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Abstract

The large working set of instructions in server-side applica-

tions causes a significant bottleneck in the front-end, even for

high-performance processors equipped with fetch-directed

instruction prefetching (FDIP). Prefetchers specifically de-

signed for server scenarios typically rely on a record-and-

replay mechanism that exploits the repetitiveness of instruc-

tion sequences. However, the efficacy of these techniques is

compromised by discrepancies between actual and predicted

control flows, resulting in loss of coverage and timeliness.

This paper proposes Hierarchical Prefetching, a novel ap-

proach that tackles the limitations of existing prefetchers.

It identifies common coarse-grained functionality blocks

(called Bundles) within the server code and prefetches them

as a whole. Bundles are significantly larger than typical

prefetch targets, encompassing tens to hundreds of kilobytes

of code. The approach combines simple software analysis

of code for bundle formation and light-weight hardware

for record-and-replay prefetching. The prefetcher requires
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under 2KB of on-chip storage by keeping most of the meta-

data in main memory. Experiments with 11 popular server

workloads reveal that Hierarchical Prefetching significantly

improves miss coverage and timeliness over prior techniques,

achieving a 6.6% average performance gain over FDIP.
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1 Introduction

The front-end bottleneck is a long-standing problem for

server processors stemming from complex software stacks

in server workloads that encompass intricate application

logic, extensive use of libraries, language runtimes, and ker-

nel modules. The result is instruction working sets that far

exceed the capacity of the instruction cache, often even the

L2 cache [36, 42, 43, 57]. I-Cache misses caused by the large
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instruction working set result in significant front-end stalls

that compromise performance. Moreover, studies [17, 34, 38]

indicate that the growth rate of instruction working sets in

commercial server deployments are growing fast, leading to

a continuous exacerbation of front-end issues.

Instruction prefetching is widely used to address front-

end issues in server processors. Fetch directed instruction

prefetching (FDIP) leverages existing branch predictionmech-

anisms to anticipate future instruction accesses [20, 25, 31,

36, 42, 43, 49], and has been widely adopted across main-

stream server chips [12, 20, 26, 31, 48]. But previous studies

have shown that FDIP’s effectiveness is significantly hin-

dered by BTB misses, which prevent the branch predictor

from discovering control flow discontinuities [25, 37, 43, 57].

Researchers have proposed techniques specifically aimed

at the front-end bottleneck in servers. These tend to rely

on some form of a record-and-replay mechanism and work

by identifying repeated instruction sequences or function

calls for recording and subsequent prefetching (aka replay-

ing) [14, 19, 21, 23, 35, 36, 40, 56]. The trigger for replaying

a particular sequence of instructions is typically an instruc-

tion address or a signature, such as a hash of several recent

function call addresses. For the sake of timeliness, some

approaches, such as EIP [50], attempt to identify the right

trigger for a subsequent miss, taking into account the latency

of each prefetch. These triggers effectively capture the local

contextual information, which may be sufficient to prefetch

a small number of upcoming cache blocks provided that the

control flow stays on the anticipated path. However, each

trigger may cause associated addresses from all historical

executions to be prefetched, causing inaccurate prefetches if

those prefetches are no longer useful. To avoid such inaccu-

racies, the prefetcher must detect changes in the execution

phase and only issue prefetches that align with the current

functional context.

Context switching can also prevent the prefetcher from

improving coverage and timeliness by simply increasing its

depth to deliver more likely-useful cache blocks. Our tests

indicate that the accuracy of these prefetchers [14, 21, 50]

rapidly declines as the prefetch depth increases, limiting

their ability to achieve further miss coverage. Thus, the short

lookahead of existing instruction prefetchers for servers is

a fundamental impediment to their efficacy.) Additionally,

these prefetchers have to store a significant amount of meta-

data on-chip to ensure both timeliness and coverage at lower

prefetch depth. Despite efforts to reduce the on-chip stor-

age overhead [14, 21, 23, 24, 35, 36, 40], the state-of-the-art

prefetchers [14, 21, 50] still requires 15KB-40KB of storage

per core.

The central premise of this work is that effective front-

end prefetching for server workloads needs to happen at a

coarser granularity than the one exploited by existing in-

struction prefetchers in order to maintain good coverage

and timeliness despite unpredictable variations in control

flow. Toward that end, we make a critical insight that server

applications exhibit high commonality at a global level that

can be exploited for prefetching.

Specifically, we find that server applications commonly

execute sequences of high-level functionalities, each of which

may span multiple functions at the code level. While the

sequence of functionalities for a given request type and/or

inputmay be difficult to predict, the individual functionalities

exhibit stable instruction working sets spanning 10s-100s of

KB of code. Each of these functionalities presents an excellent

target for coarse-grained prefetching, which is precisely the

opportunity that this paper identifies and exploits.

To capitalize on the observation above, this work proposes

Hierarchical Prefetching, a software/hardware cooperative

scheme to achieve high prefetch coverage, accuracy and

timeliness without profiling or programmer’s involvement.

Hierarchical Prefetching identifies the code sequences form-

ing high-level functionalities (referred to as Bundles) and

passes Bundle starting points to the hardware, which then

records the actual instruction working set of each Bundle

at runtime. Subsequently, when an instruction identified

as an entry point to a Bundle is encountered, the recorded

footprint of that Bundle is streamed into the I-Cache.

Bundles are large, over 10KB in size for the studied applica-

tions, and are prefetched non-speculatively; i.e., prefetching

starts only when an instruction tagged as an entry point to

the Bundle is committed. Crucially, prefetching is unaffected

by local control flow variation within a Bundle. If a cache

block fetched by the core is not in the Bundle’s recorded

footprint, the prefetcher does not take any corrective actions

(though the recorded footprint is updated for next time).

This ensures that the prefetcher can run far ahead of the

core within each Bundle’s execution and can deliver the vast

majority of needed cache blocks on time despite potential

variations in intra-Bundle control flow across executions.

Hierarchical Prefetching only emits prefetches for cache

blocks that were encountered in the most recent execution

of the same Bundle, ensuring that the prefetched content

aligns with the currently executing functionality, thereby

improving accuracy. Replaying only the blocks observed in

the most recent execution of the bundle also helps quickly

unlearn execution paths that only occur sporadically, further

improving accuracy.

The Bundle identification algorithm uses the static call

graph of the application to delineate the Bundles and identify

each Bundle’s entry point. The algorithm runs as part of the

linking process, which allows it to incorporate dynamically

linked libraries into the analysis. Our results indicate that

the algorithm is effective at forming Bundles, and there is a

high degree of similarity (over 80% at the cache block level)

between the successive reuses of a Bundle.
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Our design of the Hierarchical Prefetcher stores the in-

struction footprints of Bundles in main memory, requir-

ing merely 1.94KB of on-chip storage per core for record-

ing and replaying. A comprehensive evaluation shows that

the scheme is highly effective at eliminating instruction

cache misses, demonstrating better coverage and timeliness

compared to prior techniques. Because of that, Hierarchical

Prefetching improves the performance of a range of server

applications by 6.6% on average over FDIP.

To summarize, we make the following contributions:

• We show that existing prefetchers are compromised by

control flow variations between the recorded history and

runtime execution.

• We observe that server workloads feature coarse-grained

functionalities, which demonstrate high commonality across

executions and encompass 10s to 100s of KB of code.

