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Abstract—Graph analytics power a range of applications in
areas as diverse as finance, networking and business logistics.
A common property of graphs used in the domain of graph
analytics is a power-law distribution of vertex connectivity,
wherein a small number of vertices are responsible for a high
fraction of all connections in the graph. These richly-connected,
hot, vertices inherently exhibit high reuse. However, this
work finds that state-of-the-art hardware cache management
schemes struggle in capitalizing on their reuse due to highly
irregular access patterns of graph analytics.

In response, we propose GRASP, domain-specialized cache
management at the last-level cache for graph analytics. GRASP
augments existing cache policies to maximize reuse of hot
vertices by protecting them against cache thrashing, while
maintaining sufficient flexibility to capture the reuse of other
vertices as needed. GRASP keeps hardware cost negligible
by leveraging lightweight software support to pinpoint hot
vertices, thus eliding the need for storage-intensive prediction
mechanisms employed by state-of-the-art cache management
schemes. On a set of diverse graph-analytic applications with
large high-skew graph datasets, GRASP outperforms prior
domain-agnostic schemes on all datapoints, yielding an average
speed-up of 4.2% (max 9.4%) over the best-performing prior
scheme. GRASP remains robust on low-/no-skew datasets,
whereas prior schemes consistently cause a slowdown.

Keywords-graph analytics; graph reordering; skew; last-level
cache; cache management; domain-specialized;

I. INTRODUCTION

Graph analytics is an exciting and rapidly growing
field with applications spanning diverse areas such as
optimizing routes, uncovering latent relationships, pinpointing
influencers in social graphs, and many more. Graph analytics
commonly process large graph datasets whose main memory
footprint span tens to hundreds of gigabytes [4, 54]. When
processing such large graphs, graph-analytic applications
exhibit a lack of cache locality, leading to frequent misses in
on-chip caches, compromising application performance [2,
3, 19, 20, 30, 31, 36].

A distinguishing property of graph datasets common in
many graph-analytic applications is that the vertex degrees
follow a skewed power-law distribution, in which a small
fraction of vertices have many connections while the majority
of vertices have relatively few connections [2, 3, 19, 45, 65,
66]. Graphs characterized by such a distribution are known
as natural or scale-free graphs and are prevalent in a variety
of domains, including social networks, computer networks,
financial networks, semantic networks, and airline networks.

We observe that the skew in the degree distribution means
that a small set of vertices with a large fraction of connections
is responsible for a major share of off-chip memory accesses.
The fact that these richly-connected vertices, hot vertices,
comprise a small fraction of the overall footprint while
exhibiting high reuse makes them prime candidates for
caching. Meanwhile, the rest of the vertices, cold vertices,
comprise a large fraction of the overall footprint while
exhibiting low or no reuse.

We find that the existing caches struggle in exploiting
the high reuse inherent in hot vertices due to the following
two reasons: First, graph-analytic applications are notorious
for exhibiting irregular access patterns that cause severe
cache thrashing when processing large graphs. Accesses to
a large number of cold vertices are responsible for thrashing,
often forcing hot vertices out of the cache. Second, hot
vertices are sparsely distributed throughout the memory space,
exhibiting a lack of spatial locality. When hot vertices share
the same cache block with cold vertices, valuable cache
space is underutilized. Existing software techniques [2, 3,
19] solve the latter problem by reordering vertices in the
memory space, such that hot vertices share cache blocks
with other hot vertices. However, the former problem of
protecting hot vertices from premature evictions remains an
open challenge, even for the state-of-the-art thrash-resistant
hardware cache management schemes.

Almost all prior works on hardware cache management
(i.e., cache replacement) that target cache thrashing are
domain-agnostic. These hardware schemes aim to perform
two tasks: (1) identify cache blocks that are likely to exhibit
high reuse, and (2) protect high reuse cache blocks from cache
thrashing. To accomplish the first task, these schemes deploy
either probabilistic or prediction-based hardware mechanisms
[5, 10, 13, 26, 28, 29, 41, 49, 51, 52, 53, 57, 58, 59,
60]. However, our work finds that graph-dependent irregular
access patterns prevent these schemes from correctly learning
which cache blocks to preserve, rendering them deficient
for the broad domain of graph analytics. Meanwhile, to
accomplish the second task, recent work proposes pinning of
high-reuse cache blocks in LLC to ensure that these blocks
are not evicted [7]. However, we find that pinning-based
schemes are overly rigid and result in sub-optimal utilization
of cache capacity.



To overcome the limitations of existing hardware cache
management schemes, we propose GRASP – GRAph-
SPecializedLast-Level Cache (LLC) management. To the
best of our knowledge, this is the first work to introduce
domain-specialized cache management for the domain of
graph analytics. GRASP augments existing cache insertion
and hit-promotion policies to provide preferential treatment
to cache blocks containing hot vertices to shield them from
thrashing. To cater to the irregular access patterns, GRASP
policies are designed to be flexible to cache other blocks
exhibiting reuse. Unlike pinning, GRASP maximizes cache
efficiency based on observed access patterns.

GRASP relies on lightweight software support to
accurately pinpoint hot vertices amidst irregular access
patterns, in contrast to state-of-the-art schemes that rely
on storage-intensive hardware mechanisms. By leveraging
existing vertex reordering techniques, GRASP enables a
lightweight software-hardware interface comprising of only
a few configurable registers, which are programmed by
software using its knowledge of the graph data structures.

GRASP requires minimal changes to the existing micro-
architecture as GRASP only augments existing cache policies
and its interface is lightweight. GRASP does not require
additional metadata in the LLC or storage-intensive prediction
tables. Thus, GRASP can easily be integrated into commodity
server processors, enabling domain-specific acceleration for
graph analytics at minimal hardware cost.

To summarize, our contributions are as follows:
• We qualitatively and quantitatively show that a wide range

of state-of-the-art domain-agnostic cache management
schemes, despite their sophisticated prediction mechanisms,
are inefficient for the domain of graph analytics.

• We introduce GRASP, graph-specialized LLC management
for graph analytics in processing natural graphs. GRASP
augments existing cache policies to protect hot vertices
against cache thrashing while also maintaining flexibility
to capture reuse in other cache blocks. GRASP leverages
a lightweight software interface to pinpoint hot vertices
amidst irregular accesses, which eliminates the need for
prediction metedata storage at the LLC, keeping the
existing cache structure largely unchanged.

• Our evaluation on several multi-threaded graph-analytic
applications operating on large, high-skew datasets shows
that GRASP outperforms state-of-the-art domain-agnostic
schemes on all datapoints, yielding an average speed-up of
4.2% (max 9.4%) over the best-performing prior scheme.
GRASP is also robust on low-/no-skew datasets whereas
prior schemes consistently cause a slowdown.

II. MOTIVATION

A. Skew in Natural Graphs

A distinguishing property of natural graphs is the skew
in their degree distribution [2, 3, 19, 45, 65, 66]. The skew

Table I
ROWS #2 AND #4 SHOW THE PERCENTAGE OF VERTICES HAVING DEGREE

EQUAL OR GREATER THAN THE AVERAGE (I.E., HOT VERTICES), WITH
RESPECT TO IN-EDGES AND OUT-EDGES, RESPECTIVELY; THE HIGHER

THE SKEW, THE LOWER THE PERCENTAGE. ROWS #3 AND #5 SHOW THE
PERCENTAGE OF IN-EDGES AND OUT-EDGES CONNECTED TO THE HOT

VERTICES, RESPECTIVELY; THE HIGHER THE SKEW, THE HIGHER
THE PERCENTAGE.

Dataset lj pl tw kr sd
In Hot Vertices (%) 25 16 12 9 11

Edges Edge Coverage (%) 81 83 84 93 88
Out Hot Vertices (%) 26 13 10 9 13

Edges Edge Coverage (%) 82 88 83 93 88

follows a power-law, with the vast majority of the vertices
having relatively few edges and a small fraction of vertices
featuring a large number of edges. Such skewed distribution is
prevalent in many domains and found, for instance, in nodes
in large-scale communication networks (e.g., the internet),
web pages in the web graph, and individuals in social graphs.

