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Abstract
The garbage collector (GC) is a crucial component of lan-
guage runtimes, offering correctness guarantees and high
productivity in exchange for a run-time overhead. Concur-
rent collectors run alongside application threads (mutators)
and share CPU resources. A likely point of contention be-
tween mutators and GC threads and, consequently, a poten-
tial overhead source is the shared last-level cache (LLC).
This work builds on the hypothesis that the cache pol-

lution caused by concurrent GCs hurts application perfor-
mance. We validate this hypothesis with a cache-sensitive
Java micro-benchmark. We find that concurrent GC activity
may slow down the application by up to 3× and increase the
LLC misses by 3 orders of magnitude. However, when we ex-
tend our analysis to a suite of benchmarks representative for
today’s server workloads (Renaissance), we find that only 5
out of 23 benchmarks show a statistically significant correla-
tion between GC-induced cache pollution and performance.
Even for these, the performance overhead of GC does not
exceed 10 %. Based on further analysis, we conclude that the
lower impact of the GC on the performance of Renaissance
benchmarks is due to their lack of sensitivity to LLC capacity.

CCS Concepts: • Software and its engineering→ Run-
time environments; Garbage collection; • Computer
systems organization → Multicore architectures.

Keywords: JVM, garbage collection, ZGC, cache pollution
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1 Introduction
Automatic memory management, also known as garbage
collection (GC),1 is a technique that provides memory access
safety and reliability while significantly reducing develop-
ers’ load. These aspects make garbage collection an essential
component of managed runtime environments (e.g., Java,
C#, JavaScript), which are intensively used by web services
(e.g., Twitter), web browsers, and mobile platforms (e.g., An-
droid). For these reasons, automatic memory management
continues to be a hot topic today, even after more than half
a century of active research towards its optimization.

However, the benefits offered by the GC do not come for
free. Prior work [2, 4, 13, 19, 27, 30] has shown that appli-
cation performance is profoundly contingent on the effec-
tiveness of the garbage collector. Historically, GCs harmed
application performance due to unacceptably long stop-the-
world (STW) pauses. To reduce the performance overhead
and responsiveness issues created by STW events, significant
effort was put into re-designing and implementing more effi-
cient GCs [7, 12, 16, 22, 26, 28, 29]. Therefore, most modern
GCs [10, 32] have increasingly shorter pauses, while per-
forming most of the work concurrently with the application
threads (e.g., ZGC [32]). However, concurrency comes at a
price as well [5], as the application needs to share resources
with the GC (e.g., cache capacity, bandwidth, CPU time) and
even sometimes help with the collection itself. To the best
of our knowledge, there is no work on concurrent GCs that
quantifies these overhead components individually. Such in-
formation would reveal new weaknesses and opportunities
and facilitate well-targeted performance improvements.

1For the rest of the paper we use GC to refer to the process of garbage
collection as well as the garbage collector itself.
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To this end, we embark on a study of GC effects at the
cache-level, as a well-defined and self-contained overhead
component specific to modern concurrent collectors. STW
collectors are known to sometimes improve the cache local-
ity for the application by relocating the objects in memory
in an access-friendlier layout than when they were first allo-
cated [8, 15, 21]. However, this implication does not hold for
concurrent GCs. They access and move objects in memory
that do not necessarily belong to the effective working-set
of the application, potentially polluting the cache. Therefore,
concurrent collectors are commonly blamed in the literature
for harming application locality [31].

Starting from this idea, we devise a methodology on how
to quantify the effect of concurrent GCs on the performance
and cache locality of the application. Our work focuses on
the shared last-level cache (LLC),2 for the following rea-
sons: (i) the LLC can be large enough to hold (a part of) the
working-set of an application, and (ii) GC-induced LLC pol-
lution may impact performance regardless of the core where
the workload runs. From a runtime perspective, we focus on
OpenJDK 17 and its newest concurrent collector, ZGC [32].
We also consider another concurrent GC in OpenJDK 17,
Shenandoah [10], to reproduce our results.
We conduct two separate sets of experiments. First, we

implement a cache-sensitive micro-benchmark and evaluate
it in an environment where we can steer GC activity in a de-
terministic manner. The results confirm that concurrent GCs
pollute the cache hierarchy and thus harm the performance
of cache-sensitive applications. This finding holds for both
ZGC and Shenandoah. The second set of experiments aims
to validate the results obtained in the controlled environ-
ment on benchmarks that represent real-world workloads,
such as the Renaissance suite [24]. In contrast to the micro-
benchmark, we find that only a small subset of benchmarks
follow the same trend. For the rest of the benchmarks no
correlation can be established between GC activity and cache
effects. These results are further backed up by a statistical
analysis of the significance of the observed correlation. We
explain this divergence in behavior in a real-world scenario
compared to the artificial micro-benchmark based on the
lack of temporal reuse in the LLC for these Java workloads.
In other words, regardless of the memory management so-
lution, the working-set of the benchmarks is either unable
to fit in the LLC or is very small compared to the LLC size.
This makes any GC impact on the cache negligible.