• We introduce Hierarchical Prefetcher, which statically

identifies these coarse-grained functionalities in the code,

forming Bundles. At runtime, it performs bulk record-and-

replay prefetching at the Bundle level.

• Experiments on 11 popular server applications show that

with just 1.94KB of on-chip storage, Hierarchical Prefetch-

ing yields a 6.6% performance increase over FDIP by im-

proving prefetch coverage and timeliness against state-

of-the-art instruction prefetchers that achieve at most 4%

improvement while requiring tens of KB of on-chip stor-

age.

2 Background

2.1 BTB-directed Prefetching

FDIP [20, 25, 30, 31, 36, 42, 43, 49] leverages existing branch

prediction mechanisms to predict future accesses and per-

form prefetching, eliminating the need for substantial addi-

tional metadata overhead. FDIP utilizes a decoupled front-

end architecture where the future instruction addresses pre-

dicted by the branch predictor are pushed into the Fetch

Target Queue (FTQ), which is then used to issue prefetch

requests.

A key limitation of FDIP is its reliance on the BTB for

discovering upcoming branches, which can become compro-

mised due to limited BTB capacity. Another source of poten-

tial performance loss is the accuracy of the branch predictor.

Despite these limitations, FDIP has become the standard

front-end design for high-performance server CPUs [12, 20,

26, 31, 48] because of its low overhead. We use FDIP serves

as the baseline for all experiments of this paper.

2.2 Temporal Streaming Prefetching

The temporal prefetcher has been a predominant prefetching

technology to mitigate the front-end bottleneck in server ar-

chitectures over the past decade. Temporal prefetchers proac-

tively eliminate future instruction cache misses by recording

historical sequences of accesses or misses and replaying

them. TIFS [24] first applied this concept by recording se-

quences of misses. PIF [23] then made further improvements

by recording sequences of instruction accesses, demonstrat-

ing that the record and replay mechanism can eliminate most

misses. However, due to the need to record sufficient his-

torical sequences on chip, PIF introduced significant area

overhead, with a metadata budget reaching 200 KB per core.

Subsequent research [14, 35, 36] has focused on reducing

metadata overhead through various means. The state-of-the-

art MANA reduces the required on-chip metadata storage

to 15 KB by using cache structures to record history and

compressing trigger addresses.

Temporal prefetchers operate in a fine-grained manner.

Each prefetch stream (a set of instruction cache blocks) is

linked to a trigger address; when the trigger address is en-

countered at runtime, prefetching for the linked stream is

initiated. Our testing shows that the majority of the streams

are short, rarely exceeding 10 cache lines. Prior work has also

identified this limitation of temporal stream prefetchers [51].

2.3 Caller-callee Prefetching

Some prior works have suggested performing record and

replay prefetching at the granularity of function calls [13, 21,

40, 46] as a way of improving prefetch accuracy and reducing

metadata storage compared to temporal streaming.

CGP, one of the earliest works in this area, effectively

eliminates immediate post-function call I-Cache misses by

prefetching one function ahead each time. RDIP [40], a sub-

sequent study, leverages recent function call information to

offer performance comparable to PIF. Observing that the Re-

turn Address Stack (RAS) can reflect the current state of the

program to a certain extent, RDIP utilizes the hashes of the

top four entries of the RAS to generate a signature. Through-

out its execution, RDIP records misses that follow these

signatures and prefetches when they recur. This method is

metadata-intensive, requiring 60KB of storage per core.

EFetch [21] further enhances caller-callee prefetching for

event-driven applications by employing a more precise sig-

nature that combines three recent function calls with an

Event-ID. Once a new signature is generated, the next callee

function will be predicted and prefetched. EFetch achieves

performance surpassing both CGP and RDIP and requires

under 40KB of on-chip metadata.

Compared to temporal prefetchers, caller-callee prefetch-

ers record/replay at a coarser granularity of entire functions.

This helps caller-callee prefetchers achieve similar or bet-

ter performance with less metadata storage versus tempo-

ral prefetchers. However, given that they prefetch only one

callee at a time, and because the size of a typical function is

small, the lookahead of caller-callee prefetchers is limited,

which adversely affects their performance.

2.4 Correlating Prefetching

EIP [50] is a state-of-the-art instruction prefetcher and win-

ner of the IPC-1 instruction prefetching competition [3]. It is
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a correlating prefetcher that emphasizes prefetch timeliness

by entangling basic blocks that missed in the L1-I with an

instruction executed prior to the observed miss latency. A

cost-performance optimized EIP configuration uses a 4K-

entry entangle table, which requires 40KB of storage per

core [50].

2.5 Scenario-Based Prefetching

Some other studies are application-specific or scenario-

specific. STREX [16] and SLICC [15] leverage the repetitive-

ness of OLTP transactions for instruction reuse. PTask [33],

Jukebox [51] and Ignite [52] record and replay for appli-

cations with frequent system calls or serverless scenarios.

I-SPY [38], Ripple [39], Twig [37] and Thermometer [57]

require offline profiling.

3 Motivation

3.1 Understanding Application Characteristics

We explore opportunities to enhance prefetchers by studying

server application characteristics. Taking TiDB (PingCAP’s

open-source distributed SQL database [8]) as an example,

Figure 1 depicts its processing stages in the life cycle of a

typical SQL statement during TPC-C execution. For each

stage, the figure shows the average instruction working set

computed based on the number of accessed instruction cache

blocks during the execution of the stage.

Read Stage, 40KB

Dispatch Stage, 80KB

Compile Stage, 280KB

Exec Stage, 210KB

Finish Stage, 70KB

readPacket

handle

StmtExecute

handle

Query

handle

StmtPrepare

Compile

delete

Execution

insert

Execution

update

Execution

finishStmt

Figure 1. The key stages of a statement in TiDB and the

average footprint during the execution of TPC-C for each

stage. Dashed arrows indicate potential functional flows for

other types of statements.

Request processing in TiDB typically progresses through

several stages including Read, Dispatch, Compile, Exec and

Finish. Each of these stages has a sizable instruction work-

ing set, ranging from 40KB to 280KB. Most statements go

through all of the stages, resulting in a large instruction

working set per statement.

Furthermore, a single stage may encompass various func-

tional routines (i.e., code sequences) for different types of

statements. Take the Exec stage as an example. It selects the

appropriate functionality, based on input data and the type

of statement, from among several routines such as deleteEx-

ecution, insertExecution, or updateExecution. Because these

routines are executed only during a specific stage and a spe-

cific type of statement, and the total instruction working set

is huge, by the time one of these routines is executed again,

numerous other routines will have already executed since

the last time the routine ran. Taking updateExecution as an

example, even during the periods with intensive update op-

erations while running TPC-C, the average interval between

two successive invocations of updateExecution is 1.23 million

cycles / 1.51MB instruction footprint. Not surprisingly, it is

impossible to maintain the instruction working set in the

I-Cache and even in the L2.

3.2 Limitations of Existing Instruction Prefetchers

Intuitively, discovering and tracking the repeated execu-

tion sequences at a coarse granularity (i.e., in order to

achieve a large prefetch distance) requires a relatively global

application-level horizon. A large prefetch distance, defined

as the number of cache lines between the prefetch target and

the trigger, can improve timeliness and coverage. In practice,

being able to prefetch over large distances is challenging

because the larger the distance, the more likely the actual

control flow to diverge from the expected control flow, re-

sulting in diminished accuracy and coverage. For this reason,

existing prefetch techniques struggle to obtain high accuracy

prefetch at large prefetch distances.