Table I quantifies the skew for the datasets evaluated in this
work (more details of the datasets in Table V). For example,
in the Twitter [54] dataset (labeled tw), 12% of total vertices
are classified as hot vertices in terms of their in-degree (10%
for out-degree) distribution. These hot vertices are connected
to 84% of all in-edges (83% of all out-edges) in the graph.
Similarly, in other datasets, 9-26% of vertices are classified
as hot vertices, which are connected to 81-93% of all edges.
In the following sections, we explain how this skew can be
leveraged to improve cache efficiency.

B. Graph Processing Basics

The majority of shared-memory graph frameworks are
based on a vertex-centric model, in which an application
computes some information for each vertex based on the
properties of its neighbouring vertices [32, 35, 42, 43, 46, 55].
Applications may perform pull- or push-based computations.
In pull-based computations, a vertex pulls updates from its
in-neighbors. In push-based computations, a vertex pushes
updates to its out-neighbors. This process may be iterative,
and all or only a subset of vertices may participate in a
given iteration.

The Compressed Sparse Row (CSR) format is commonly
used to represent graphs in a storage-efficient manner. CSR
uses a pair of arrays, Vertex and Edge, to encode the graph.
CSR encodes in-edges for pull-based computations and
out-edges for push-based computations. In this discussion,
we focus on pull-based computations and note that the
observations hold for push-based computation. For every
vertex, the Vertex Array maintains an index that points to its
first in-edge in the Edge Array. The Edge Array stores all
in-edges, grouped by destination vertex ID. For each in-edge,
the Edge Array entry stores the associated source vertex ID.

The graph applications use an additional Property Array(s)
to hold partial or final results for every vertex. For example,
the Pagerank application maintains two ranks for every

2



0

2

3 4

5

1

0 1 4 6 9 10

3 2 0 5 1 5 4 5 2 5

P0 P1 P2 P3 P4 P5

Vertex

Edge

Property

Reuse

ID-1 ID-3

(a) (b)

Figure 1. (a) An example graph. (b) CSR format encoding in-edges.
Elements of the same colors in all arrays, correspond to the same destination
vertex. Number of bars (labeled Reuse) below each element of the Property
Array shows the number of times an element is accessed in one full iteration,
where the color of a bar indicates the vertex making an access.
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Figure 2. Classification of LLC accesses and misses (normalized to total
accesses) for the pl and tw datasets for the applications from Table III.

vertex; one computed from the previous iteration and one
being computed in the current iteration. Implementation
may use either two separate arrays (each storing one rank
per vertex) or may use one array (storing two ranks per
vertex). Fig. 1(a) and 1(b) shows a simple graph and its CSR
representation for pull-based computations, along with one
Property Array.

C. Cache Behavior in Graph Analytics

At the most fundamental level, a graph application
computes a property for a vertex based on the properties of its
neighbours. To find the neighbouring vertices, an application
traverses the portion of the Edge Array corresponding to
a given vertex, and then accesses elements of the Property
Array corresponding to these neighbouring vertices. Fig. 1(b)
highlights the elements accessed during the computations for
vertex ID-1 and ID-3.

As the figure shows, each element in the Vertex and the
Edge Array is accessed exactly once during an iteration,
exhibiting no temporal locality at LLC. These arrays may
exhibit high spatial locality, which is filtered by the L1-D
cache, leading to a streaming access pattern in the LLC.

In contrast, the Property Array does exhibit temporal reuse.
However, reuse is not consistent for all elements. Specifically,
reuse is proportional to the number of out-edges for pull-
based algorithms. Thus, the elements corresponding to high
out-degree vertices exhibit high reuse. Fig. 1(b) shows the
reuse for high out-degree (i.e., hot) vertices P2 and P5 of
the Property Array assuming pull-based computations; other
elements do not exhibit reuse. The same observation applies
to high in-degree vertices in push-based algorithms.

Finally, Fig. 2 quantifies the LLC behavior of the graph

applications listed in Table III on the pl and tw datasets as
representative examples (Refer to Sec. IV for methodology
details). The figure differentiates all LLC accesses and
misses as falling either within or outside the Property Array.
Unsurprisingly, the Property Array accounts for 78-94% of all
LLC accesses. However, despite the high reuse, the Property
Array is also responsible for a large fraction of LLC misses,
the reasons for which are explained next.

D. Challenges in Caching the Property Array

As discussed in the previous section, elements in the
Property Array corresponding to the hot vertices exhibit high
reuse. Unfortunately, on-chip caches struggle in capitalizing
on the high reuse for the following two reasons:

1 Lack of spatial locality: the hot vertices are sparsely
distributed throughout the memory space of the Property
Array. Moreover, the size of each element in the Property
Array is much smaller than the size of a cache block.
Thus, inevitably, hot vertices share space in a cache block
with cold vertices. This leads to cache underutilization as a
considerable fraction of a cache block capacity is occupied
by the cold vertices.

2 Thrashing in the LLC: the access pattern to the Property
Array is highly irregular, being heavily dependent on both
graph structure and application. Between a pair of accesses
to a given hot vertex in the Property Array, a number of other,
unrelated, cache blocks may be accessed, leading to thrashing.
Any block allocated by these unrelated accesses will trigger
evictions at the LLC, potentially displacing blocks holding
hot vertices.

Overcoming the former problem requires improving cache
block utilization by focusing on intra-block reuse, which
is effectively addressed by existing software techniques [2,
3, 19]. The latter problem requires retaining high-reuse
blocks in the LLC by focusing on reuse across cache blocks;
as explained below, this remains an open challenge not
addressed by prior works. We note that the two problems
are orthogonal in nature; solving one problem does not solve
the other one.

We next discuss most relevant state-of-the-art techniques
in both software and hardware and their shortcomings in
addressing cache thrashing for graph analytics.

E. Prior Software Schemes

Prior works have proposed leveraging application-visible
properties, such as vertex connectivity or vertex degree, to
improve cache locality. This is accomplished by reordering
vertices in memory such that vertices that will be frequently
accessed together are kept close by. These techniques are
particularly attractive because they require no modifications
to the graph algorithms [2, 3, 15, 19, 21, 30, 47, 48, 69, 70,
71]. To be effective, these techniques face two constraints
during reordering. First, they must keep the reordering
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cost to a minimum to improve end-to-end application
performance. Second, they should minimize disruption to
the underlying graph structure, specifically for graphs that
exhibit community structure. Prior works have noted that
vertex order for many real-world graph datasets closely follow
underlying community structure, meaning vertices from the
same community are ordered close by in memory, exhibiting
good spatio-temporal locality that should be preserved [2, 3,
19].

While finding an optimal vertex ordering is NP-hard,
techniques like Gorder attempt to approximate such ordering
by comprehensively analyzing the graph structure based on a
likely traversal order [30]. However, recent works show that
while such techniques are effective in reducing LLC misses,
they incur a staggering reordering cost that is often multiple
orders of magnitude higher than the application runtime, thus
rendering them impractical [2].

Consequently, the same works argue for lightweight skew-
aware techniques that provide application speed-up even after
accounting for their reordering cost. To keep the reordering
cost low, these techniques reorder vertices solely based on
vertex degree, with the goal of improving spatial locality by
ensuring that hot vertices share cache blocks only with other
hot vertices. To achieve this effect, skew-aware techniques
(e.g., HubSort [19] and DBG [2]) rely on some variant
of degree-based sorting to segregate hot vertices form the
cold ones. While effective in improving spatial locality (as
explained in Sec. II-D), these techniques still suffer from
cache thrashing stemming from the fact that the footprint of
only hot vertices also exceeds the available cache capacity [2].

F. Prior Hardware Schemes

Prior hardware cache management schemes targeting cache
thrashing can be broadly classified into three categories:

1 History-agnostic lightweight schemes use simple
heuristics to manage cache [41, 51, 52, 57, 58, 60]. RRIP [52]
is the state-of-the-art technique in this category that relies on
a probabilistic approach to classify a cache block as low- or
high-reuse at the time of inserting a new block in the cache.
As these techniques do not record the past reuse behavior
of cache blocks, they are limited in accurately identifying
high-reuse blocks.