In summary, this work makes the following contributions:
• We analyze the correlation between application per-
formance and LLC misses during GC activity in a con-
trolled environment. To this end, we build a cache-
sensitive synthetic micro-benchmark. We show that
for this micro-benchmark the marking phase of ZGC

2For the rest of the paper, if the cache level is not specified, the generic term
cache refers to the LLC.

alone leads to a 3× slow-down in execution time and
a simultaneous 1700× increase in LLC misses. We re-
produce the behavior with Shenandoah.

• We extend the analysis to the Renaissance benchmarks.
For these workloads, ZGC activity causes at most 10 %
slow-down and up to 56.3% more LLC misses, as op-
posed to the micro-benchmark scenario.

• We investigate the discrepancy between the experi-
mental results for artificial and real workloads through
a statistical analysis and a cache-sensitivity study. We
conclude that the negligible GC effect on application
performance for Renaissance is due to a lack of sensi-
tivity to the LLC size for these Java workloads.

2 Background and Motivation
This section elaborates on the main technologies and mecha-
nisms that are further employed in this work. More precisely,
we focus on concurrent garbage collectors in the HotSpot
Java Virtual Machine (JVM) of OpenJDK.

2.1 Concurrent Java GCs
A garbage collector is called concurrent if it is capable of col-
lecting the memory without stopping the application threads
(also known as mutators). Since existing concurrent GCs
still need STW pauses for correctly preserving the GC al-
gorithm invariants (e.g., mutators must never see pointers
to regions of memory marked for evacuation), they are also
called mostly-concurrent. The main difference compared to
STW collectors is that concurrent GCs only need to pause the
application for very short intervals, instead of for the whole
collection cycle. The two mostly-concurrent GCs currently
implemented in OpenJDK are ZGC and Shenandoah.

A concurrent GC cycle can be roughly split into two main
parts:marking and relocation (also called compaction). During
the marking phase, the collector iterates over the reference
graph of the objects in the heap, starting from the roots (lo-
cal variables, threads, JNI references). During this traversal,
the GC marks all live objects, the live-set of the application.
Everything that remains unmarked on the heap is consid-
ered garbage and reclaimed. During the relocation phase, the
collector moves the live objects in order to compact the heap
and fixes the references to the new address of the relocated
objects. For concurrent collectors, the mutators may help
with relocation and/or reference fixing.

2.2 Case Study: Z Garbage Collector (ZGC)
This work focuses on ZGC for two reasons: (i) ZGC is the
newest concurrent collector in OpenJDK, and (ii) ZGC has
all STW pauses under 1ms and independent of the heap,
live-set or root-set size (they are virtually constant [20]).

A ZGC collection cycle has several interwoven STW and
concurrent phases, as illustrated in Figure 1. ZGC cycles
cover a marking phase and a relocation phase, which roughly



Concurrent GCs and Modern Java Workloads: A Cache Perspective ISMM ’23, June 18, 2023, Orlando, FL, USA

STW STW STW

Concurrent
Mark

Concurrent
Mark

Concurrent
Evacuation

Concurrent
Relocation

Pause 

Mark Start

relocation set
selection

relocate objects in
relocation setmark objects

directly pointed
by roots

mark all objects,
calculate sizes of

live objects synchronization
point

synchronization
point

Pause 

Mark End

Pause 

Relocate Start

Figure 1. ZGC collection cycle in steps

correspond to the general description of concurrent collec-
tion presented in Section 2.1. Note that the object graph
traversal to perform the marking invariably takes place in
every cycle. Its cost directly depends on the live set of the
application. Conversely, the work of the relocation phase
depends on the state of the heap after identifying the live-
set, the amount and location of the heap memory that can
be reclaimed, the heap fragmentation, heap size, etc. It is
therefore possible that no or very little relocation is needed,
depending on the workload and other factors.
From an experimental perspective, ZGC has very few

widely-used configuration options, relying on many internal
heuristics to make the collection efficient without any help
from the user. For initial calibration, ZGC executes several
“warm-up” collections when the application starts. Then, in
order to reduce memory pressure and application stalls, ZGC
proactively collects parts of the heap when this extra work is
tolerated by the system. Otherwise, ZGC monitors the ongo-
ing allocation rate of the application and estimates how fast
the heap would fill up if current allocation rate is maintained.
GC cycles are triggered based on these predictions. There
are options to turn off the proactive GC and to further tweak
the timing and heuristics of the allocation rate-induced GCs.

