
Fetch-Directed Instruction Prefetching Revisited
Truls Asheim
NTNU, Norway

truls.asheim@ntnu.no

Rakesh Kumar
NTNU, Norway

rakesh.kumar@ntnu.no

Boris Grot
University of Edinburgh, UK

boris.grot@ed.ac.uk

Abstract—Prior work has observed that fetch-directed
prefetching (FDIP) is highly effective at covering instruction
cache misses. The key to FDIP’s effectiveness is having a
sufficiently large BTB to accommodate the application’s branch
working set. In this work, we introduce several optimizations that
significantly extend the reach of the BTB within the available
storage budget. Our optimizations target nearly every source of
storage overhead in each BTB entry; namely, the tag, target
address, and size fields.

We observe that while most dynamic branch instances have
short offsets, a large number of branches has longer offsets or
requires the use of full target addresses. Based on this insight,
we break-up the BTB into multiple smaller BTBs, each storing
offsets of different length. This enables a dramatic reduction in
storage for target addresses. We further compress tags to 16 bits
and avoid the use of the basic-block-oriented BTB advocated
in prior FDIP variants. The latter optimization eliminates the
need to store the basic block size in each BTB entry. Our
final design, called FDIP-X, uses an ensemble of 4 BTBs and
always outperforms conventional FDIP with a unified basic-
block-oriented BTB for equal storage budgets.

I. INTRODUCTION

Contemporary server applications feature deeply layered
software stacks and massive instruction working sets far ex-
ceeding the capacity of the instruction cache found in current
processors. This causes a large number of front-end stall cycles
due to frequent instruction cache misses, motivating research
into front-end prefetching.

Existing research on instruction prefetching has introduced
several schemes that use the BTB and the branch predic-
tor to drive front-end prefetching. These schemes effectively
allow the instruction address generation logic to run ahead
of the actual fetch stream by predicting and resolving future
branches, and issuing prefetches to the generated candidate ad-
dresses. This idea, called Fetch Directed Instruction Prefetch-
ing (FDIP), was pioneered by Reinman et al. [7]. Subsequent
works extended FDIP to also prefetch into the branch target
buffer (BTB) [6], and, most recently, introduced a compressed
BTB design to maximize instruction footprint coverage with
a limited BTB storage budget [5].

A key conclusion reached by recent front-end prefetching
research is that FDIP is highly effective at covering L1-I
misses, and – given a sufficiently large BTB – is competitive
with storage-intensive front-end prefetchers such as temporal
streaming [2]–[4]. The reason why the BTB plays a key role
in FDIP and its derivates is that the BTB is used to identify
branches, which – if taken – redirect the control flow to a
target address. For each branch tracked in the BTB, its target

address is also stored there. Thus, the number of branches
tracked in BTB plays a key role in FDIP’s effectiveness
because any branch evicted from the BTB (e.g., due to
contention) may lower FDIP’s effectiveness by impeding its
ability to identify control flow discontinuities.

However, naively increasing the BTB size to track more
branches results in massive storage overhead. Therefore, this
work focuses on optimizing the BTB entry organization to
reduce its storage requirements; thus maximizing number of
branches captured in a given storage budget.

Our proposed BTB organization leverages the insight that
branch offset lengths are unequally distributed. Conditional
branches have shorter offsets than unconditional branches,
which require full target addresses. Moreover, within the
conditional branch category, many targets are very close to
the branch itself, requiring very few bits to encode the offset.
Based on this insight, we partition the BTB into several smaller
BTBs, each storing branches whose targets fall within a certain
distance of the branch itself. Because the target field accounts
for over half of each entry’s storage budget in a baseline
BTB design (see Figure 2), this optimization brings significant
storage savings.

We further observe that a full tag is not necessary to
identify branches and, instead, use a shorter, hashed tag.
Through empirical studies, we find that a 16-bit tag achieves
a significant reduction in storage cost compared to the full
39-bit tag1 with negligible performance impact.

Lastly, we eschew a basic-block-oriented BTB used in all
prior FDIP-based designs and opt for a conventional BTB.
This provides further storage savings by avoiding the need to
track basic block size in each BTB entry. While this optimiza-
tion carries no performance cost, in practice it may increase
BTB bandwidth requirements and its power consumption.

Our final FDIP design, called FDIP-X, uses 4 separate
BTBs with each containing only 16-bit hashed tags and no
basic block size information. The 4 BTBs only differ in the
number of bits they allocate to store branch target offsets. Our
evaluation shows that FDIP-X significantly outperforms FDIP
under stringent storage budget on both server and client traces.
However, when the storage budget restriction are relaxed both
designs perform similar.

ar
X

iv
:2

00
6.