To validate this intuition, we tested the performance

of state-of-the-art prefetchers under different prefetch dis-

tances by adjusting their look-ahead settings, with larger

look-ahead values leading to greater distances. Since EIP

does not have a look-ahead parameter, we grouped and an-

alyzed its prefetches based on distance ranges. Accuracy is

computed as the percentage of prefetches that yield an L1-I

hit for a demand fetch, while coverage is the percentage of

demand misses eliminated due to prefetches. Note that we

calculate accuracy and coverage on top of the FDIP baseline,

meaning only the misses remaining after FDIP prefetching

are considered.

As shown in Figure 2, all prefetchers exhibit a decline in

accuracy as the distance increases. Additionally, as shown

in Figures 2a and 2b, once the look-ahead exceeds 4 spatial

regions for MANA and 7 functions for EFetch, their coverage

fails to improve, leading to a rebound in I-Cache misses. For

EIP, the prefetch distance is determined by miss latency and

cannot be adjusted; therefore, we grouped EIP’s prefetches

by distance and present only its accuracy as a function of

the distance.

We further compare the overall accuracy and coverage of

the three SOTA prefetchers in Figure 3. The X-axis in the

figure shows the average prefetch distance, in cache blocks,

observed for each of the prefetchers. The three prefetch-

ers demonstrate overall accuracy ranging from 30% to 58%,
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Figure 2. Analysis of fine-grained prefetchers. (a) Impact of MANA’s look-ahead spatial regions. (b) Impact of EFetch’s

look-ahead function calls. (c) EIP’s accuracy under different prefetch distances (cache blocks).
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Figure 3. (a) Accuracy and (b) coverage for fine-grained

instruction prefetchers as a function of prefetch distance.

with accuracy inversely correlated to average prefetch dis-

tance. EFetch achieves the highest accuracy with the lowest

prefetch distance. The trend is opposite for coverage, where

we observe that the larger the average prefetch distance,

the better the coverage. This confirms the hypothesis that a

larger prefetch distance is a must for achieving high instruc-

tion miss coverage.

Notably, we observe that both MANA and EFetch exhibit

relatively low miss coverage, with the better-performing one

(MANA) eliminating less than 20% of the instruction misses

over FDIP. The reason for such limited gains from existing

prefetchers is that the FDIP baseline is able to cover largely

the same misses, which are the shorter-distance ones, and

all of these prefetchers (including FDIP) are susceptible to

control flow variations making them less effective at cov-

ering longer-range misses as discussed above. While EIP

achieves higher coverage, its low accuracy causes excessive

incorrect prefetches, thereby polluting the cache and limit-

ing miss reduction. Our findings corroborate recent work,

that also observed limited benefit from SOTA prefetchers in

the presence of FDIP. Nonetheless, we note that the combina-

tion with FDIP is more effective than any of the prefetchers

stand-alone in both coverage and performance.

One part of the challenge in predicting upcoming control

flow for prefetching purposes is that some branches are just

fundamentally difficult to predict. However, in many cases,

the set of upcoming instruction blocks can be predicted given

a sufficient understanding of the program context. For in-

stance, the set of instruction cache blocks touched in a deeply

nested function may heavily depend on the call path leading
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Figure 4. Average similarity (Jaccard index) between foot-

prints of varying lengths following adjacent occurrences of

the same trigger/signature across all our applications.

to the execution of that function. If the prefetcher is aware

of the global context, it may be able to do a better job antici-

pating the set of instruction cache blocks for prefetching.

Existing record-and-replay prefetchers trigger prefetching

using the address of an instruction or a function call or a

hash of a few recent function calls. The underlying assump-

tion is that the instruction sequence following a trigger will

resemble the previously observed sequence after the same

trigger. Alas, that assumption is often incorrect due to the

weak contextual representation of the triggers.

We studied the average similarity between sets of cache

blocks (footprints) following occurrences of the same trigger

in EFetch, MANA and EIP across a set of server applications

described in Section 6.2. To assess the similarity, we used

Jaccard index1 while varying the size of the footprint from

16 to 512 cache blocks.

Results of the study are shown in Figure 4. MANA and EIP

exhibit rapidly diminishing similarity as the size of the foot-

print increases. Notably, EFetch achieves higher similarity

than MANA/EIP due to its use of a more contextually rep-

resentative signatures. However, all three prefetchers have

a similarity below 0.5 at 64 cache blocks, indicating that a

1The Jaccard index is used to compare the similarity between two samples,

A and B, as the intersection of A and B divided by the union of A and B. [32]
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deeper prefetch will necessarily result in both lower accuracy

and lower coverage.

Summary: Existing instruction prefetchers have a funda-

mental deficiency: they either cannot cover the long miss la-

tency with shallow prefetching or lose accuracy by prefetch-

ing further ahead. To fundamentally break through this

dilemma, it is necessary to enhance the prefetcher’s ability

to predict future instruction sequences over a longer dis-

tance. To do so, prefetchers should encompass more global

information to expose and exploit the longer-range reuse

inherent in applications.

4 Hierarchal Prefetching Overview

Opportunities for better prefetching lie in understanding and

exploiting the repetition of coarse-grained regions of code

in server applications across long reuse distances, which

is a challenge for current fine-grained prefetchers. Server

applications typically follow a request-response pattern,

where each request undergoes a similar processing flow. A

straightforward idea is to perform record-and-replay on a

per-request basis, recording the instruction stream during

the request’s execution and prefetching it before the next.

However, this approach often fails in practice: different

requests may lead to different specific functionalities due to

varying request types and input data, resulting in divergent

instruction sequences. As shown in Figure 1, despite run-

ning in the same processing framework, different requests

may diverge in the Dispatch and Exec phases towards dif-

ferent functionalities. These relatively few but significant

(coarse-grained) divergence points of control flow prevent

sufficient similarity between multiple executions of a request

to support accurate prefetching. Furthermore, the MB-level

instruction working set poses a challenge to prefetching

the entire request-handler at once as its code footprint will

overwhelm the I-Cache capacity.

We observe that the processing procedure for a given

request type can be viewed as a combination of specific sub-

sets of functionalities, such as reading a packet, compiling a

statement, or updating a database index. Indeed, each func-

tionality typically encompasses a precise and definitive set of

tasks, leading to a highly stable instruction footprint. More-

over, these functions are executed each time a particular type

of request or a given input is encountered. By identifying

common code regions as well as the points of divergence

between these functionalities, we can gain insights into the

program’s behavior at a coarse granularity. This understand-

ing can then be leveraged to drive prefetching.

The crux of our approach is to partition the entire call

graph of an application into a series of coarse-grained consec-

utive functionalities, per above. By doing so, we can leverage

the stability of these functionalities to perform coarse-grain

history-driven prefetching.

What about the divergence points in an application’s call

graph? If a call graph node has multiple child nodes with

large footprints, it suggests that vastly different instruction

sequences could be initiated from this node, leading to sig-

nificant variations in the instruction footprints that follows.

Each path stemming from such a divergence point signifies

the start of a distinct stable instruction sequence that persists

until the next point of divergence.