2.3 Motivation
Concurrent GCs successfully address the problem of long
pause times for the application, as explained in Section 2.2.
On the flip side, concurrent execution also means that GC
threads and application threads share resources (e.g., CPU,
bandwidth, cache capacity). Intuitively, allowing GC threads
to compete with application threads for resources, would
harm the performance of the application.

This work focuses on cache pollution as a specific overhead
component of concurrent GCs and aims to quantify to what
extent it can affect application performance. Figure 2 illus-
trates one potential manner of interaction between GC and
mutators running inside a JVM. In the figure, the mutator
and the GC run concurrently on separate cores, each with
private L1 and L2 caches, but contend for LLC capacity with
cache blocks fetched by the application (in orange) and by
the GC (in blue) potentially evicting each other.
There are also other important considerations to a GC-

induced cache pollution analysis. Figure 2 assumes that a

L1C L2C

LLC

L1C L2C

private caches of mutators' core

private caches of GC's core

Figure 2. GC and mutators competing for LLC capacity
when there is no contention for the private per core caches.

GC cycle is in progress. When the GC is not actively work-
ing, the LLC contains only memory blocks fetched by the
application threads. Moreover, the figure suggests that com-
pletely different memory blocks are requested by the GC and
the mutators. This is a valid scenario, in which the GC live-
set and application working-set are fully disjoint. However,
most of the times the mutators and the GC threads share the
working-set. Therefore, a fraction of the objects accessed by
the GC may later be used by the application threads without
the need to fetch the corresponding memory block any more.
Finally, it is possible that the live-set and working-set com-
pletely overlap and also fit in the last-level cache, in which
case GC-induced LLC pollution would not occur. In this case,
the GC may even help improve application performance by
reorganizing the layout of objects in the heap.

3 Challenges and Methodology
This section presents the obstacles we faced towards quanti-
fying the impact of concurrent GCs on application perfor-
mance and cache locality. It then describes the methodology
we apply in our experiments to overcome these challenges.

3.1 Challenges
GC cannot be disabled. GC overheads are notoriously

difficult to quantify. The main challenge lies in the fact that
applications running in managed runtimes do not work prop-
erly in the absence of garbage collection. Because of this, no
GC on/off option and no JVM version without GC is ever
provided. As such, the GC itself cannot be simply disabled.
Applications with very small memory footprint could po-
tentially terminate successfully without GC, but even then
the execution is still not directly comparable – object access
and allocation would behave differently, as the memory fills
up and no cleaning or relocation is provided. In most recent
OpenJDK versions, a no-operation GC is available, called Ep-
silonGC [23]. This collector offers the same interface as the
others but does not collect the memory. It serves precisely
as a tool for comparing and diagnosing GC problems. How-
ever, in some cases, applications may end up being slower
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Figure 3. Expected distribution of iteration duration (or LLC
misses) according to our methodology

without memory management than with any GC [5]. This
issue prevents performance comparisons with and without
GC in order to measure overheads.

Applications threads might assist the GC. A challenge
specific to concurrent GCs is the fact that the application is
seamlessly involved in the collection work. In other words,
the application threads execute instructions that do not be-
long to the application’s code in order to help the GC perform
the collection. However, this additional work is so deeply in-
terleaved within the execution, that identifying the overhead
that results from it is particularly difficult [5].

Benchmark suites. Another crucial dimension of quan-
tifying the GC impact on application performance is repre-
sented by what benchmarks are available for this type of
research. The established benchmark suites, i.e., DaCapo [3]
and Renaissance [24], are considered representative of real-
world applications. However, benchmarks belonging to the
DaCapo suite have very small memory footprints, posing no
challenge for today’s GCs that are able to handle terabyte-
sized heaps. The Renaissance benchmarks stress the GC
more than those of DaCapo, but they do not represent long-
running applications with a large live-set – which are more
likely to be affected by the GC. If the GC spends very little
time processing objects concurrently with the application
execution, then regardless of how much it affects the appli-
cation performance, the overall overhead remains negligible.