13
54

7v
1 

 [
cs

.A
R

] 
 2

4 
Ju

n 
20

20



Fig. 1. The FDIP microarchitecture

II. FDIP BASICS

The baseline for this implementation is fetch directed in-
struction prefetch, FDIP [7]. FDIP, sketched in Figure 1, is
an instruction prefetching method that predicts future control
flow based on the information contained within the branch-
prediction unit, encompassing the branch predictor, BTB, and
return address stack. The key innovation pioneered by FDIP
is the decoupling of the branch-prediction unit and the fetch
engine via the fetch target queue (FTQ). This decoupling
allows the branch prediction unit to run ahead of the fetch
engine and predict future control flow. The head of the FTQ,
shaded in Figure 1, is the fetch point, while subsequent entries
can be used for issuing prefetches as described below.

The original FDIP proposal relies on a basic block-oriented
BTB, which stores the start and length of basic blocks rather
than branch instruction addresses. Here, a basic block is
defined as straight-line code ending in a branch instruction. On
every cycle, the branch prediction unit predicts the next basic
block and inserts it into the FTQ. In this way, the FTQ contains
a stream of predicted basic blocks to be fetched. An FTQ entry
contains information about the basic block corresponding to
the current fetch entry. The head of the FTQ is consumed by
the fetch engine which issues N demand-fetch requests where
N is the fetch-width.

Since the non-head entries of the FTQ contain addresses
that will be fetched by the fetch engine in the future, they
represent ideal prefetch candidates. The prefetch engine is
the component responsible for scanning the contents of the
FTQ to look for new prefetch candidates. For every candidate
discovered, the prefetch engine issues a prefetch probe, which
checks if the L1-I block corresponding to the FTQ entry is
present in the L1-I. If not, FDIP issues a prefetch request
to bring the block from higher cache levels into the L1-I.
Requests to the L1-I are prioritized such that demand fetches
from the fetch engine are processed before prefetch probes.

III. FDIP-X

FDIP-X deploys several optimizations, all aimed at max-
imizing BTB reach. To motivate the design, we refer the
reader to Figure 2, which shows a conventional BTB and the

1Assuming a 48-bit virtual address space, 128-set BTB, and word (32-bit)
aligned instructions.

Index (IP)

Tag: 39 Type: 2 Target/Offset: 46BB size: 5 

Fig. 2. The composition of entries in a basic-block-based BTB. The numbers
are the number of bits used to encode each field.

composition of each entry. The following sections describe
optimizations aimed at reducing or eliminating the storage
cost of the three costliest fields making up each BTB entry:
offset/target, tag, BB size.

A. Partitioned BTB

As Figure 2 shows, the single largest contributor to storage
cost is the offset/target field, which stores the branch offset or
the target address – up to 46 bits long. Our key insight is that
most branches use offsets shorter than 46 bits. Figure 3 plots
the distribution of offsets2 in the branch working sets of our
workload traces. The X-axis shows the number of bits required
to encode the offset, while the Y-axis plots the frequency with
which the given offset size occurs in each trace. Note that,
in addition to bits for encoding the offset, an additional bit is
required for the direction of the offset (forward/backward).

As the figure shows, shorts offsets dominate. Indeed, very
few branches have an offset requiring more than 23 bits to
encode. Note that the data includes both conditional branches
and unconditional jumps, hence it comprehensively covers the
full branch working set for these traces.

Based on the insights gleaned from Figure 3, we propose to
partition a single logical BTB into multiple physically-separate
BTBs. The BTBs differ amongst themselves only in the size of
the offset/target field. When the branch prediction unit queries
an address, all BTB partitions are queried in parallel, hence
presenting a logical equivalent of a monolithic BTB.

Figure 4 shows the partitioning used in this implementation.
We use four different BTBs with offset field sizes of 8-bits, 13-
bits, 23-bits and 46-bits. Branches are allocated entries in one
of these BTBs based on the minimum number of bits required
to encode their target offsets. For example, if a branch requires
10 bits for encoding its target offset, it is allocated an entry
in the BTB with target offset field of 13-bits.

We also leverage the insights from Figure 3 to size the
different BTBs. For example, as very few branches require
more than 23 bits to encode their target offsets, the BTB with
46-bit offset field is allocated the least number of entries.
Also, the remaining three BTBs (8-, 13-, and 23-bit offset)
are allocated similar number of entries, as the frequency of
0-8 bit, 9-13 bit, and 14-23 bit offsets is about same.