Given this understanding, we can pinpoint all divergence

points that might significantly influence the subsequent in-

struction footprint, thus partitioning the entire call graph.

We define the stable acyclic graph of functions between

the major divergence points as Bundles. Note that minor di-

vergence points, such as if-then-else construct (that might

include function calls) with a small instruction footprint, are

incorporated into their constituent Bundles.

Figure 5 illustrates the partitioning and execution pro-

cess with an example. In the figure, each node represents

a function, and the number beneath each function label is

its reachable size, defined as the total instruction working

set for that function and all functions reachable from it (e.g.,

the reachable size of function A is the sum of the instruction

working sets of functions A, B, C, D, and E taken together).

This size is used to determine whether a given divergence is

significant (in which case it starts a new Bundle) or not.

As Figure 5a shows, the call graph is analyzed from the

starting node, A. At some point, a divergence point is identi-

fied, with the two paths (B and C) each having a reachable

size that exceeds the threshold for Bundle formation (200KB

in this example). Subsequently, the call and return instruc-

tions for B and C are tagged as potential entry points for

Bundles. Note that although D meets the threshold for Bun-

dle formation, it is not considered to be a divergence point

due to the small difference in reachable size with its parent

node C. Also note that because the root node, A, exceeded the

threshold, it is also tagged. During execution, the occurrence

of a tagged call or return triggers the start of a new Bundle,

which continues until a subsequent Bundle begins. As noted

above, a Bundle may incorporate multiple functions from

the application’s call graph; for example, Bundle3 depicted

in Figure 5b includes the execution of functions C, D, and E.

By recording instruction history at the granularity of Bun-

dles, we can use it for prefetching at a coarse grain thus

achieving high coverage and good timeliness. This gives rise

to the notion of Hierarchical Prefetching ś at the top level,

a series of Bundles represents the coarse-grained execution

flow of the application, while at the lower level, the individ-

ual instruction cache blocks within each Bundle are tracked

and prefetched in bulk.

5 System Design

We introduce Hierarchical Prefetching, a hardware-software

collaborative prefetching scheme aimed at uncovering and
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Figure 6. Overview of Hierarchical Prefetching.

leveraging repetitive instruction sequences with coarse gran-

ularity (aka Bundles) within server applications. Figure 6

overviews the design.

First, the proposed algorithm (Section 5.1) identifies en-

try points of Bundles by analyzing the software’s call-graph
1○, then stores the related information in the program’s bi-

nary. Subsequently, the hardware-software interface tool

(Section 5.2), e.g. the linker or the loader, utilizes this infor-

mation to locate the function call and return instructions that

represent the Bundle entry points and tags these instructions

for hardware identification 2○.

During program execution, the hardware prefetcher (Sec-

tion 5.3) detects the tagged instructions during the commit

stage. Whenever it encounters a tagged instruction, which

indicates a Bundle entry point, it calculates the Bundle ID

and starts the Record process 3○ (Section 5.3.4) to store the

ID and addresses of executed instructions of this Bundle,

until another tagged instruction is encountered or the record

length exceeds a predetermined threshold. If a matching his-

torical record is located, the prefetcher also activates the

Replay process 4○ (Section 5.3.5) to initiate prefetching of

instruction cache blocks into the L1-I cache.

5.1 Software Algorithm

The software process is illustrated by Algorithm 1. It con-

sists of three steps: constructing the call-graph, calculating

reachable size, and identifying Bundles’ entry points.

Call-graph construction: We first traverse all functions

to retrieve their names, code sizes, and address ranges. By

Algorithm 1 Partition Bundles.

1: procedure GetBundleEntries(binary, threshold)

2: call_graph = BuildCallGraph(binary)

3: reachable_size = GetReachableSize(call_graph)

4: for func, size in reachable_size do

5: if size < threshold then

6: continue

7: end if

8: if any(func.fathers.size - size > threshold) then

9: Entries.add(func)

10: end if

11: end for

12: return Entries

13: end procedure

identifying all call instructions within these functions, we es-

tablish parent-child relationships to construct the call graph2.

Calculating Reachable Size: We initiate searches from

each function and compute their reachable sizes. This can

be accomplished using either a depth-first or a breadth-first

search algorithm.

Identifying Bundles’ Entry Points: For each node in the

call-graph, if it has multiple child nodes with reachable sizes

exceeding the threshold, n KB, consider these child nodes as

potential entry points for Bundles. In practice, we slightly

relax this requirement, only requiring a child node’s size

to exceed the threshold and the difference in size between

the node and this child to be greater than the threshold.

Specifically, the root nodes are regarded as a Bundle as long

as they meet the size requirement. In practice, we set 200KB

as the divergence threshold to ensure that these entry points

appear at an appropriate frequency during execution.

While 200KB per Bundle may appear as a particularly

large amount of code, especially considering the typical size

of an I-Cache, we note that this is the static size. Prefetching

within each Bundle happens based on dynamic footprints

recorded during a Bundle’s execution, which tend to be 3-10

times smaller than the static footprint.

5.2 Software-Hardware Interface

The software-hardware interface is tasked with transmitting

Bundle information, identified by the software algorithm, to

the hardware.

From the hardware’s perspective, each Bundle represents

a sequence of instructions including branches, and multiple

Bundles executed in succession constitute the entire execu-

tion flow. Thus, the interface only needs to explicitly tag

the entry points of all possible Bundles. In ISAs like X86(-

64) [27] or AArch64 [53], where call/return instruction for-

mats reserve at least 2 unused bits, we avoid inserting new

2Static call graphs tend to overestimate the actual graphs. Nevertheless,

they have worked well in our design.
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instructions by simply using one of the reserved bits identi-

fying Bundle entry points. In ISAs in which such reserved

bits are not available, a new instruction would need to be

added to identify a Bundle entry point. Since each Bundle

spans 10s-100s of KB of code, the overhead of the additional

instructions would have a negligible impact on both static

and dynamic code size.

We construct the call-graph to identify Bundles during

the linking process. A strength of this approach is that it

naturally covers all dynamically linked code. Subsequently,

we add a segment to the binary to record the addresses of the

entry point instructions for the Bundles, akin to the .dynamic

section in ELF files. We leverage the information encoded

in this segment during the application loading phase to tag

the call/return instructions corresponding to Bundle entry

points by using the reserved bits as explained above. Note

that our algorithm, performed during the linking and loading

stages, is very fast, usually completing within seconds for a

server application.

5.3 Hardware Support

At the hardware level, we record all retired instructions for

each Bundle and assign them a Bundle ID hashed from the

address of the next instruction following the tagged one. All

Bundle records are stored in the main memory, in a dedi-

cated memory space accessible by our prefetcher, referred

to as the Metadata Buffer ( 2○ in Figure 7, see Section 5.3.2).

The compressed historical records in the metadata buffer

are allowed to be cached in the L3 cache (LLC), which the

prefetcher accesses on a cache line basis through the existing

LLC interface. To quickly determine the location of each

Bundle’s record, an on-chip Metadata Address Table ( 1○ in

Figure 7, see Section 5.3.3) is used to associate the Bundle ID

with the address of its head segment (elaborated below).