2 History-based predictive schemes such as the state-of-
the-art Hawkeye [26] and many others [5, 10, 13, 28, 29, 49,
53] learn past reuse behavior of cache blocks by employing
sophisticated storage-intensive prediction mechanisms. A
large body of recent works focus on history-based schemes
as they generally provide higher performance than the
lightweight schemes for a wide range of applications.
However, for graph analytics, we find that graph-dependent
irregular access patterns prevent these history-based schemes
from correctly learning which cache blocks to preserve. For
example, most history-based schemes rely on a PC-based

(Program Counter) reuse correlation1 to learn which set of
PC addresses access high-reuse cache blocks to prioritize
these blocks for caching over others. Meanwhile, we observe
that the reuse for elements of the Property Array, which
are the prime target for LLC caching in graph analytics
(Sec II-C), does not correlate with the PC because the same
PC accesses hot and cold vertices alike.

3 Pinning-based schemes such as XMem [7] dedicate
partial or full cache capacity by pinning high-reuse blocks
to cache. Hardware ensures that the pinned blocks cannot be
evicted by other cache blocks and thus are protected from
cache thrashing. Such an approach is only feasible when the
high-reuse working set fits in the available cache capacity.
Unfortunately, for large graph datasets, even with high skew,
it is unlikely that all hot vertices will fit in the LLC; recall
from Table I that hot vertices account for up to 26% of the
total vertices. Moreover, some of the colder vertices might
also exhibit short-term temporal reuse, particularly in graphs
with community structure.

These observations call for a new LLC management scheme
that employ (1) a reliable mechanism to identify hot vertices
amidst irregular access patterns and (2) flexible cache policies
that maximize reuse among hot vertices by protecting them
in the cache without denying colder vertices the ability to
be cache resident if they exhibit reuse.

III. GRASP: CACHING IN ON THE SKEW

This work introduces GRASP, graph-specialized LLC
management for graph analytics processing natural graphs.
GRASP augments existing cache management schemes with
simple additions to their insertion and hit-promotion policies
that provide preferential treatment to cache blocks containing
hot vertices to protect them from thrashing. GRASP policies
are sufficiently flexible to capture reuse of other blocks
as needed.

GRASP’s domain-specialized design is influenced by the
following two challenges faced by existing hardware cache
management schemes. First, hardware alone cannot enforce
spatial locality, which is dictated by vertex placement in the
memory space and is under software control. Second, domain-
agnostic hardware cache management schemes struggle in
pinpointing hot vertices under cache thrashing due to irregular
access patterns endemic of graph analytics.

To overcome both challenges, GRASP relies on existing
skew-aware reordering software techniques to induce spatial
locality by segregating hot vertices in a contiguous memory
region [2, 19]. While these techniques offer different trade-
offs in terms of reordering cost and their ability to preserve
graph structure, they all work by isolating hot vertices from
the cold ones. Fig. 3(a) shows a logical view of the placement
of hot vertices in the Property Array after reordering by such

1All seven schemes [8, 9, 12, 14, 16, 17, 18] presented at the Cache
Replacement Championship’17 [11] rely on PC-based reuse correlation.
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Figure 3. GRASP overview. (a) Software applies vertex reordering, which
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Figure 4. Block diagram of GRASP and other hardware components with
which it interacts. GRASP components are shown in color. For brevity, the
figure shows only one CPU core.

a technique. GRASP subsequently leverages the contiguity
among hot vertices in the memory space to (1) pinpoint
them via a lightweight interface and (2) protect them
from thrashing. GRASP design consists of three hardware
components as follows.

A Software-hardware interface: GRASP interface is
minimal, consisting of a few configurable registers that
software populates with the bounds of the Property Array
during the initialization of an application (see Fig. 3(b)). Once
populated, GRASP does not rely on any further intervention
from software.

B Classification logic: GRASP logically partitions the
Property Array into different regions based on expected reuse.
(See Fig. 3(c)). GRASP implements simple comparison-based
logic, which, at runtime, classifies whether a cache request
belongs to one of these regions.

C Specialized cache policies: GRASP specializes cache
policies for each region to ensure hot vertices are protected
from thrashing while retaining flexibility in caching other
blocks. The classification logic informs the choice of which
policy to apply to a given cache block.

Fig. 4 shows how GRASP interacts with other hardware
components in the system. In the following sections, we
describe each of GRASP’s components in detail.

A. Software-Hardware Interface

GRASP’s interface consists of one pair of Address Bound
Registers (ABR) per Property Array; recall from Sec. II-B that

an application may maintain more than one Property Array,
each of which requires a dedicated ABR pair. ABRs are part
of an application context and are exposed to the software.
At application start-up, the graph framework populates each
ABR pair with the start and end virtual address of the entire
Property Array (Fig. 3(b)). Setting these registers activates
the custom cache management for graph analytics. When
the ABRs are not set by the software (i.e., the default case
for other applications), specialized cache management is
essentially disabled.

The use of virtual addresses keeps the GRASP interface
independent of the existing TLB design, allowing GRASP
to perform address classification (described next) in parallel
with the usual virtual-to-physical address translation carried
out by TLB (see Fig. 4). Prior works have used similar
approaches to pass data-structure bounds to aid micro-
architecture mechanisms [7, 20, 27, 39].

B. Classification Logic

This component of GRASP is responsible for reliably
identifying cache blocks containing hot vertices in hardware
by leveraging the bounds of the Property Array(s) available
in the ABRs as explained in the following sections:

Identifying Hot Vertices: In theory, all hot vertices should
be cached. In practice, it is unlikely that all hot vertices will
fit in the LLC for large datasets. In such a case, providing
preferential treatment to all hot vertices is not beneficial
as they can thrash each other in the LLC. To avoid this
problem, GRASP prioritizes cache blocks containing only a
subset of hot vertices, comprised of only the hottest vertices
based on available LLC capacity. Conveniently, the hottest
vertices are located at the beginning of the Property Array in
a contiguous region thanks to the application of skew-aware
reordering as seen in Fig. 3(a).

Pinpointing the High Reuse Region: GRASP labels two
LLC-sized sub-regions within the Property Array: The LLC-
sized memory region at the start of the Property Array is
labeled as High Reuse Region; another LLC-sized memory
region starting immediately after the High Reuse Region is
labeled as the Moderate Reuse Region (Fig. 3(c)). Finally,
if an application specifies more than one Property Array,
GRASP divides LLC-size by the number of Property Arrays
before labeling the regions.

Classifying LLC Accesses: At runtime, GRASP classifies a
memory address making an LLC access as High-Reuse if the
address belongs to the High Reuse Region of any Property
Array; GRASP determines this by comparing the address
with the bounds of the High Reuse Region of each Property
Array. Similarly, an address is classified as Moderate-Reuse if
the address belongs to the Moderate Reuse Region. All other
LLC accesses are classified as Low-Reuse. For non-graph
applications, the ABRs are not initialized and all accesses are
classified as Default, effectively disabling domain-specialized
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cache management. GRASP encodes the classification result
(High-Reuse, Moderate-Reuse, Low-Reuse or Default) as a
2-bit Reuse Hint, and forwards it to the LLC along with
each cache request, as shown in Fig. 4, to guide specialized
insertion and hit-promotion policies as described next.

C. Specialized Cache Policies

This component of GRASP implements specialized cache
policies that protect the cache blocks associated with High-
Reuse LLC accesses against thrashing. One naive way of
doing so is to pin the High-Reuse cache blocks in the
LLC. However, pinning would sacrifice any opportunity in
exploiting temporal reuse that may be exposed by other cache
blocks (e.g., Moderate-Reuse cache blocks).

To overcome this challenge, GRASP adopts a flexible
approach by augmenting an existing cache replacement policy
with a specialized insertion policy for LLC misses and a hit-
promotion policy for LLC hits. GRASP’s specialized policies
provide preferential treatment to High-Reuse blocks while
maintaining flexibility in exploiting temporal reuse in other
cache blocks, as discussed next.