2In our traces, all the instructions are word (32-bit) aligned as the traces
are generated on ARMv8. Therefore, the branch target offset is calculated as
the distance to target in instructions rather than in bytes.

2



0.E+00

1.E+03

2.E+03

3.E+03

4.E+03

5.E+03

6.E+03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Fr
eq

u
en

cy
 o

f 
o

cc
u

ra
n

ce

Bits for encoding branch target offset

Fig. 3. Distribution of branch target offsets.

Tag: 16 Type: 2 Offset: 8

Tag: 16 Type: 2 Offset: 13

Tag: 16 Type: 2 Offset: 23

Tag: 16 Type: 2 Offset: 46

Fig. 4. The FDIP-X BTB organization.

B. Tag compression

Tags comprise the second largest source of storage overhead
in each BTB entry, requiring 39 bits in the baseline design.
To further reduce the BTB storage requirement, FDIP-X uses
a compressed 16-bit tag in all of its BTBs. Our compression
scheme maintains the 8 low-order bits same as in the full
tag. The remaining bits of the full tag are folded, using the
XOR operator, in blocks of 8 to get the 8 higher-order bits for
the compressed tag. The performance impact of this scheme
is negligible as the hashing function (folded XOR) preserves
most of the entropy found in the high-order bits.

C. Block based or conventional BTB?

Prior incarnations of FDIP used some variant of a block-
based BTB as described in Section II. The advantage of using
such a BTB is that each entry contains the location of the next
branch. This reduces the number of times the BTB has to be
queried to locate the next branch, which saves BTB bandwidth
and power. The disadvantage of a block-based BTB, however,
is that each BTB entry needs to store the size of the associated
basic block.

To reduce BTB storage requirements, FDIP-X deploys a
conventional instruction-based BTB. Such a BTB is accessed
with an instruction address and a hit in the BTB indicates that
the address corresponds to a branch instruction. In addition,

BTB provides information about the branch type (conditional,
call, etc.) and the target of the branch. If a branch is predicted
to be taken (or in the case of an unconditional branches),
address generation resumes from the branch target. If a branch
is not found in a BTB, addresses continue to be generated
sequentially.

The space saving of an instruction-based BTB (compared
to a block-based one) is directly proportional to the number
of entries in the BTB. For example, with a 8K-entry BTB,
not needing the block size field (which requires 5 bits per
entry) saves 5KB of storage. Furthermore, empirically, we
could not observe a performance difference between the two
BTB organizations.

D. Prefetch Throttling

A key design parameter of an instruction prefetcher is
prefetch throttling. Uncontrolled wrong-path prefetching can
be detrimental for performance as it wastes on-chip bandwidth
and may evict useful instructions from the instruction cache.

FDIP-X throttles prefetches by maintaining a list of recently
issued prefetches. This list is used to filter the prefetch requests
by suppressing the prefetches for cache blocks that have been
recently requested. FDIP-X uses a 10-entry fully-associative
table to track recently issued prefetches.

In addition, the FTQ itself acts as a throttling mechanism.
This is because no new addresses can be generated once the
FTQ is full.

IV. EVALUATION

We evaluate FDIP-X on the traces and simulation infras-
tructure provided by IPC-1 [1]. First, we breakdown the BTB
storage requirements, followed by a performance comparison
between FDIP-X and FDIP for different BTB storage budgets.
Our performance comparison also includes PIF [2], a state-of-
the-art temporal stream prefetcher. Finally, we evaluate the
performance impact of tag compression.

A. Storage break-down

The storage requirements for a conventional basic-block-
oriented BTB for different number of BTB entries are pre-
sented in Table I assuming a 48-bit virtual address space.