To minimize space overhead, we adopt a commonly-used

compression technique [14, 23, 51] (Section 5.3.1) to store

the instruction stream compactly as a sequence of spatial

regions ( 4○ in Figure 7); a spatial region contains a maximum

of 32 contiguous cache blocks encoded as a base address and

a bit vector. Further, to facilitate prefetching and memory

management, the prefetcher divides the sequence of spatial

regions into multiple segments ( 3○ in Figure 7), each con-

taining 32 spatial regions. Each Bundle can be viewed as a

list of variable-length segments. Each segment serves as a

prefetch unit, with the size chosen to ensure that each group

of prefetch can fit within the L1-I cache capacity.

A key advantage of our approach is that we can store the

prefetching metadata in main memory, thus avoiding most

of the on-chip storage overhead associated with previous

mainstream methods. This is feasible because the execution

time of a Bundle typically extends to tens of thousands of

cycles (Section 7.6), which allows us to tolerate the latency

of accessing memory at the beginning of each Bundle. Be-

cause prefetching is decoupled from the execution (e.g., fine-

grained variations between the prefetched instructions and

the executed code do not affect the prefetcher), the prefetcher

quickly gains and maintains a sufficient prefetch distance

for latency hiding.

For multicore execution, we exploit the similarity in con-

trol flow (and hence, instruction block access sequences)

among the different cores running a given server work-

load [35]. Thus, we share the metadata buffer across multiple

cores and randomly select one core to generate the instruc-

tion history ś an approach shown effective for reducing

metadata volume without compromising performance [35].

5.3.1 Compression Buffer. Compression Buffer is a fully

associative FIFO structure responsible for recording instruc-

tion streams using compact spatio-temporal encoding. Each

entry in the Compression Buffer represents a spatial region,

containing a base address and a bit vector where each bit

corresponds to a cache block within that region. Whenever

an instruction retires, the Compression Buffer first checks if

the instruction’s address falls within the range of an existing

spatial region entry; if so, the bit corresponding to the cache

block of the instruction within that entry is set. Otherwise, a

new entry is created based on the address of the current in-

struction and pushed into the Compression Buffer, while the

earliest entry is evicted and written to the Metadata Buffer.

Compression Buffer efficiently compresses address infor-

mation by eliminating redundancy among recently executed

instruction addresses. Additionally, the creation order of

spatial regions is preserved, facilitating a replay that approx-

imately mirrors the order of retired sequences. We use a

16-entry Compression Buffer, with each entry being a spatial

region representing 32 contiguous cache blocks.

5.3.2 Metadata Buffer. The in-memory Metadata Buffer

stores the spatial region sequences of all Bundles. It is di-

vided into segments (each containing fix-sized spatial re-

gions) and the basic structure is an implicit circular list. Each

Bundle record is stored in one or multiple segments allocated

from the buffer, organized into an implicit linked list. If the

Metadata Buffer becomes full, segments will be sequentially

reclaimed starting from the beginning, and any overwritten

Bundles will be marked as invalid in the Metadata Address

Table. We use a 512KB per-core in-memory Metadata Buffer.

5.3.3 Metadata Address Table. This table is an on-chip

set-associative structure with LRU replacement designed to

store the head segment address of each Bundle. Different

Bundlesmay generate sequences of spatial regions of varying

lengths, which are dynamically allocated during execution.

Whenever a tagged instruction is encountered, the table is

searched using the Bundle ID: if an entry is present, replay

and record will initiate from the corresponding address in

the Metadata Buffer; otherwise, new segment is allocated for
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the current Bundle ID, its address is recorded in the table,

and the least recently used entry is evicted (if full).

Our default Metadata Address Table configuration has

512 entries and features 8-way set associativity. We use a

24-bit Bundle ID, and the pointer to metadata requires 11

bits to index a segment (0.36KB) in the 512KB in-memory

Metadata Buffer. Each way requires an LRU bit, and each

entry includes 18 bits for the tag, 11 bits for the pointer, and

1 bit for validity, resulting in 15872 bits (1.94KB) of on-chip

storage.

5.3.4 Record. As shown in Figure 8, the record phase

starts each time a tagged instruction is identified and ends

when the next tagged instruction is encountered. If there

is no valid record for the corresponding Bundle ID, new

segments are allocated from the Metadata Buffer, and their

spatial regions are written. If a record already exists, the

current sequence is recorded in the existing segments, su-

perseding the previous record. This is to avoid a pathology

where the record is not representative for a given Bundle. If

the new record’s length exceeds that of the previous, addi-

tional segments are allocated as needed.

The record process allocates metadata in segments. The

metadata for each segment contains a set of spatial regions

as well as the following items of information (Figure 7):

• next seg: As multiple segments of a Bundle might not be

contiguous, the pointer to the next segment is updated

whenever a new segment is allocated. The implicit linked

list supports this feature by default.

• num insts: The number of instructions executed from the

start of the current Bundle is recorded when a new seg-

ment is created. This information is then used to pace the

prefetching of the corresponding segment during replay.

• Bundle ID: We record the ID of each Bundle in its first

segment. This value is used to maintain the integrity of

the Metadata Address Table, allowing for the invalidation

of the corresponding entry when rewrites occur in the

Metadata Buffer.

The replay process will utilize these information to locate

the next segment and manage the prefetch pace.

5.3.5 Replay. The replay phase (see Figure 8) begins when

a tagged instruction is encountered and a matching Bundle

ID is found in the Metadata Address Table. The prefetcher

starts reading from the head segment of the Bundle whose

address is recorded in the Metadata Address Table, progres-

sively accessing the spatial regions within it. The spatial

regions are sequentially loaded into a small FIFO, and their

base addresses are dispatched to the TLB for address transla-

tion. Subsequently, the prefetch engine generates requests

from lower to higher addresses, guided by the bit vector

in the associated entry, and pushes these requests into the

prefetch queue. As entries at the end of the FIFO are con-

tinually converted into prefetch requests and sent out, the

prefetch engine continuously reads new cache lines of spatial

regions, replenishing the FIFO.

Since the code footprint of a Bundle might exceed the

capacity of the L1-I cache, we prefetch the instructions seg-

ment by segment to ensure that the prefetched content is

timely and remains within the L1-I capacity limits. After pro-

cessing all the spatial regions within a segment, the prefetch

engine locates the next segment using the next-seg pointer.

Additionally, we use the num-insts noted in the segment to

determine how long after the Bundle starts executing the

prefetch of the corresponding segment should be triggered.

Specifically, prefetching for the (𝑁 +1)𝑡ℎ segment is triggered

when the number of instructions executed in the current Bun-

dle surpasses the num-insts recorded for the 𝑁𝑡ℎ segment.
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Core

Architecture Ice lake-like, ISA: x86-64, Freq.: 4GHz

BP Unit L-TAGE [54] 64KB, ITTAGE [55] 64KB,

BTB 8K entries, 8-way

Fetch FTQ 24 entries, 16 bytes / cycle

LSU Load 128 entries, Store 72 entries

ROB 352 entries

Memory Hierarchy

Private L1 I-Cache 32 KB, 8 way, 2 cycles, 16 MSHRs, LRU

Private L1 D-Cache 48 KB, 12 way, 4 cycles, 16 MSHRs,

LRU, NextLine Prefetcher

Private L2 Cache 512 KB, 8 way, 14 cycles, 32 MSHRs

Shared LLC 2 MB/core, 16 way, 50 cycles, 64 MSHRs

Memory DDR4 2400MHz

Table 1. Parameters of the simulated processor.