Insertion Policy: Accesses tagged as High-Reuse, comprising
the set of the hottest vertices belonging to the High Reuse
Region, are inserted in the cache at the MRU position to
protect them from thrashing. Accesses tagged as Moderate-
Reuse, likely exhibiting lower reuse when compared to the
High-Reuse region, are inserted near the LRU position. Such
insertion policy allows Moderate-Reuse cache blocks an
opportunity to experience a hit without causing thrashing.
Finally, accesses tagged as Low-Reuse, comprising the rest of
the graph dataset, including the long tail of the Property Array
containing cold vertices, are inserted at the LRU position, thus
making them immediate candidates for replacement while
still providing them with an opportunity to experience a hit
and be promoted using the specialized policy described next.

Hit-Promotion Policy: Cache blocks associated with High-
Reuse LLC accesses are immediately promoted to the MRU
position on a hit to protect them from thrashing. LLC hits to
blocks classified as Moderate-Reuse or Low-Reuse make for
an interesting case. On the one hand, the likelihood of these
blocks having further reuse is quite limited, which means
they should not be promoted directly to the MRU position.
On the other hand, by experiencing at least one hit, these
blocks have demonstrated temporal locality, which cannot be
completely ignored. GRASP takes a middle ground for such
blocks by gradually promoting them towards MRU position
on every hit.

Eviction Policy: GRASP’s eviction policy does not utilize
hint to differentiate blocks at replacement time; hence, it is
unmodified from the baseline scheme. This is a key factor
that keeps the cache management flexible for GRASP. By
not prioritizing candidates for eviction, GRASP ensures that
blocks classified as High-Reuse but not referenced for a long

Table II
POLICY COLUMNS SHOW HOW GRASP UPDATES PER-BLOCK 3-BIT

RRPV COUNTER OF RRIP (BASE SCHEME) FOR A GIVEN REUSE HINT.
HIGHER RRPV VALUE INDICATES HIGHER EVICTION PRIORITY.

Reuse Hint Insertion Policy Hit Policy
High-Reuse RRPV = 0 RRPV = 0
Moderate-Reuse RRPV = 6 if RRPV > 0:
Low-Reuse RRPV = 7 RRPV - -
Default RRPV = 6 or 7 RRPV = 0

time can yield cache space to other blocks that do exhibit
reuse. Because the unchanged eviction policy does not need
to differentiate between blocks with High-Reuse and other
hints, cache blocks do not need to explicitly store the Reuse
Hint as additional LLC metadata.

Table II shows the specialized cache policies for all Reuse
Hints under GRASP. While the table, and our evaluation,
assumes RRIP [52] as the base replacement scheme, we note
that GRASP is not fundamentally dependent on RRIP and
can be implemented over many other schemes including, but
not limited to, LRU, Pseudo-LRU and DIP [60].

D. Benefits of GRASP over Prior Schemes

The state-of-the-art history-based schemes [5, 10, 13,
26, 28, 29, 49, 53] require intrusive modifications to the
cache structure in form of embedded metadata in cache
blocks and/or dedicated predictor tables. These schemes also
require propagating a PC signature through the core pipeline
all the way to the LLC, which so far has hindered their
commercial adoption.

In comparison, GRASP is implemented within the same
hardware structure required by the base lightweight scheme
(e.g., RRIP). GRASP propagates only a 2-bit Reuse Hint to
the LLC on each cache access to guide cache policy decisions.
By relying on lightweight software support, GRASP reliably
pinpoints hot vertices in hardware without requiring costly
prediction tables and/or additional per-cache-block metadata.

When compared to pinning-based schemes, GRASP
policies protect hot vertices from thrashing while remaining
flexible to capture reuse of other blocks as needed. Combining
robust cache policies with minimal hardware modifications
makes GRASP feasible for commercial adoption while also
providing higher LLC efficiency.

IV. METHODOLOGY

A. Graph Processing Framework

For the evaluation, we use Ligra [43], a widely used graph
processing framework that supports both pull- and push-
based computations, including switching from pull to push
(and vice versa) at the start of every iteration. We combine
the five diverse applications listed in Table III with the five
high-skew graph datasets listed in Table V, resulting in 25
benchmarks. To test the robustness of GRASP to adversarial
workloads, we use two additional datasets with low-/no-skew.
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Table III
GRAPH-ANALYTIC APPLICATIONS.

Application Brief description
Betweenness

Centrality
(BC)

finds the most central vertices in a graph by using a
BFS kernel to count the number of shortest paths
passing through each vertex from a given root vertex.

Single Source
Shortest Path

(SSSP)

computes shortest distance for vertices in a weighted
graph from a given root vertex using the
Bellman-Ford algorithm.

Pagerank
(PR)

is an iterative algorithm that calculates ranks of
vertices based on the number and quality of
incoming edges to them [68].

PageRank-
Delta
(PRD)

is a faster variant of PageRank in which vertices are
active in an iteration only if they have accumulated
enough change in their PageRank score.

Radii
Estimation

(Radii)

estimates the radius of each vertex by performing
multiple parallel BFS’s from a small sample of
vertices [56].

Table IV
EFFECT OF OUR OPTIMIZATION ON THE ORIGINAL LIGRA

IMPLEMENTATION FOR DIFFERENT APPLICATIONS. PR APPLIES
PULL-BASED COMPUTATIONS WHEREAS SSSP APPLIES PUSH-BASED
COMPUTATIONS THROUGHOUT THE EXECUTION; THE REST OF THE

APPLICATIONS SWITCH BETWEEN PULL OR PUSH BASED ON A NUMBER
OF ACTIVE VERTICES IN A GIVEN ITERATION.

Application Merging opportunity? Speed-up
BC No -

SSSP Yes 3-8%
PR Yes 40-52%

PRD Yes 14-49%
Radii No -

We obtained the source code for the graph applications
from Ligra [43] and applied a simple data-structure
optimization to improve locality in the baseline
implementation as follows. As explained in Sec. II-C, graph
applications exhibit irregular accesses for the Property Array,
with applications potentially maintaining more than one such
array. When multiple Property arrays are used, elements
corresponding to a given vertex may need to be sourced
from all of the arrays. We merge these arrays to induce
spatial locality, which reduces number of misses, and in
turn, improves performance on all datasets for PR, PRD and
SSSP (see Table IV). We use the optimized implementation
of these three applications as a stronger baseline for our
evaluation. The optimized applications are available at
https://github.com/faldupriyank/grasp. We do note that
GRASP does not mandate merging arrays as GRASP design
can accommodate multiple arrays. Nevertheless, merging
does reduce the number of arrays needed to be tracked.

For PRD, two versions of the algorithm are provided
with Ligra: push-based and pull-push. In the baseline
implementation, the push-based version is faster. However,
after merging the Property Arrays, the pull-push variant
performs better, and is what we use for the evaluation.

B. Methodology for Software Evaluation

Server Configuration: Native experiments (Sec. V-C) are
performed on a dual-socket server with two Broadwell based

Table V
PROPERTIES OF THE GRAPH DATASETS. TOP FIVE DATASETS ARE USED IN

THE MAIN EVALUATION WHEREAS THE BOTTOM TWO DATASETS ARE
USED AS ADVERSARIAL DATASETS.

Dataset Vertex Count Edge Count Avg. Degree
LiveJournal (lj) [38] 5M 68M 14

PLD (pl) [4] 43M 623M 15
Twitter (tw) [54] 62M 1,468M 24

Kron (kr) [32] 67M 1,323M 20
SD1-ARC (sd) [4] 95M 1,937M 20
Friendster (fr) [23] 64M 2,147M 33
Uniform (uni) [62] 50M 1,000M 20

Intel Xeon CPU E5-2630 [25], each with 10 cores clocked
at 2.2GHz and a 25MB shared LLC. Hyper-threading is
enabled, exposing 40 hardware execution contexts across
both CPUs. The machine has 128GB of DRAM provided by
eight DIMMs clocked at 2133MHz. All experiments were
run using 40 threads, and we pinned the software threads
to avoid performance variations due to OS scheduling. To
further reduce sources of performance variation, we also
disable the turbo boost DVFS features. Finally, we enabled
Transparent Huge Pages to reduce TLB misses.