3.2 Methodology
To overcome the challenges presented in Section 3.1, we pro-
pose the following steps: first, we eliminate the GC cycles
that are not absolutely necessary for a correct and complete
execution (e.g., warm-up GCs and proactive GCs in ZGC, as
described in Section 2). Second, we select applications that
consist of multiple iterations, each performing the same op-
erations. Then, depending on the application characteristics
we apply one of the following strategies:

• For applications for which we can deterministically
control the GC activity (Section 4), we trigger explicit
GCs at the beginning of some of the iterations. We

use these explicit triggers to distinguish between iter-
ations with and without GC activity. We consider all
iterations that fall between the start and the end of the
GC cycle as iterations with GC activity.

• For applications for which we cannot control the GC
behavior (Section 5), we expect to see iterations with
GC activity and iterations without any GC involve-
ment. This allows for direct comparison between the
two iteration types (with and without GC), based on
metrics like execution time and the number of LLC
misses encountered by the mutators.

Intuitively, we expect that, regardless of our ability to con-
trol GC activity, the application threads will still experience
more LLC misses and higher execution time for iterations
with GC than for iterations without GC. However, it is also
important to note that for larger-scale benchmarks where
collections are naturally triggered by memory pressure (as
opposed to being programmatically triggered), the iterations
cannot be strictly split into two groups. Rather, the GC pres-
ence covers a variable number of iterations, some of them
completely falling under GC execution, while others only
partially overlapping with GC activity. For simplicity, we
refer in the rest of the paper to an iteration as “iteration with
GC (activity)” if it falls into one of the following situations:

• GC starts before the end of the iteration (regardless of
whether the GC ends in the same iteration or not).

• GC ends after the beginning of the iteration (regardless
of when it started).

• GC is fully contained in the respective iteration (i.e.,
GC starts after the iteration and ends before it).

• The iteration is fully contained in the GC cycle (i.e.,
GC cycle starts before the iteration and ends after it).

To account for the duration variations across iterations
in the real-world environment, we present results in the
shape of histograms illustrating the distribution of iteration
duration. We expect this distribution to be centered in two
clusters, one for the duration of iterations with GC activity
and one for the duration of iterations with no GCs (i.e., a
bimodal distribution). We compute the distance between the
two clusters as the difference between the mean duration for
each cluster (delta-mean), as shown in Figure 3, and use this
difference to quantify the GC impact on cache locality.

4 Cache-Sensitive Micro-Benchmark
Given the complexity of the JVM machinery and the funda-
mental difficulty in following GC activity, we first develop
a synthetic micro-benchmark that provides a clear, deter-
ministic, and easily controllable environment. We use this
micro-benchmark with the goal of defining a baseline to help
us understand more complex scenarios.
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Figure 4. Count-group-by micro-benchmark

4.1 Controlled Environment
Micro-benchmark description and operation. We de-

vise a synthetic micro-benchmark that computes a count-
group-by aggregate. We implement the group-by aggrega-
tion as a simple hash table using open-addressing with linear
probing for collision resolution. Keys and counts are 32-bit
integers. Furthermore, we choose the cardinality of the set
of uniformly randomly generated keys such that the hash
table is fully LLC-resident, i.e., both keys and counts.
Figure 4 shows the components and functionality of the

micro-benchmark. The micro-benchmark consists of one or
more iterations during which 𝑁 = 100 million uniformly
independent and identically distributed (i.i.d.) keys in the
interval [1,𝐶] are created. The number of distinct keys are
counted in the hash table. We size it to hold 𝐶 entries. We
use Java’s 32-bit hash function, implemented as the identity
function for Integer. As a result, there are no bucket colli-
sions and consequently no linear probes in the hash table.
To artificially increase the cache sensitivity of the bench-
mark we use two separate int arrays for keys and counts. A
thread responsible for triggering a GC runs in parallel with
the main thread. The latter controls when the GC should
start by notifying and waking up the GC-triggering thread.
The explicit GCs should be sufficiently far apart to allow
the application to return to a baseline with respect to cache
effects. At the same time, the iteration duration should be
long enough, for the GC impact on the cache to be visible.

Although simple and artificial, this single-threaded micro-
benchmark provides the necessary infrastructure to fully
control the activity of a concurrent GC and deterministically
measure its impact on the application’s cache locality. In
other words, this micro-benchmark reflects the overhead of
concurrent collectors on cache-sensitive applications since
the hash table is fully LLC resident by design.