3



TABLE I
STORAGE BREAKDOWN FOR BASIC-BLOCK-ORIENTED BTB

Entries Organization Entry size (bits) Total (bytes)
1K 128-set, 8-way 92 11.5K
2K 256-set, 8-way 91 22.75K
4K 512-set, 8-way 90 45K
8K 1024-set, 8-way 89 89K
16K 2048-set, 8-way 88 176K
32K 4096-set, 8-way 87 348K

TABLE II
STORAGE BREAKDOWN FOR FDIP-X BTB

Budget Distribution Used
(KB) (KB)

11.5

BTB Entry size Entries Storage
8-bit offset 26-bit 768 2.44KB
13-bit offset 31-bit 768 2.9KB
23-bit offset 41-bit 768 3.84KB
46-bit offset 64-bit 112 0.88KB

10.06

22.75

BTB Entry size Entries Storage
8-bit offset 26-bit 1.5K 4.88KB
13-bit offset 31-bit 1.5K 5.81KB
23-bit offset 41-bit 1.5K 7.68KB
46-bit offset 64-bit 224 1.75KB

20.12

45

BTB Entry size Entries Storage
8-bit offset 26-bit 3K 9.75KB
13-bit offset 31-bit 3K 11.63KB
23-bit offset 41-bit 3K 15.37KB
46-bit offset 64-bit 448 3.5KB

40.25

89

BTB Entry size Entries Storage
8-bit offset 26-bit 6K 19.5KB
13-bit offset 31-bit 6K 23.25KB
23-bit offset 41-bit 6K 30.75KB
46-bit offset 64-bit 896 7KB

80.5

176

BTB Entry size Entries Storage
8-bit offset 26-bit 12K 39KB
13-bit offset 31-bit 12K 46.5KB
23-bit offset 41-bit 12K 61.5KB
46-bit offset 64-bit 1.75K 14KB

161

348

BTB Entry size Entries Storage
8-bit offset 26-bit 24K 78KB
13-bit offset 31-bit 24K 93KB
23-bit offset 41-bit 24K 123KB
46-bit offset 64-bit 3.5K 28KB

322

We increase the number of sets in the BTB to increase the
number of entries while keeping the associativity same (8-
way). Notice that the entry size reduces by one bit while
doubling the number of entries. This is because the size of
tag reduces as more bits are needed to index the BTB.

Table II presents the distribution of storage budget of a
basic-block-oriented BTB among different BTBs (8-bit, 13-
bit, 23-bit, and 46-bit offsets) in FDIP-X. Like basic-block-
oriented BTB, we double the number of sets to double the
BTB capacity while maintaining the associativity (6-way).
Also notice that since the number of sets have to be a power
of 2, we are not able to precisely match the storage of basic-
block-oriented BTB and FDIP-X BTB. In fact, basic-block-
oriented BTB gets a higher storage budget especially with
more entries. Yet, FDIP-X BTBs together provide about 2.36x
entries than basic-block-oriented BTB.

0%

2%

4%

6%

8%

10%

11.5K 22.75K 45K 89K 176K 348K Infinite

Pe
rf

o
rm

an
ce

 G
ai

n

Storage Budget

FDIP FDIP-X PIF

Fig. 5. FDIP, FDIP-X, and PIF performance gain, over no-prefetch baseline,
across client traces. X-axis is storage budget for a 1K-, 2K-, 4K-, 8K-, 16K-,
32K-, and infinite-entry basic-block-oriented BTB.

0%

5%

10%

15%

20%

25%

30%

35%

11.5K 22.75K 45K 89K 176K 348K Infinite

P
er

fo
rm

an
ce

 G
ai

n

Storage Budget

FDIP FDIP-X PIF

Fig. 6. FDIP, FDIP-X, and PIF performance gain, over no-prefetch baseline,
across server traces. X-axis is storage budget for a 1K-, 2K-, 4K-, 8K-, 16K-,
32K-, and infinite-entry basic-block-oriented BTB.

B. Performance

Figures 5 and 6 compare the performance gains of FDIP,
FDIP-X, and PIF, over a no-prefetch baseline, for different
storage budgets across client and server traces respectively.
The storage budgets correspond to 1K-, 2K-, 4K-, 8K-, 16K-,
32K-, and infinite-entry basic-block-oriented BTB.

As the figures show, FDIP-X comprehensively outperforms
FDIP and PIF for practical storage budgets of few tens of
kilobytes. The performance advantage of FDIP-X is especially
visible on server traces as they put high pressure on instruction
cache due to their massive instruction footprints. As Figure 6
shows FDIP-X needs only 45KB of storage to reach within
2.5% of the performance offered by an infinite BTB (27.8%
vs 30.3%). In contrast, FDIP with its basic-block-oriented BTB
requires nearly 200KB of storage to reach similar performance
level. Similarly, PIF also requires significantly higher storage
budget than FDIP-X to deliver similar performance in a
practical storage budget range.