Evaluation of software reordering techniques are carried
out on the server mentioned above. We report the performance
speed-up over the entire application runtime (including
reordering cost) but exclude the graph loading time from the
disk. For iterative applications, PR and PRD, we run them
until convergence and consider the runtime over all iterations.
For root-dependent traversal applications, SSSP and BC, we
run them from eight different root vertices for each input
dataset and consider the runtime over all eight traversals.
Finally, we run six executions for each application-dataset
pair and report the geometric mean of the five trials, excluding
the timing of the first trial to allow the caches to warm up.
We note that runtime is relatively stable across executions; for
each reported datapoint, coefficient of variation is below 2%.

Reordering Techniques: We evaluate the following
reordering techniques and use the source code for skew-
aware techniques from https://github.com/faldupriyank/dbg
and for Gorder from https://github.com/datourat/Gorder.
Sort reorders vertices in the memory space by sorting them
in the descending order of their degree.
HubSort [19] segregates hot vertices in a contiguous region
by assigning them a continuous range of vertex IDs in
their descending order of degree. In doing so, Hub Sorting
essentially sorts all hot vertices, while largely preserving
structure for the cold vertices.
DBG [2], unlike Sort and HubSort, does not rely on sorting
to segregate hot vertices. Instead, DBG coarsely partitions all
vertices into a small number of groups based on their degree.
Similar to Sort and HubSort, DBG is effective at improving
spatial locality; however, unlike the other two techniques,
DBG is able to largely preserve the existing graph structure.
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Table VI
PARAMETERS OF THE SIMULATED SYSTEM FOR EVALUATION OF THE

HARDWARE SCHEMES.

Core OoO @ 2.66GHz, 4-wide front-end

L1-I/D Cache 4/8-ways 32KB, 4 cycles access latency
stride-based prefetchers with 16 streams

L2 Cache Unified, 8-ways 256KB, 6 cycles access latency

L3 Cache 16-ways 16MB NUCA (2MB slice per core),
10 cycles bank access latency

NOC Ring network with 2 cycles per hop
Memory 50ns latency, 2 on-chip memory controllers

Gorder [30] is evaluated as a representative of complex
techniques. As Gorder is only available in a single-thread
implementation, while reporting the net runtime of Gorder for
a given dataset, we optimistically divide the reordering time
by 40 (maximum number of threads supported on the server)
to provide a fair comparison with skew-aware techniques
whose reordering implementation is fully parallelized.

C. Methodology for Hardware Evaluation

Simulation Infrastructure: We use the Sniper [37] simulator
modeling 8 OoO cores. Table VI lists the parameters of the
simulated system. The applications are evaluated in a multi-
threaded mode with 8-threads.

We find that the graph applications spend significant
fraction (86% on average in our evaluations) of time in
push-based iterations for SSSP or pull-based iterations for
all other evaluated applications. Thus, we simulate the
Region of Interest (ROI) covering only push- or pull-based
iterations (whichever one dominates) for the respective
applications. Because simulating all iterations of a graph-
analytic application in a detailed microarchitectural simulator
is prohibitive, time-wise, we instead simulate one iteration
that has the highest number of active vertices. To validate
the soundness of our methodology, we also simulated one
more randomly chosen iteration for each application-dataset
pair with at least 20% of vertices active and observed trends
similar to the ones reported in the paper.

Hardware Cache Management Schemes: We evaluate
GRASP and compare it with the state-of-the-art thrash-
resistant cache management schemes described below.
RRIP [52] is the state-of-the-art lightweight scheme that
does not depend on history-based learning. RRIP is the most
appropriate comparison point given that GRASP builds upon
RRIP as the base scheme (Sec. III-C). We implement RRIP
(specifically, DRRIP) based on the source code from the
cache replacement championship (CRC1) [50] for RRIP, and
use a 3-bit counter per cache block. We use RRIP as a high-
performance baseline and report speed-up for all hardware
schemes over the RRIP baseline (except for the studies in
Sec V-D that use LRU baseline).
Signature-based Hit Predictor (SHiP) [49] is the state-of-
the-art insertion policy which builds on RRIP [52]. Due to
the shortcomings of PC-based reuse correlation for graph

applications as explained in Sec. II-F, we evaluate a SHiP-
MEM variant that correlates a block’s reuse to the block’s
memory region. We evaluate 16KB memory regions as in the
original proposal. The predictor table is provisioned with an
unlimited number of entries to assess the maximum potential
of the scheme. Each table entry consists of a 3-bit saturating
counter that tracks the re-reference behavior of cache blocks
of the memory region associated with that entry.
Hawkeye [26] is the state-of-the-art cache management
scheme and winner of the cache replacement championship
(CRC2) [11]. Hawkeye trains its predictor table by applying
Belady’s MIN algorithm on past LLC accesses to infer block’s
cache friendliness. We use the source code from the CRC2 for
Hawkeye that improves upon the prefetcher-agnostic design
of Hawkeye from [26]. We appropriately scale the number of
sampling sets and predictor table entries for a 16MB cache.
Leeway [10] is a history-based cache management scheme
that applies dead block predictions based on a metric called
Live Distance, which conservatively captures the reuse
interval of a cache block. We use the most recent version
of the source code for Leeway from https://github.com/
faldupriyank/leeway. We appropriately scale the number of
sampling sets and predictor table entries for a 16MB cache.
XMem [7] is a pinning-based scheme, originally proposed
for algorithms that benefit from cache tiling. A cache block,
once pinned, cannot be evicted until explicitly unpinned by
the software, usually done when the processing of a tile is
complete. In the original proposal, XMem reserves 75% of
LLC capacity to pin tile data whereas the remaining capacity
is managed by the base replacement scheme for the rest of
the data. In this work, we explore four configurations of
XMem, labeled PIN-X, where X refers to the percentage
(25%, 50%, 75% or 100%) of LLC capacity reserved for
pinning. We adopt XMem design for graph analytics and
identify the cache blocks from the high reuse region that
benefit from pinning using the GRASP interface. Finally,
XMem requires an additional 1-bit for every cache block
to identify whether a cache block is pinned, along with an
additional mechanism to track how much of the capacity is
used by the pinned cache blocks at any given time.
GRASP is the proposed domain-specialized cache
management scheme for graph analytics. We instrument
the applications to communicate the address bounds of the
Property Arrays to the simulated GRASP hardware. For
each evaluated application, we needed to instrument at most
two arrays. Finally, GRASP uses RRIP as the base cache
scheme with a 3-bit saturating counter and does not add any
further storage to per-block metadata.

V. EVALUATION

We first evaluate hardware cache management schemes
on top of a skew-aware software reordering technique
(Sec. V-A & V-B). Due to long simulation time, evaluating
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Figure 5. LLC miss reduction for GRASP and state-of-the-art history-based cache management schemes over the RRIP baseline.

-14 -12 -15 -17 -16 -15-14 -13 -12 -25 -16 -30 -20 -13 -24 -16 -30 -20 -18 -17 -21 -16

BC SSSP PR PRD Radii GM

lj pl tw kr sd lj pl tw kr sd lj pl tw kr sd lj pl tw kr sd lj pl tw kr sd all
-10

-5

0

5

10

S
p

e
e

d
-u

p
 (

%
)

SHIP-MEM Hawkeye Leeway GRASP

Figure 6. Speed-up for GRASP and state-of-the-art history-based cache management schemes over the RRIP baseline.

all hardware schemes on top of all four software reordering
techniques would be prohibitive. Thus, without loss of
generality, we evaluate hardware schemes on top of DBG,
which consistently outperforms other reordering techniques
(Sec. V-C). In Sec. V-C, we evaluate GRASP with other
reordering techniques to show GRASP’s generality.

A. History-based Predictive Schemes

In this section, we compare GRASP with the state-of-the-
art hardware schemes, SHiP-MEM [49], Hawkeye [26] and
Leeway [10]. Prior cache management proposals typically
used LRU as the baseline, which is known to be inefficient
against thrashing access patterns. Thus, we use RRIP, the
state-of-the-art history-agnostic caching scheme as a strong
baseline. Finally, we use DBG as the software baseline;
thus, all speed-ups reported in this section are over and
above DBG.

Miss reduction: Fig. 5 shows the miss reduction over the
RRIP baseline. GRASP consistently reduces misses on all
datapoints, eliminating 6.4% of LLC misses on average
and up to 14.2% in the best case (on lj dataset for the
Radii application). The domain-specialized design allows
GRASP to accurately identify the high-reuse working set
(i.e., hot vertices), which GRASP is able to retain in the
cache through its specialized policies, effectively exploiting
the temporal reuse.

