memory safety for C/C++
programs [7, 15]. DISE [3] instruments the instruction
stream on-the-fly by injecting the instrumentation code
directly into the pipeline. Another class of tools is based
on watchpoints [11, 20, 28]; however, it cannot support
certain monitors (e.g., propagation trackers) [28], and can
degrade performance for certain metadata layouts [11].

Event filtering has been considered in prior work as a
way to accelerate monitoring; however, prior proposals
only considered filtering for a narrow range of behaviors
by (1) targeting only a specific monitor [7, 19], (2) sup-
porting only metadata of specific size [23], or (3)
sacrificing bug coverage [2]. This work advances the
state-of-the-art by (1) providing generalized support for
filtering including partial and multi-shot filtering, (2)
accelerating bulk metadata management (i.e., stack
updates), and (3) proposing Non-Blocking Filtering.

9. Conclusions

This work introduced FADE, a Filtering Accelerator for
Decoupled Event monitoring. The proposed design
exploits common behavior across monitors to provide sim-
ple, programmable hardware for handling common
application events while delegating infrequent complex
events to software for maximum flexibility. To maximize
throughput and avoid stalls in the presence of unfiltered
events, FADE employs Non-Blocking Filtering — a hard-
ware-assisted mechanism for concurrent processing of
filterable and unfiltered events. Our results showed that
FADE can filter 84-99% of application events across a
range of monitors, resulting in an average slowdown of
only 1.2-1.8x, thereby making instruction-grain monitor-
ing practical.
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