The figures also show that the client traces offer much
less performance opportunity compared to the server traces
due to their smaller instruction footprints. As a result, the
performance gap between FDIP-X and FDIP narrows down

4



0%

10%

20%

30%

40%

50%

60%

70%

80%

cl
ie

n
t_

0
0

1

cl
ie

n
t_

0
0

2

cl
ie

n
t_

0
0

3

cl
ie

n
t_

0
0

4

cl
ie

n
t_

0
0

5

cl
ie

n
t_

0
0

6

cl
ie

n
t_

0
0

7

cl
ie

n
t_

0
0

8

se
rv

er
_0

0
1

se
rv

er
_0

0
2

se
rv

er
_0

0
3

se
rv

er
_0

0
4

se
rv

er
_0

0
9

se
rv

er
_0

1
0

se
rv

er
_0

1
1

se
rv

er
_0

1
2

se
rv

er
_0

1
3

se
rv

er
_0

1
4

se
rv

er
_0

1
5

se
rv

er
_0

1
6

se
rv

er
_0

1
7

se
rv

er
_0

1
8

se
rv

er
_0

1
9

se
rv

er
_0

2
0

se
rv

er
_0

2
1

se
rv

er
_0

2
2

se
rv

er
_0

2
3

se
rv

er
_0

2
4

se
rv

er
_0

2
5

se
rv

er
_0

2
6

se
rv

er
_0

2
7

se
rv

er
_0

2
8

se
rv

er
_0

2
9

se
rv

er
_0

3
0

se
rv

er
_0

3
1

se
rv

er
_0

3
2

se
rv

er
_0

3
3

se
rv

er
_0

3
4

se
rv

er
_0

3
5

se
rv

er
_0

3
6

se
rv

er
_0

3
7

se
rv

er
_0

3
8

se
rv

er
_0

3
9

G
m

e
an

P
e

rf
o

rm
an

ce
 G

ai
n

16-bit Tag Full Tag

Fig. 7. FDIP-X performance gain with 16-bit tags and full tags in BTB.

quickly as the BTB storage budget increases. PIF, in contrast,
falls significantly behind both FDIP-X and FDIP at practical
storage budgets.

Figures 5 and 6 also show that, for storage budgets of up
to 89KB, PIF outperforms FDIP on server traces; however,
it lags behind FDIP on client traces. This is because the
client workloads feature shorter streams (that are used by PIF
for prefetching) which causes PIF to reset often and loose
performance. Our analysis shows that PIF experiences 1.5x
more resets on client traces than on the server ones.

C. Impact of tag compression

For assessing the performance loss due to compressed tags,
we compare FDIP-X performance with 16-bit tags to full tags
for the smallest BTB size. We choose the smallest BTB as
it would suffer highest aliasing because of tag compression.
As the results presented in Figure 7 show, full tags provide
9.96% performance gain over the baseline compared to 9.92%
with compressed tags, a difference of only 0.04%. This result
shows that our tag compression mechanism is able to preserve
the entropy of the higher order bits.

Overall, the results presented in this section show that by
partitioning the BTB into several smaller BTBs, compressing
tags, and avoiding the use of a block-based BTB, FDIP-X
drastically increases in number of entries in a given BTB
storage budget. This enables FDIP-X to deliver much higher
performance than the conventional FDIP especially with strin-
gent storage budgets.

REFERENCES

[1] https://research.ece.ncsu.edu/ipc/.
[2] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive Instruction Fetch,” in

International Symposium on Microarchitecture, 2011, pp. 152–162.
[3] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,

“Temporal Instruction Fetch Streaming,” in International Symposium on
Microarchitecture, 2008, pp. 1–10.

[4] C. Kaynak, B. Grot, and B. Falsafi, “SHIFT: Shared History Instruction
Fetch for Lean-core Server Processors,” in International Symposium on
Microarchitecture, 2013, pp. 272–283.

[5] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end
bottleneck with shotgun,” ACM SIGPLAN Notices, vol. 53, no. 2, pp.
30–42, Mar 2018.

[6] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang:
a metadata-free architecture for control flow delivery,” in 2017
IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, Feb 2017. [Online]. Available: https:
//doi.org/10.1109/hpca.2017.53

[7] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. IEEE Comput. Soc,
1999.

5

https://doi.org/10.1109/hpca.2017.53
https://doi.org/10.1109/hpca.2017.53

	I Introduction
	II FDIP Basics
	III FDIP-X
	III-A Partitioned BTB
	III-B Tag compression
	III-C Block based or conventional BTB?
	III-D Prefetch Throttling

	IV Evaluation
	IV-A Storage break-down
	IV-B Performance
	IV-C Impact of tag compression

	References