Among prior techniques, Leeway is the only technique
that reduces misses, albeit marginal, with an average miss
reduction of 1.1% over the RRIP baseline. The other two
techniques are not effective for graph applications, with SHiP-
MEM and Hawkeye increasing misses across datapoints, with
an average miss reduction of -4.8% and -22.7%, respectively,
over the baseline. This is a new result as prior works show
that Hawkeye and SHiP-MEM outperform RRIP on a wide
range of applications [26, 49]. The result indicates that the

learning mechanisms of the state-of-the-art domain-agnostic
schemes are deficient in retaining the high-reuse working
set for graph applications, which ends up hurting application
performance as discussed next.

Application speed-up: Fig. 6 shows the speed-up for
hardware schemes over the RRIP baseline. Overall,
performance correlates well with the change in LLC misses;
GRASP consistently provides a speed-up across datapoints
with an average speed-up of 5.2% and up to 10.2% in the
best case (on pl dataset for the SSSP application) over the
baseline. When compared to the same baseline, SHiP-MEM
and Hawkeye consistently cause slowdown with an average
speed-up of -5.5% and -16.2%, respectively whereas Leeway
yields a marginal speed-up of 0.9%. Finally, when compared
to prior works directly, GRASP yields 4.2%, 5.2%, 11.2%
and 25.5% average speed-up over Leeway, RRIP, SHiP-MEM
and Hawkeye, respectively, while not causing slowdown on
any datapoints.

We also evaluated prior schemes without applying any
vertex reordering. Leeway, SHiP-MEM and Hawkeye yield an
average speed-up of -0.8%, -5.7% and -14.8%, respectively,
over RRIP on the datasets with no reordering. However,
detailed study is omitted due to space constraints.

Dissecting Performance of SHiP-MEM: SHiP-MEM is a
history-based scheme that predicts reuse of a cache block
based on the fine-grained memory region, to which it belongs.
Thus, SHiP-MEM relies on a homogeneous cache behavior
for all blocks belonging to the same memory region. In
theory, DBG (or another skew-aware technique) should allow
SHiP-MEM to identify memory regions containing hottest of
vertices (corresponding to High Reuse Region from Fig. 3(c)).
In practice, irregular access patterns to these regions and
thrashing by cache blocks from other regions impede learning.
Thus, despite leveraging software and utilizing a sophisticated
storage-intensive prediction mechanism in hardware, SHiP-

9



MEM underperforms domain-specialized GRASP.

Dissecting Performance of Hawkeye: Hawkeye is the state-
of-the-art history-based scheme that uses PC-based reuse
correlation to predict whether a cache block has a cache-
friendly or cache-averse behavior based on past LLC accesses.
Thus, Hawkeye fundamentally relies on homogeneous cache
behavior for all blocks accessed by the same PC address.
When Hawkeye is employed for graph analytics, Hawkeye
struggles to learn the behavior of cache blocks in the Property
Array as hot vertices exhibit cache-friendly behavior while
cold vertices exhibit cache-averse behavior, yet all vertices
are accessed by the same PC address. To make matters worse,
if a block incurs a hit and Hawkeye predicts the PC making
the access as cache-averse, the cache block is prioritized
for eviction instead of promoting the block to MRU as is
done in the baseline. Thus, Hawkeye performs even worse
than the baseline for all combinations of graph applications
and datasets. While not evaluated, other PC-based schemes
(e.g., [49, 53]) that rely on a PC-based correlation would
also struggle on graph applications for the same reason.

Dissecting Performance of Leeway: Leeway, like Hawkeye,
also relies on a PC-based reuse correlation, and thus is not
expected to provide significant speed-ups for graph-analytics.
However, Leeway successfully avoids the slowdown on 10
of the 25 datapoints and significantly limits the slowdown on
the rest of the datapoints (max slowdown of 2.1% vs 13.6%
for SHiP-MEM and 30.2% for Hawkeye). The reasons why
Leeway perfroms better than prior PC-based schemes can be
attributed to (1) the conservative nature of the Live Distance
metric, which Leeway uses to determine if a cache block
is dead, and (2) adaptive reuse-aware policies that control
the rate of predictions based on the observed access patterns.
Because of these two factors, performance of Leeway remains
close the the base replacement scheme in the presence of
variability in cache blocks reuse behavior.

Dissecting Performance of GRASP: Performance of GRASP
over its base scheme, RRIP, can be attributed to three features:
software hints, insertion policy and hit-promotion policy.
Fig. 7 shows the performance impact due to each of these
features. RRIP inserts every new cache block at one of the
two positions (as specified in the Default Reuse Hint of
Table II); a cache block is inserted at the LRU position
with a high probability or near the LRU position with a low
probability. RRIP+Hints is identical to RRIP except for how a
new cache block is assigned these positions. RRIP+Hints uses
software hints (similar to GRASP) to guide the insertion.
A cache block with High-Reuse hint is inserted near the
LRU position and all other blocks are inserted at the LRU
position. GRASP (Insertion-Only) refers to the scheme that
applies insertion policy of GRASP as specified in Table II but
the hit-promotion policy is unchanged from RRIP. Finally,
GRASP (Hit-Promotion) refers to the scheme that applies hit-
promotion policy of GRASP along with its insertion policy,
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Figure 7. Impact of GRASP features on performance.

which is essentially the full GRASP design. Note that each
successive scheme adds a new feature on top of the features
incorporated by the previous ones. For example, GRASP
(Insertion-Only) features a new insertion policy in addition
to the software hints.

As the figure shows, RRIP+Hints yields an average speed-
up of 3.3% over probabilistic RRIP, confirming the utility of
software hints. GRASP (Insertion-Only) further increases
performance by yielding an average speed-up of 5.0%.
GRASP (Insertion-Only) provides additional protection to
the High-Reuse cache blocks in comparison to RRIP+Hints
by inserting High-Reuse cache blocks directly at the
MRU position. Finally, GRASP (Hit-Promotion) yields an
average speed-up of 5.2%. Difference between GRASP (Hit-
Promotion) and GRASP (Insertion-Only) is marginal as the
hit-promotion policy of GRASP has negative effect on slightly
less than half the datapoints. The results are inline with the
observations from prior work that showed that the value-
addition of hit-promotion policies over insertion policies is
low in presence of cache thrashing [22].

Summary: Hardware cache management is an established
difficult problem, which is reflected in the small average
speed-ups (usually 1%-5%) achieved by state-of-the-art cache
management schemes over the prior best schemes [5, 26,
28, 29, 49, 52, 53]. Our work shows that graph applications
present a particularly challenging workload for these schemes,
in many cases leading to significant performance slowdowns.
In this light, GRASP is quite successful in improving
performance of graph applications by yielding an average
speed-up of 5.2% (max 10.2%) while not causing slow-
down on any datapoint. Moreover, unlike state-of-the-art
schemes, GRASP achieves this without requiring storage-
intensive metadata.

B. Pinning-based Schemes

In this section, we show the benefit of flexible GRASP
policies over pinning-based rigid approaches. We first present
the results on the high-skew datasets and then on the low-/no-
skew datasets to test their resilience in adversarial scenarios.

High-skew datasets: Fig. 8 shows speed-ups for four XMem
configuration (PIN-25, PIN-50, PIN-75 and PIN-100) and
GRASP over the RRIP baseline on high-skew datasets.
GRASP outperforms all XMem configurations on 24 of 25
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Figure 9. Speed-up over the RRIP baseline on fr, a low-skew dataset and
uni, a no-skew dataset.

datapoints with an average speed-up of 5.2%. In comparison,
PIN-25, PIN-50, PIN-75 and PIN-100 yield 0.4%, 1.1%,
2.0% and 2.5%, respectively.

PIN-100 outperforms the other three XMem configurations
as for those configurations, a significant fraction of the
capacity can still be occupied by cold vertices, which causes
thrashing in the unreserved capacity. Nevertheless, PIN-100
causes slowdown on many datapoints (e.g., for BC, PR and
PRD applications on tw and sd datasets). Moreover, PIN-100
cannot capitalize on reuse from Moderate Reuse Region as
pinned vertices cannot be evicted even when they stopped
exhibiting reuse. Thus, PIN-100 provides only a marginal
speed-up on many datapoints (e.g., Radii application on lj,
tw and kr datasets).