Notably, the first and second segments are prefetched im-

mediately at the start of each Bundle. This method ensures

that prefetching is completed one segment ahead, largely

keeping pace with execution to maintain good timeliness

even when Bundles exceed the capacity of the L1-I cache.

Note that prefetching for a Bundle is triggered only upon

commit of the triggering call/return instruction. Thus, Bun-

dles are prefetched non-speculatively, which helps improve

accuracy since the direction of the divergence points that

delineate the Bundles may be difficult to predict. Although

prefetching is triggered only when the Bundle starts execut-

ing, as explained above, the prefetcher rapidly runs ahead

while its start-up latency is amortized over the long execu-

tion duration of the Bundle.

6 Methodology

6.1 Simulation Infrastructure

We conduct our evaluation using Gem5 [4, 18, 44]. Work-

loads are run using an out-of-order, execution-driven CPU

model (O3CPU) in full-system simulation executing a full

OS (Ubuntu). Our front-end baseline features FDIP, which

is implemented in Gem5 using the open-sourced implemen-

tation from Ignite [52]. We also integrates a state-of-the-art

indirect branch predictor ITTAGE [55] into gem5 based on

Emissary’s open-source implementation [45]. The workloads

are first warmed up for 100 million instructions, following

which statistics are collected over next 100 million instruc-

tions. The microarchitectural parameters for the modeled

processor, resembling Intel Sunny Cove [28, 29], are listed

in Table 1.

6.2 Benchmarks

We use 11 widely used server-side applications. They include

three popular web-frameworks, beego, gin and echo from

Web Frameworks Benchmark Suite [10], one HTTP/1-2-3

web server, Caddy [1] driven by the HTTP/2 benchmark-

ing tool from nghttp2 [6], one graph database DGraph [2]

and one ORM library gorm [5] from the ORM Benchmark

Suite [7] (tested with PostgreSQL). In addition, for data-

base/OLTP scenarios, we have conducted read-write tests

using Sysbench [41] on TiDB and MySQL respectively. We

further test TiDB driven by TPC-C [9], and mysql driven by

ycsb [11] and sibench from OLTP-Bench [22].

6.3 Prefetch Mechanisms

We evaluate the following prefetchers:

• Baseline (FDIP): Implementation based on [52], featuring

24-entry fetch target queue. All of the evaluated prefetch-

ers work alongside FDIP to maximize coverage and per-

formance.

• EFetch [21]: SOTA caller-callee prefetcher, equipped with

a 4K-entry callee predictor with single-cycle lookup la-

tency; one entry is an ordered list of 3 callees, with 2 bit

vectors for each callee. We calculated the signature using

the top 3 items of the call stack, ensuring its effectiveness

across all applications.

• MANA [14]: SOTA temporal prefetcher, equipped with

a 4K-entry, 4-way index table with single-cycle lookup

latency; the look-ahead depth is 3 spatial regions.

• EIP [50]: SOTA prefetcher and the winner of the IPC-

1 instruction prefetching championship [3]. We use the

balanced cost-performance configuration featuring a 4K-

entry 8-way entangled table (40KB) and a 16-entry history

buffer with an idealized single-cycle lookup latency for

each component. Prefetches issued by FDIP are treated

like demand accesses for the purposes of training EIP.

This approach is found to perform better than ignoring

FDIP-generated prefetches, which was confirmed to be the

preferred approach by the authors of EIP.

• Hierarchical (this work): 16-entry Compression Buffer

and a 512-entry (1.94KB) Metadata Address Table on chip.

We faithfully simulate the latency and bandwidth of meta-

data memory access, which competes with regular traffic.

The capacity of the Metadata Buffer is 512KB.

7 Evaluation

7.1 Performance Analysis

Figure 9 shows the relative IPC gains of all prefetchers across

the benchmarks. MANA is affected by frequent resets of the

core front-end [43] whenever any branch is mispredicted.

When that happens, MANA has to stop prefetching and re-

index the metadata to find the correct stream. As a result, it

struggles to fully hide miss latency (as shown in Figure 2). A

similar issue affects FDIP [52], which needs to flush the FTQ

and restart prefetching from the same point as demand fetch

any time a pipeline is flushed due to a branch misprediction.

EFetch performs prefetching along the call-graph by leverag-

ing the caller-callee relationships. However, like MANA, it

also induces a trade-off between prefetch depth and prefetch

accuracy as demonstrated in Sec 3.2 and Figure 2b. These
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Figure 10. Percentage of prefetches arriving late.

issues fundamentally inhibit the prefetchers from hiding in-

struction stalls. As a result, MANA and EFetch manage only

a small benefit over FDIP, achieving speedups of only 1.6%

and 1.4%, respectively.

EIP strives to select triggers sufficiently in advance before

the missed basic block, effectively eliminating miss latency

through timely prefetching. For better timeliness, EIP op-

erates at a greater distance compared to MANA or EFetch,

which inevitably results in more control flow discrepancies

between the trigger and prefetch target. Thus, while EIP

improves prefetch timeliness (and, therefore, miss coverage),

it sacrifices accuracy as discussed in Section 3.2, resulting in

a performance improvement of 4.0%.

The highest performance is achieved by the proposed Hi-

erarchical Prefetcher, with an average 6.6% IPC speedup over

the FDIP baseline. These benefits are a result of high cover-

age and good timeliness stemming from the bulk approach

to prefetching that is at the heart of the proposed technique.

Perfect L1-I: For perspective, we also compared Hier-

archical Prefetching to a Perfect L1-I, which achieves an

average IPC improvement of 16.8% over FDIP. Hierarchical

Prefetching achieves 40% of that on average, and 77% in the

best case.

7.2 Prefetch Timeliness

To assess the effect of coarse-grained and fine-grained

prefetching on timeliness, we analyzed the proportion of

late prefetches (hits in MSHR) across different methods, as

illustrated in Figure 10. On average, 29% of prefetches in

EFetch, 13% in MANA, 7% in EIP and only 3% in Hierarchical

Prefetching are late.

Thanks to the large size of a Bundle, late prefetches only

appear at the beginning of the Bundle with little effect on

overall accuracy and coverage. We find that "cold start",

where the prefetch latency is not hidden at the start of a

Bundle’s execution, comprises a few hundreds of cycles. By

comparison, the average execution time of a Bundle exceeds

tens of thousands of cycles. In short, the vast majority of

prefetches arrive before the corresponding demand access.

The timeliness issue of MANA primarily stems from fre-

quent resets when the actual control flow deviates from

the prefetch path. Our tests indicate that it has an average

prefetch distance of only 4 cache blocks, which prevents

it from running far enough ahead to cover the long access

latency of the LLC or main memory. Compared to MANA,

EFetch faces a more severe timeliness problem due to its limi-

tation of emitting only one callee deeper for each signature, a

challenge that is difficult to overcome given hardware design

and accuracy concerns. EIP outperforms EFetch and MANA

in timeliness by learning miss latencies and prefetching in

advance. However, it still falls short of achieving a prefetch

depth that completely eliminates late prefetches, constrained

by accuracy.

7.3 Prefetch Effectiveness

The extent to which a prefetcher can eliminate latency at a

given cache level directly reflects its potential performance

improvement. To that end, we study the latency observed by

demand misses for instructions at each level of the cache for

the various prefetching methods.