Controlling the GC. The small working-set size of the
micro-benchmark creates a negligible amount of work for the
garbage collector. As the GC effort depends on the amount of
references in the live-set that it needs to mark and potentially

on the set of objects selected for relocation (as explained in
Section 2.2), we artificially increase the live-set of the micro-
benchmark. Doing this in a manner that does not change in
any way the targeted functionality of the micro-benchmark
and that also keeps the same deterministic behavior when a
GC is triggered, is particularly challenging. To address both
these issues, we load a large and complex data structure in
memory before launching the workload and avoid operating
on it afterwards. This structure will represent a constant
body of live objects that need to be visited and marked in
every GC cycle. Importantly, the set of live objects traversed
by the GC and the working-set of the application only inter-
sect on the headers of the two array objects that form the
hash table. This means that the number of referenced objects
that are brought into the cache by the GC and can be used
by the application is negligible. In order to have sufficiently
many references to mark, we use a directed random graph, in
which each node has an array of references to its randomly
chosen neighbors. By modifying the size of the graph, we
can easily adjust the amount of effort spent by the GC during
the marking phase, independently of the working-set size of
the application, i.e., the size of the hash table.
The downside of having a fixed graph with objects that

are never deallocated is that the relocation phase is not ex-
ercised. One way to introduce relocation effort would be to
delete some of the graph nodes and let the GC relocate live
objects. However, in this scenario it is difficult to maintain a
deterministic behavior across runs for several reasons, such
as: traversing the graph to delete nodes would contribute to
the cache pollution, as it is not part of our carefully designed
application working-set; consistently having a similar num-
ber of relocated objects is a difficult problem, as it depends
on the collector’s heuristics; having a randomly-generated
graph makes the problem of choosing which nodes to delete
a challenging one. In conclusion, in this experiment, we con-
sider only the impact of the marking phase on application
locality, which gives us a lower bound over the effect of a
complete GC cycle (i.e., including relocation). We leave the
task of redesigning the micro-benchmark such that it creates
a constant amount of relocation effort for future work.

4.2 Experimental Setup
The machine we use for experiments is an 8-core Intel Xeon
W-1270 @3.4GHz with a 64GiB DRAM and 16MiB of LLC,
running Ubuntu 20.04 on a 5.14.0 kernel. We disable the Intel
Turbo feature and enable the performance governor on all
cores in order to minimize noise. We run our experiments on
the HotSpot JVM in OpenJDK, using the latest LTS version
17.0.5. As an adequate representative for concurrent GCs, we
focus on ZGC. We reproduce our results with Shenandoah.
We pin the main Java thread on one core and the GC-

triggering thread on a separate core. The latter is configured
to call the System.gc() function every 10 iterations, starting
from iteration 11. The hash table size is 14.5MiB. The static
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Figure 5. Impact of ZGC (left) and Shenandoah (right) on application performance. The data points represent the median with
min/max error-bars over 11 runs.

graph that controls the amount of marking work for the GC
is created at the beginning of the execution. We generate a
graph having 5 × 106 nodes and 5 × 108 edges, which results
in a live-set size of around 5GiB or 32 % of the heap size.

We configure ZGC to use 2MiB large pages to avoid perfor-
mance degradation due to TLBmisses. In addition, we disable
proactive GC collections to have better control over the GC
activity, as explained in Section 3.2. We do not explicitly set
the heap size. The JVM allocates by default a 15.6GiB heap.
For low-level measurements we use the perf_event_open
system call in the Linux kernel to access the raw performance-
monitoring counters. We measure the number of LLC misses
(LONGEST_LAT_CACHE.MISS [9]: event=0x2E, umask=0x41)
and that of retired instructions (INST_RETIRED.ANY_P [9]:
event=0xC0, umask=0x0) for the application thread. The
GC timing information is provided by the built-in JVM GC
logs that can be enabled with the -Xlog:gc* option. For
Shenandoah, we force explicit GCs to run as concurrent
instead of the typical STW full GC implementation. ZGC
executes explicit GCs concurrently by default.