PIN-75 and PIN-100, two best-performing XMem
configurations, while yield only marginal speed-ups, still
outperform the state-of-the-art history-based schemes, SHiP-
MEM, Leeway and Hawkeye (Figs. 6 & 8), which confirms
that utilizing software knowledge for cache management is a
promising direction over storage-intensive domain-agnostic
design for the challenging access patterns of graph analytics.

Low-/No-skew datasets: Next, we evaluate the robustness of
GRASP and pinning-based schemes (PIN-75 and PIN-100)
for adversarial datasets with low-/no-skew. Naturally, these
schemes are not expected to provide a significant speed-up in
the absence of high skew; however, a robust scheme would
reduce/avoid the slowdown. Fig. 9 shows the speed-up for
a low-skew dataset fr and a no-skew dataset uni for these
schemes over the RRIP baseline.

GRASP provides a net speed-up on 9 out of 10 datapoints
even for low-/no-skew datasets. On the low-skew dataset fr,
GRASP yields a speed-up between 0.4% and 4.3% whereas
on the no-skew dataset uni, GRASP yields a speed-up
between -0.1% and 2.4%. In contrast, PIN-75 and PIN-100
cause slowdown on almost all datapoints.

In the absence of high skew, cache blocks belonging to
the High Reuse Region do not dominate the overall LLC
accesses. Thus, pinning these blocks throughout the execution
is counter-productive for PIN-75 and PIN-100. In contrast,
GRASP adopts a flexible approach, wherein the high priority
cache blocks from High Reuse Region can make way for
other blocks that observe some reuse, as needed. Thus,
GRASP successfully limits slowdown, and even provides
reasonable speed-up on some datapoints, for such highly
adversarial datasets.

Finally, combining results on all 7 datasets (5 datasets from
Fig. 8 and 2 from Fig. 9), GRASP yields an average speed-
up of 4.1%. In comparison, PIN-75 and PIN-100 provide
a marginal speed-up of only 0.5% and 0.1%, respectively.
PIN-75 and PIN-100 cause slowdown of up to 5.3% and
14.2% whereas max slowdown for GRASP is only 0.1%.

C. Reordering Techniques and GRASP

Thus far, we evaluated GRASP on graph applications
processing datasets that are reordered using DBG. In this
section, we compare performance of vertex reordering
techniques, followed by an evaluation of GRASP on top
of these techniques, demonstrating GRASP’s generality.

Effectiveness of Reordering Techniques: In this section,
we first show that skew-aware techniques can improve
performance of graph applications even as a standalone
software optimization, thus justifying their existence. We
evaluate three skew-aware techniques – Sort, HubSort [19]
and DBG [2] – and a complex vertex reordering technique
– Gorder [30]. We perform these studies on a real machine
with 40 hardware threads as mentioned in Sec. IV-B.

Fig. 10(a) shows the speed-up for these existing software
techniques after accounting for their reordering cost over the
baseline with no reordering. Among skew-aware techniques,
all techniques are effective on largest of the datasets (e.g., kr
and sd) and long iterative applications (e.g., PR). As these
techniques rely on a low cost approach for reordering, the
reordering cost is amortized quickly when the application
runtime is high, making these solutions practically attractive.
Averaged across all application and dataset pairs, skew-aware
techniques yield a net speed-up of 2.6% for Sort, 0.6% for
HubSort and 10.8% for DBG.

Unsurprisingly, Gorder causes significant slowdown on all
datapoints due to its large reordering cost, yielding an average
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Figure 10. Reordering Techniques + GRASP: the left group shows speed-up
for a dataset across all applications while the right group shows speed-up
for an application across all datasets.

speed-up of -85.4%. Thus, Gorder is less practical when
compared to simple yet effective skew-aware techniques,
corroborating prior work [2].

Generality of GRASP: As software vertex reordering
techniques offer different trade-offs in preserving graph
structure and reducing reordering cost, it is important for
GRASP to not be coupled to any one software technique. In
this section, we evaluate GRASP with different reordering
techniques, both skew-aware and complex ones. While skew-
aware techniques are readily compatible with GRASP, Gorder
requires a simple tweak as follows.

After applying Gorder on an original dataset, we apply
DBG to further reorder vertices, which results in a vertex
order that retains most of the Gorder ordering while also
segregating hot vertices in a contiguous region, making
Gorder compatible with GRASP.

Fig. 10(b) shows the speed-up for GRASP over RRIP
on top of the same reordering technique as the baseline.
As with DBG, GRASP consistently provides a speed-up
across datasets and applications on top of other reordering
techniques as well. On average, GRASP yields a speed-up
of 4.4%, 4.2%, 5.2% and 5.0% on top of Sort, HubSort,
DBG and Gorder, respectively. The result confirms that
GRASP complements a broad class of existing software
reordering techniques.

D. GRASP vs Optimal Replacement (OPT)

In this section, we compare GRASP with Belady’s optimal
replacement policy (OPT) [72]. As OPT requires the perfect
knowledge of the future, we generate the traces of LLC
accesses (up to 2 billion for each trace) for the applications
processing graph datasets reordered using DBG on the
simulation baseline configuration specified in Sec. IV-C. We
apply OPT on each trace for five different LLC sizes – 1MB,

Table VII
PERCENTAGE OF MISSES ELIMINATED OVER LRU FOR DIFFERENT

LLC SIZE.

Scheme 1MB 4MB 8MB 16MB 32MB
RRIP 15.9% 16.4% 15.7% 15.2% 16.2%
GRASP 15.4% 17.0% 18.1% 19.7% 21.2%
OPT 27.5% 32.2% 33.3% 34.3% 34.5%

0

10

20

30

40

lj pl tw kr sd  BC SSSP PR PRDRadii   GM

%
 M

is
s
e

s
 E

lim
in

a
te

d RRIP GRASP OPT

Figure 11. Percentage of misses eliminated over LRU.

4MB, 8MB, 16MB and 32MB – to obtain the minimum
number of misses for a given cache size and report the
percentage of misses eliminated over LRU on the same
LLC size.

Miss reduction on 16MB LLC: Fig. 11 shows the results
for OPT along with RRIP and GRASP for 16MB LLC
size. OPT eliminates 34.3% of total misses over LRU. In
comparison, GRASP eliminates 19.7% of misses (vs 15.2%
for RRIP). Overall, GRASP is 57.5% effective in eliminating
misses when compared to OPT, an offline technique with
perfect knowledge of the future. While GRASP is the most
effective among the online techniques, the results also show
that the remaining opportunity (difference between OPT and
GRASP) is still significant, which warrants further research
in this direction.

Sensitivity of GRASP to LLC size: Table VII shows the
average percentage of misses eliminated by RRIP, GRASP
and OPT for different LLC sizes over LRU. With the increase
in LLC size, GRASP becomes more effective at eliminating
misses over LRU (average miss reduction of 15.4% for 1MB
vs 21.2% for 32MB). This is expected, as the larger LLC
size allows GRASP to provide preferential treatment to more
hot vertices. In general, yet larger LLC sizes are expected to
benefit even more from GRASP until the LLC size becomes
large enough to accommodate all hot vertices.

VI. RELATED WORK

Shared-memory graph frameworks: A significant amount of
research has focused on designing high performance shared-
memory frameworks for graph applications. Majority of these
frameworks are vertex-centric [32, 35, 42, 43, 46, 55] and use
CSR or its variants to encode a graph, making GRASP readily
compatible with these frameworks. More generally, GRASP
requires classification of only the Property Array(s), making
it independent of the specific data structure used to represent
the graph, which further increases compatibility across the
spectrum of frameworks. Thus, we expect GRASP to reduce
misses across frameworks, though absolute speed-ups will
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likely vary.

Distributed-memory graph frameworks: these frameworks
can also benefit from GRASP. For example, PGX [33] and
PowerGraph [45] proposed duplicating high degree vertices in
the graph partitions to reduce high communication overhead
across computing nodes. These optimizations are largely
orthogonal to GRASP cache management. As such, GRASP
can be applied to distributed graph processing by caching
high-degree vertices within each nodes’s LLC to improve
node-level cache behavior.