As shown in Figure 11, SOTA instruction prefetchers de-

liver little latency reduction on top of FDIP, which effectively

explains their low performance improvement over FDIP. The

best among evaluated prior techniques is EIP, which achieves

an average latency reduction of 19.7% on top of FDIP. Hier-

archical Prefetching reduces latency by 38.7% by eliminating

31.1% of L1 latency (others’ best at 23.8%) and 52.2% of L2

latency (others’ best at 18.7%). This demonstrates that Hier-

archical Prefetching is effective at reducing demand access

latency at both L1 and L2, the two main sources of miss

latency.

According to our analysis, misses caused by accesses with

long reuse distances are particularly important to cover as

they tend to miss in the L2, exposing the high access latency
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Figure 12. Effectiveness of eliminating L2 misses caused by

top 10% long-range accesses over FDIP.

to the LLC. We find that these misses pose a particular chal-

lenge for SOTA prefetchers due to the high latency that they

must hide. We study this phenomenon by first identifying

the L2 misses from the 10% of instruction accesses with the

longest reuse distances in terms of the number of unique

interleaved cache lines with FDIP prefetching, which we

term long-range misses. We then tested the effect of adding

EFetch, MANA, EIP and Hierarchical prefetching to these

misses.

As shown in the Figure 12, Hierarchical significantly out-

performs prior prefetchers on long-range misses, eliminating

an average of 53% and a peak of 72% of the misses, while EIP,

EFetch and MANA average only 21%, 7% and 11%, respec-

tively. This demonstrates that the proposed coarse-grained

prefetching helps achieve better coverage on long-range

misses, further explaining Hierarchical Prefetching’s posi-

tive effect on L2 miss latency reduction depicted in Figure 11.

7.4 Prefetch Accuracy and Coverage

We assess the various prefetchers on prefetch accuracy and

coverage, and correlate these measurements to the average

prefetch distance of each prefetcher. Accuracy is computed

as the percentage of prefetches that yield an L1-I hit for a

demand fetch. Coverage is the percentage of demand misses

converted into useful prefetches. Both accuracy and coverage

are computed on top of the FDIP baseline (i.e., only the

misses remaining after FDIP prefetching are considered).

Metric EFetch MANA EIP Hierarchical

Distance 3.4 4.3 6.1 90

Accuracy (L1-I) 58% 55% 30% 53%

Coverage (L1-I) 10% 14% 48% 37%

Coverage (L2) 8% 12% 23% 54%

Table 2. Average prefetch distance (in cache blocks), accu-

racy and coverage.

The prefetch distance is measured in cache blocks between

the prefetch target and the trigger. Results are presented in

Table 3.

Accuracy: For SOTA prefetchers, accuracy inversely cor-

relates with prefetch distance, since larger prefetch distances

are more likely to encounter a control flow divergence that

compromises accuracy, resulting in accuracy ranging from

30% to 58% (as discussed in Section 3.2). We note that Hi-

erarchical Prefetching operates at a much larger prefetch

distance than prior techniques, owing to its coarse-grained

prefetching strategy. Yet despite the large prefetch distance,

Hierarchical achieves competitive accuracy, accomplished

through two mechanisms: (1) delaying prefetching until a

Bundle begins execution, which makes it non-speculative at

a Bundle granularity, and (2) prefetching the cache blocks

accessed during the Bundle’s last execution, which makes it

similar to temporal streaming within a Bundle.

To better understand the accuracy differences between

EIP and Hierarchical, we further analyzed the average num-

ber of branch targets or paths recorded per source for the

prefetchers. Specifically, Hierarchical measures the number

of distinct successors per basic block within a bundle, while

EIP counts valid target basic blocks recorded for a source

basic block. Across all workloads, for a given basic block,

EIP will on average issue prefetches for 2.4 basic blocks to

predict future paths, while Hierarchical issues prefetches

for fewer than 1.5 basic blocks (when different basic blocks

within the same bundle share the same successor basic block,

Hierarchical only issues the corresponding prefetch once).

When a single EIP trigger prefetches multiple paths, only

one is likely to be executed, with the others often resulting

in unused prefetches. This ultimately leads to EIP achieving

a lower accuracy of 30%, compared to 53% of our method.

Coverage: With FDIP already being reasonably effective,

SOTA prefetchers are unable to achieve much additional cov-

erage because (like FDIP) they are susceptible to fine-grained

control flow variations between the expected and actual ac-

cess streams. As discussed in Section 3.2, such variations

will inevitably result in a loss of coverage and timeliness

(Figure 11). Specifically, EFetch and MANA achieve only 10%

(8%) and 14% (12%) coverage for L1-I (L2), respectively. In

contrast, by issuing prefetches for multiple potential paths

when encountering hard-to-predict branches, EIP achieves

higher coverage, with 48% for L1-I and 23% for L2. How-

ever, the large number of unused prefetches lead to eviction
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of useful cache content, resulting in EIP having more L1-I

demand misses than HP (despite EIP’s higher coverage, as

discussed in Section 7.3). In contrast, Hierchical Prefetch-

ing’s coarse-grained approach to prefetching, whereby the

entire recorded footprint of a Bundle is prefetched in bulk,

achieves coverage of 37% at L1-I and 54% at L2, thus leading

to high performance gains due to an effective reduction in

misses for instructions.

We note that SOTA prefetchers achieve a lower coverage

of misses at the L2 as compared to L1-I. L2 misses require

a large prefetch distance to be covered effectively, and that

presents a particular challenge for them as discussed previ-

ously. In contrast, Hierarchical Prefetching achieves a higher

coverage at L2 than L1-I. The reason for that is that Bundles,

which are formed statically, often have a dynamic instruction

footprint that overflows the L1-I but is captured in the L2.

7.5 Sensitivity Analysis
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Figure 13. Average IPC speedups with (a) varying Metadata

Address Table sizes and (b) varying Metadata Buffer sizes.

7.5.1 Metadata. We study the impact of scaling Metadata

Buffer size and Metadata Address Table size on performance.

Figure 13 shows the average performance improvement of

Hierarchical Prefetching over the FDIP baseline under differ-

ent configurations. The graphs justify our use of a Metadata

Address Table with 512 entries and a 512KB Metadata Buffer,

as larger configurations yield minimal further performance

improvements.
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Figure 14. IPC speedups with infinite BTB capacity.

7.5.2 BTB. Then, we explored the effect of aggressive FDIP

configurations on prefetching effectiveness. Previous work

has shown that the main bottleneck of FDIP lies in the BTB

capacity [25, 43, 57]. We thus investigated the effect of FDIP

with infinite BTB capacity, not only to explore performance

under an aggressive FDIP configurations but also to demon-

strate that the differences between fine and coarse prefetch-

ing granularities stem from the mechanisms themselves,

rather than merely metadata capacity.

As shown in Figure 14, when BTB capacity is sufficient,

EFetch, MANA and EIP achieve only 0.3%, 0.1% and 0.9%

average gains, respectively. In some applications, their per-

formance is lower than that of FDIP alone. In contrast, Hi-

erarchical is beneficial across all applications even in the

presence of an aggressive FDIP configuration, averaging a

gain of 4.2%.