4.3 Evaluation
Figures 5a and 5b show the impact of the GC on the applica-
tion performance and the extent to which this overhead is
correlated with cache pollution for ZGC and Shenandoah, re-
spectively. The x-axis of both figures represents the iteration
number. The micro-benchmark was run for 100 iterations,
out of which we drop the first 15 in order to avoid perfor-
mance artifacts from the start-up of the JVM. The y-axis of
each figure in the first row corresponds to the duration of
each iteration. The y-axis of each figure in the second row
presents the absolute number of LLC misses encountered
within an iteration. Moreover, each bullet (blue or red) per
sub-plot corresponds to the median across 11 different runs;

the plots also present min/max error bars per data point to
show the variation across runs. We show the measurements
corresponding to iterations that contain GC activity and
those that do not in different colors in order to better outline
the impact of the GC on some iterations.
Figure 5a reveals a correlation between GC cycles, LLC

misses and iteration duration for ZGC. Note that the number
of LLC misses for the iterations with no GC activity is in a
magnitude of 105 – 106, appearing close to zero at the shown
scale. The low number of misses is due to the hash table be-
ing fully LLC resident, as explained in Section 4.1. Both LLC
misses and iteration duration experience spikes for every GC
collection. More precisely, we note a 3× increase in iteration
duration during concurrent GC cycles. This corresponds to
a 1700-fold increase in LLC misses when the concurrent GC
is active. The result supports the hypothesis that the concur-
rent GC not only impacts the application performance but
also causes cache pollution, which is observable through the
increase of LLC misses. We also note that the ZGC collec-
tions encompass 2 iterations of the micro-benchmark each
time, affecting the iteration duration and LLC misses in both
of them. Finally, an interesting observation is that only the
iterations with GC activity and the one immediately follow-
ing the GC cycle exhibit very high variation across multiple
runs, both with respect to execution time and to LLC misses.
This behavior suggests that the GC effects on application
performance extend beyond the end of the GC cycle.

We repeat the same experiment with the Shenandoah col-
lector, with the goal of verifying whether our finding holds
for another mostly-concurrent collector of the same JVM.
Figure 5b shows the impact of Shenandoah on LLC misses
and iteration duration, similar to Figure 5a. We observe that
Shenandoah-enabled runs are characterized by a slightly
higher iteration duration in general. We confirm the same
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trend as before during GC activity: correlated spikes in both
LLCmisses and iteration duration, albeit less prominent than
for ZGC. In the case of Shenandoah, each collection encom-
passes only one iteration and results in 2× longer iterations
and 225× more misses in the LLC.

5 Typical Java Workloads
To validate the findings in Section 4 on well-established
applications, we turn towards the Renaissance benchmark
suite as a reasonable proxy for real-world applications.

5.1 Benchmark Suite Selection and Setup
We study Renaissance because it is a recent and actively
maintained benchmark suite that contains a wide variety
of workloads. It includes multiple categories of modern ap-
plications made for the JVM (e.g., Apache Spark [11] and
actor-based applications). At the same time, the workloads
illustrate a diversity of programming paradigms, including:
concurrent and parallel applications, functional and object-
oriented programming. It is especially developed for testing
JIT compilers, GCs, and other JVM components.

Renaissance benchmarks use a harness that handles mea-
surements, policies, and benchmark execution. We use the
term iteration to denote one individual benchmark execution
and measurement.3 Each benchmark run has at least one
iteration. The default number of iterations varies between 10
and 90 across the Renaissance suite. Unless otherwise noted,
we follow the methodology used for the officially published
Renaissance performance results [1]: we run each bench-
mark for 10 minutes and discard the measurements for the
first half of the iterations. We execute the entire Renaissance
suite with the default set of inputs for each benchmark (i.e.,
input files, structure sizes, etc.).
The Renaissance benchmarks present important differ-

ences from a GC perspective as well, allocating between 107
and 109 objects [25] with different allocation rates. By de-
fault, the Renaissance harness triggers explicit GCs between
iterations of the benchmarks, in order to have each iteration
start with the samememory state as all others. Since wewant
to measure and compare the iteration duration when a GC
takes place and in the absence of GC, we disable the explicit
GCs between iterations. This allows the GC to only collect
when necessary according to its internal heuristics and, thus,
increase the probability of having both behaviors of interest
in the same run, i.e., iterations with and without GC. Again,
for ZGC, we disable proactive GC collections and discard the
warm-up GC results at the beginning of every benchmark
run. We also set the heap size to 28GiB. However, even with
these measures in place, there are benchmarks with such
a high allocation rate that multiple GCs are requested per
iteration or the collections span all iterations in a run; and,

3Not to be mistaken for the iterations that some of the workloads may
execute internally for their own computation.

conversely, benchmarks for which GCs are such rare events
that the results are not statistically relevant.
Similarly to the experiments in Section 4, we measure

the iteration duration and the number of LLC misses and
aim to correlate them. The main challenge compared to the
micro-benchmark scenario is that the Renaissance iteration
duration per benchmark varies significantly across a run,
regardless of GC activity. Therefore it is more difficult to
gauge the impact of GC and to differentiate it from other
sources of noise. Another difficulty comes from the limited
control one has over the GC and application behavior when
running real benchmarks, as opposed to a synthetic micro-
benchmark created with a specific purpose in mind. Finally,
in these experiments object relocation is more prevalent than
in the micro-benchmark scenario, also contributing to the
GC effects on application performance.