Streaming graph frameworks: In this work, we have
assumed that graphs are static. In practice, graphs may evolve
over time and a stream of graph updates (i.e., addition or
removal of vertices or edges) are interleaved with graph-
analytic queries (e.g., computing pagerank of vertices or
computing shortest path from different root vertices). For
such deployment settings, a CSR-based structure is infeasible.
Instead, researchers have proposed various data structures
for graph encoding that can accommodate fast graph updates
and allow space-efficient versioning [1, 34, 44]. Meanwhile,
each graph query is performed on a consistent view (i.e.,
static snapshot) of a graph. For example, Aspen [1], a
recent graph-streaming framework, uses Ligra (a static graph-
processing framework) in the back-end to run graph-analytic
queries. Thus, the observations made in this paper regarding
cache thrashing due to the irregular access patterns of the
Property Array, as well as skew-aware reordering and GRASP
being complementary in combating cache thrashing, are also
relevant for dynamic graphs.

For static graphs, vertex reordering cost is amortized over
multiple graph traversals for a single graph query (as shown
in Fig. 10(a)). However, for dynamic graphs, reordering
cost can be further amortized over multiple graph queries.
Intuitively, addition or deletion of some vertices or edges in a
large graph would not lead to a drastic change in the degree
distribution, and thus unlikely to change which vertices are
classified hot in a short time window. Therefore, skew-aware
reordering can be applied at periodic intervals to improve
cache behavior after a series of updates has been made to a
graph, amortizing reordering cost over multiple graph queries.

Software-hints through profiling: Prior works have proposed
ISA changes by embedding load/store instructions with
reuse hints to improve cache replacement decisions [40,
61, 63, 64, 67]. These works perform program analysis
via an additional compiler pass and/or runtime profiling
to identify data that are unlikely to be referenced again.
Compiler uses a custom memory instruction tagged with a
low-reuse hint to access such data so that the cache hardware
can prioritize the associated cache block for eviction. Such
mechanisms, however, are largely effective for only those
programs that are dominated by loops with regular access
patterns. For example, Pacman [40] fails when a loop index
variable and the reuse distance for the element accessed in

a given loop iteration does not exhibit a linear correlation
(e.g., indirect memory accesses, dominant type of memory
accesses for graph analytics). In contrast, GRASP leverages
vertex placement in memory after skew-aware reordering
pass to correctly learn high-reuse vertices, that too without
requiring custom instructions or a priori program analysis.

Hardware prefetchers: Modern processors typically employ
prefetchers that target stride-based access patterns and thus
are not amenable to graph analytics. Researchers have
proposed custom prefetchers at L1-D that specifically target
indirect memory access patterns of graph analytics [20,
36]. Nevertheless, prefetching can only hide memory access
latency. Unlike cache replacement, prefetching cannot reduce
memory bandwidth pressure or DRAM energy expenditure.
Indeed, prior work observes that even a 100% accurate
prefetcher for graph analytics is bottlenecked by memory
bandwidth [36]. In contrast, GRASP reduces bandwidth
pressure by reducing LLC misses, and thus is complementary
to prefetching.

Traversal scheduling: Mukkara et al. proposed HATS [6], a
hardware-accelerator implementing locality-aware scheduling
to exploit cache locality for graphs exhibiting community
structure. While effective, it requires intrusive hardware
changes, including a specialized hardware unit with each
core and an ISA change on the host core. In contrast,
GRASP requires a minimal hardware interface and trivial
changes to the cache policy while largely utilizing the existing
cache hardware.

Graph slicing: Researchers have proposed slicing, a software
optimization that slices the graph in LLC-size partitions and
processes one partition at a time to reduce irregular memory
accesses. Specifically, Graphicionado [24] uses slicing to fit
a working set into a large 64MB on-chip scratchpad while
Zhang et al. use CSR Segmenting to break the vertices into
segments that fit in LLC [19].

While generally effective, slicing has two important
limitations. First, it requires invasive framework changes
to form the slices (which may include replicating vertices to
avoid out-of-slice accesses) and manage them at runtime.
Secondly, for a given cache size, the number of slices
increases with the size of the graph, resulting in greater
processing overheads in creating and maintaining partitions
for larger graphs.

In comparison, GRASP is a hardware scheme that
intelligently leverages lightweight software support. GRASP
requires minimal changes in a graph framework and does
not require any changes in the graph algorithms. Having said
that, GRASP is complementary to slicing; by preserving the
critical working set in the cache (i.e., hot vertices), GRASP
could be used to improve the performance of Graphicionado
to reduce the number of slices by making intra-slice cache
misses infrequent.
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VII. CONCLUSION

This work explores how hardware cache management
should be designed to tackle cache thrashing at LLC for
graph-analytic applications. We show that state-of-the-art
cache management schemes are deficient in presence of
cache thrashing stemming from irregular access patterns
of graph applications processing large graphs. In response,
we introduce GRASP – specialized cache management for
LLC for graph analytics on power-law graphs. GRASP’s
specialized cache policies exploit the high reuse inherent
in hot vertices while retaining the flexibility to capture
reuse in other cache blocks. GRASP leverages existing
software reordering optimizations to enable a lightweight
interface that allows hardware to pinpoint hot vertices amidst
irregular access patterns. In doing so, GRASP avoids the need
for a storage-intensive prediction mechanism or additional
metadata storage in the LLC. GRASP requires minimal
hardware support, making it attractive for integration into
a commodity server processor to enable acceleration for
the domain of graph analytics. Finally, GRASP delivers
consistent performance gains on high-skew datasets, while
preventing slowdowns on low-skew datasets.
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[41] D. A. Jiménez. “Insertion and promotion for tree-based PseudoLRU
last-level caches”. In: International Symposium on Microarchitecture
(MICRO). 2013.

[42] D. Nguyen, A. Lenharth, and K. Pingali. “A Lightweight
Infrastructure for Graph Analytics”. In: International Symposium on
Operating Systems Principles (SOSP). 2013.

[43] J. Shun and G. E. Blelloch. “Ligra: A Lightweight Graph Processing
Framework for Shared Memory”. In: International Symposium on
Principles and Practice of Parallel Programming (PPoPP). 2013.

[44] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. “Stinger: High
performance data structure for streaming graphs”. In: International
Conference on High Performance Extreme Computing (HPEC). 2012.

[45] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
“PowerGraph: Distributed Graph-parallel Computation on Natural
Graphs”. In: International Conference on Operating Systems Design
and Implementation (OSDI). 2012.

[46] A. Kyrola, G. Blelloch, and C. Guestrin. “GraphChi: Large-scale
Graph Computation on Just a PC”. In: International Conference on
Operating Systems Design and Implementation (OSDI). 2012.

[47] I. Stanton and G. Kliot. “Streaming Graph Partitioning for Large
Distributed Graphs”. In: International Conference on Knowledge
Discovery and Data Mining (KDD). 2012.

[48] U. Kang and C. Faloutsos. “Beyond ‘Caveman Communities’: Hubs
and Spokes for Graph Compression and Mining”. In: International
Conference on Data Mining (ICDM). 2011.

[49] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C.
Steely Jr., and J. Emer. “SHiP: Signature-based Hit Predictor
for High Performance Caching”. In: International Symposium on
Microarchitecture (MICRO). 2011.

[50] A. R. Alameldeen, A. Jaleel, M. K. Qureshi, and J. Emer. JILP
Workshop on Cache Replacement Championship (CRC). http://www.
jilp.org/jwac-1. 2010.

[51] H. Gao and C. Wilkerson. “A dueling segmented LRU replacement
algorithm with adaptive bypassing”. In: In JILP Workshop
on Computer Architecture Competitions: Cache Replacement
Championship (CRC). 2010.

[52] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer. “High
Performance Cache Replacement Using Re-reference Interval
Prediction (RRIP)”. In: International Symposium on Computer
Architecture (ISCA). 2010.

[53] S. M. Khan, Y. Tian, and D. A. Jiménez. “Sampling Dead Block
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