This study points to a fundamental similarity and consid-

erable overlap between fine-grained prefetching methods:

when FDIP benefits from ample BTB capacity and conse-

quently richer information to drive prefetching, it captures

most of the gains typically associated with EFetch, MANA, or

EIP, significantly limiting their potential for further perfor-

mance enhancements. In contrast, Hierarchical Prefetching,

with its robust ability to eliminate long-range misses and

provide high prefetch timeliness, effectively addresses the

performance shortfall of fine-grained techniques.
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Figure 15. IPC as a function of (a) FTQ size, (b) I-TLB size.

7.5.3 Fetch Target Queue. We tested FDIP across various

FTQ sizes to identify the optimal configuration. As shown

in Figure 15a, FDIP performs best with a 24-entry FTQ, with

larger FTQs performing slightly worse. The trend that a

deeper FTQ is mostly counter-productive is in agreement

with the latest work on FTQ tuning [47].

7.5.4 I-TLB. We tested our method across various I-TLB

capacities to explore how it interacts with address transla-

tion, as shown in Figure 15b. As expected, more I-TLB entries

enhance the IPC for both baseline and Hierarchical due to

fewer misses, with Hierarchical Prefetching consistently de-

livering over 6% IPC gains across all configurations.

7.5.5 L1-I. We evaluated all prefetching methods under

varying L1-I cache sizes. Larger L1-I caches substantially im-

prove EIP’s accuracy, which increases from 30% at 32 KB to

42% at 256 KB. This accuracy improvement underscores that

EIP is constrained by a high volume of unused prefetches, es-

pecially at small cache sizes, and the larger L1-I capacity can

absorb some degree of pollution. HP also shows moderate
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Prefetcher L1-I Size Accuracy Coverage Speedup

EFetch

32KB 58% 8% 1.4%

64KB 56% 6% 1.1%

128KB 56% 7% 1.1%

256KB 53% 8% 1.3%

MANA

32KB 55% 14% 1.6%

64KB 54% 12% 1.1%

128KB 55% 12% 1.0%

256KB 52% 11% 0.8%

EIP

32KB 30% 48% 4.0%

64KB 32% 49% 2.6%

128KB 38% 50% 2.3%

256KB 42% 54% 2.0%

Hierarchical

32KB 53% 37% 6.6%

64KB 57% 50% 5.3%

128KB 59% 55% 5.7%

256KB 57% 54% 5.1%

Table 3. Average prefetcher accuracy, coverage, and IPC

speedup across all workloads under various L1-I cache sizes.

accuracy improvements (53% to 57%) as its coarse-grained

prefetching strategy occasionally overflows the capacity of a

small L1-I. As the L1-I size increases, both EIP and HP exhibit

improved coverage because a larger L1-I can better accom-

modate a large volume of incoming prefetches. Meanwhile,

IPC gains diminish with increasing L1-I sizes because the

larger L1-I can inherently accommodate a larger instruction

working set size, thereby reducing the benefit provided by

instruction prefetchers. Nevertheless, Hierarchical prefetch-

ing retains a significant advantages (5.1% speedup at 256 KB

L1-I) due to its strong ability to eliminate long-reuse-distance

misses that even a large L1-I cannot capture.

7.6 Bundle Characteristics

Only a small fraction of the total functions are chosen as

entry points for Bundles. Table 4 illustrates the proportion

of functions labeled as Bundles across different applications,

with an average of 3.7% and a maximum of 6.1%. The low

proportion of functions that are the entry points of Bun-

dles ensures that we can record all Bundle information with

minimal overhead.

Bundles operate at a coarser granularity. The average

recorded instruction footprint of Bundles ranges from 15KB

to 68KB, approximately half to several times the size of the

L1-I cache. When the bundle size exceeds the L1-I capacity,

we prefetch by segments to roughly ensure that each group

of prefetches fits well within it. In terms of execution time,

Bundles execute for an average of 63045 cycles.

The instruction footprint of the Bundles exhibits high sim-

ilarity across multiple executions. We calculated the average

Jaccard index of all distinct Bundles encountered during exe-

cution of each benchmark. The Jaccard index for each Bundle

is calculated as the average of Jaccard indices between all

consecutive pairs of executions of that Bundle during the en-

tire test, based on the set of cache blocks touched. Nearly all

of our applications exhibit an average Jaccard index of over

0.8, with half exceeding 0.9. This demonstrates that the dy-

namic instruction footprint of Bundles exhibits a high degree

of consistency and similarity, corroborating our method’s

ability to successfully capture coarse-grained repetition. This

is also a crucial factor contributing to the effectiveness of

our approach in terms of coverage and timeliness.

7.7 Memory Bandwidth
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Figure 16. Memory bandwidth overhead.

Figure 16 shows the memory bandwidth usage of our

method, normalized to the baseline. Memory bandwidth

includes all memory accesses, covering instructions and

data for both on-demand and prefetch operations. Hierar-

chical Prefetching’s extra bandwidth overhead consists of

overpredicted (i.e. unused) prefetch requests and metadata

reads/writes associated with both recording and replaying.

As the figure shows, Hierarchical Prefetching introduces

only a minor bandwidth overhead of 4% on average and

10% in the worst case. The fraction of this overhead due to

overpredicted prefetches is 40%, with the remaining 60% due

to metadata reads/writes.

7.8 Prefetching to L2
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Figure 17. IPC speedups from L2 prefetching.

The coarse-grained approach of Hierarchical Prefetching

makes it a good fit for prefetching directly into the L2, whose

capacity can naturally accommodate even the largest Bun-

dles. Direct prefetching into the L2 can thus avoid thrashing

of the L1-I, improving bandwidth usage and energy efficiency.

It is also synergistic with FDIP, which can cover short-range

misses (to the L2) but struggles with long-range ones.
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Benchmark beego caddy dgraph echo gin gorm mysql tidb MEAN

Number of Static Bundles 1818 1674 4193 2800 1818 1913 3225 13446 3861

Total Functions 43772 61095 178190 45671 43785 44921 117616 475976 126378

Percentage of Bundles 4.15% 2.74% 2.35% 6.13% 4.15% 4.26% 2.74% 2.82% 3.67%

Average Footprint (KB) 57.03 33.42 48.07 63.08 68.22 36.45 15.28 17.55 42.39

Average Exe Cycles 54241 44187 92728 48007 78828 95120 72562 18690 63045

Average Jaccard Index 0.9668 0.9065 0.8102 0.9646 0.9371 0.8522 0.7978 0.8117 0.8809

Table 4. Bundle Statistics. The 3 bottom rows are per-Bundle averages.

We study the efficacy of prefetching into the L2 without

any modifications to the Bundle formation algorithm, not-

ing that in practice, tuning Bundle formation for L2 might

yield better results. Results are presented in Figure 17. When

directed to L2, Hierarchical Prefetching captures most of

the benefits of prefetching to L1, yielding a performance

improvement of 5.8% on average and 10% maximum. The

good performance is attributed to effective elimination of

long interval and high latency misses.

8 Conclusion

This paper introduces Hierarchical Prefetching, a software-

hardware cooperative solution to excavate and utilize the

coarse-grained application behavior to drive prefetching.

We demonstrate that our method can eliminate the major-

ity of long-range misses for instructions, reduce miss laten-

cies throughout the cache hierarchy and deliver excellent

prefetch timelines. These benefits combine to yield an aver-

age performance improvement of 6.6% on top of FDIP with

only 1.94KB on-chip storage.
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