5.2 Evaluation
Figure 6 illustrates the iteration duration for iterations with
GC activity and iterations without any GC activity for all
Renaissance workloads, following the methodology defined
in Section 3.2. The iteration duration is represented as a
histogram for a clear visualization of the variation across all
iterations in a run. We say that an iteration has GC activity
if there is a partial or total overlap between a GC cycle and
said iteration, as defined in Section 3.2.

Figure 6 contains 23 subplots, one per Renaissance bench-
mark. We note the difference between the means of the two
distributions, relative to the mean duration of iterations with-
out GC activity in each subgraph along with the fraction
of iterations that contain GC activity. The x-axis represents
the iteration duration in seconds. The y-axis presents the
number of iterations in logarithmic scale. The subplots are
sorted in the decreasing order of the mean difference.

The first observation is that there is significant variability
across the benchmarks with respect to GC activity. On the
one hand, we have akka-uct and naive-bayes with 100%
and, respectively, 98 % of iterations exhibiting GC activity. On
the other hand, there are benchmarks where less than 2 % of
iterations show any GC activity, e.g., scala-kmeans, dotty,
rx-scrabble. Any conclusions from the latter benchmarks
need to be drawn with caution, as they contain too few
samples in one of the two distributions.
The main takeaway is that, overall, the GC has no ma-

jor impact on iteration duration for the Renaissance bench-
marks. Extrapolating from our micro-benchmark results, we
expected to observe a pronounced bimodal distribution, in-
dicating that the iterations overlapping with a concurrent
GC take on average longer than those without GC interfer-
ence. Several benchmarks, such as scrabble, page-rank or
fj-kmeans do exhibit this trend. However, for other bench-
marks, the two distributions fully overlap ( future-genetic)
or even show an opposite trend to what we expected (as in
the case of the two finagle benchmarks). We observe a
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Figure 6. Impact of ZGC activity on the iteration duration of the Renaissance benchmarks (one subplot per benchmark). The
x-axis represents the iteration duration and the y-axis, the number of iterations (log scale).

maximum difference of 10 % between the two iteration clus-
ters, for scala-stm-bench7 (with an average of 2.8 % across
benchmarks). The GC impact is, thus, significantly weaker
than for our micro-benchmark experiments in Section 4.

We illustrate in the same manner the distributions of LLC
misses across iterations for the two cases, with and without
concurrent GC activity. Figure 7 shows the results. The sub-
plots are in the same order as in Figure 6 to facilitate the com-
parison between results with the two metrics. When looking
at the measured LLC misses, we observe a similar trend to
that of execution time per iteration. Only a few benchmarks
(e.g., scala-kmeans and page-rank) have a distributionwith
two clearly visible clusters. For the other benchmarks the
two distributions partially overlap. The effect of GC activity
is slightly more pronounced for LLC misses than in the case
of iteration duration, with a delta-mean of 13.4 % on average
across benchmarks, going up to 56.3 % (dotty).
We repeat the experiments with the Shenandoah collec-

tor. Because of space limitations, we do not include the
figures here. The results confirm the observations made
with ZGC, albeit with an even more diminished GC effect
on the iteration duration: the delta-mean reaches at most
5.7% (scrabble). However, from an LLC miss standpoint,

three benchmarks present a delta-mean of over 70 % between
the two distributions, indicating increased cache pollution:
chi-square, dec-tree and gauss-mix.

6 GC Effect on Cache and Performance
This section provides further insight into the correlation
between GC-induced cache pollution and application perfor-
mance, through a statistical analysis of the observed results
and a study of the working-set of Renaissance applications.

6.1 Statistical Analysis
To have a better understanding of the impact of GC activ-
ity on application performance and whether this correlates
with cache pollution, we examine the data from a statistical
perspective. We first consider how the iteration duration
and, respectively, the number of LLC misses independently
correlate with GC activity. Table 1 shows the results for the
Renaissance suite. Note that we use the exact same data pre-
sented in Section 5 and illustrated in Figures 6 and 7. We
exclude the akka-uct benchmark from this analysis, as all
its iterations include GC activity and thus no differentiation
can be made between iterations with and without GC impact.
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Figure 7. Impact of ZGC activity on LLC misses for the Renaissance benchmarks (one subplot per benchmark). The x-axis
represents the absolute number of misses in the LLC and the y-axis, the number of iterations (log scale).

We consider two metrics: the Levene homogeneity test [18]
for the two distributions, and the point biserial correlation [17].
The former examines whether the given samples come from
populations with equal variances. In order to measure the
correlation between GC activity (binary variable, GC present
or not) and iteration duration or, respectively, LLCmiss count
(continuous variables) we use the point biserial correlation.
The correlation results are considered valid if the continuous
variable has equal variances for each category of the binary
variable, as tested with the Levene test. The computed coeffi-
cient varies between -1 and 1, where 0 means no correlation.
A value significantly different from zero implies a significant
difference inmeans between the two distributions. Therefore,
the results in Table 1 compact and consolidate the observa-
tions in Section 5. For each of the two target variables, i.e.,
iteration duration and misses in the LLC, we indicate with
a check mark (✓) if the distributions with and without GC
have equal variances and with an × otherwise. We use the
same notation for marking whether a correlation exists be-
tween GC activity and the respective variable. In addition,
we also list the computed coefficient value for the point bis-
erial correlation and the corresponding p-value, based on

which we consider the correlation between the target vari-
able and GC activity statistically significant. A p-value under
0.05 indicates a statistically significant correlation.

We find that the considered distributions for the iteration
duration are not homogeneous for half of the Renaissance
benchmarks and in the case of LLC misses for 14 out of 22
benchmarks. We further observe that for 5 benchmarks there
is no statistically relevant correlation between GC activity
and iteration duration. The same can be concluded about the
correlation between GC activity and LLC misses in the case
of 4 benchmarks. There are 3 benchmarks which fail both
correlations and the homogeneity tests: future-genetic,
naive-bayes, and reactors. Finally, we identify 5 bench-
marks that have homogeneous distributions and pass both
correlation tests (highlighted in Table 1). We focus on these
benchmarks for a more detailed analysis.
Figure 8 shows the correlation between LLC misses (y-

axis) and iteration duration (x-axis) for the selected subset
of 5 benchmarks. The scatter plots have one data point per
iteration. The iterations are further split into iterations with
GC activity or without GC activity, as defined in Section 3.2.
We observe that the iterations in the two categories tend
to cluster together, with the no-GC iterations closer to the
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Table 1. Statistical analysis of the GC impact on execution time (left) and LLC misses (right), showing: Levene’s homogeneity
test (“Equal Var.”) and point biserial correlation (“Corr.”) w.r.t. GC activity (correlation coefficient and p-value).

Benchmark Iteration Duration LLC Misses
Equal Var. Corr. Corr. Coeff. p-value Equal Var. Corr. Corr. Coeff. p-value

als ✓ ✓ 0.4 4.11 × 10−6 × ✓ 0.66 7.53 × 10−17
chi-square ✓ ✓ 0.6 4.94 × 10−51 ✓ ✓ 0.59 5.31 × 10−48
dec-tree × ✓ 0.22 4.91 × 10−6 × ✓ 0.62 9.76 × 10−48
dotty × ✓ 0.33 4.52 × 10−7 ✓ ✓ 0.76 6.50 × 10−44
finagle-chirper × ✓ -0.41 1.79 × 10−4 × ✓ 0.4 2.37 × 10−4
finagle-http ✓ ✓ -0.5 1.73 × 10−5 × ✓ 0.33 5.38 × 10−3
fj-kmeans ✓ ✓ 0.83 3.98 × 10−28 × ✓ 0.45 1.34 × 10−6
future-genetic × × 0.05 5.65 × 10−1 × × 0.11 2.02 × 10−1
gauss-mix × ✓ 0.27 3.10 × 10−7 ✓ ✓ 0.48 5.56 × 10−22
log-regression ✓ ✓ 0.85 4.00 × 10−135 × ✓ 0.57 2.57 × 10−41
mnemonics × × 0.14 1.75 × 10−1 × ✓ 0.78 2.01 × 10−20
movie-lens × × 0.26 1.01 × 10−1 × ✓ 0.55 2.32 × 10−4
naive-bayes × × 0.09 1.77 × 10−1 × × -0.04 5.03 × 10−1
page-rank ✓ ✓ 0.93 1.21 × 10−26 ✓ ✓ 0.95 4.48 × 10−30
par-mnemonics × ✓ 0.23 1.60 × 10−2 × ✓ 0.21 2.80 × 10−2
philosophers ✓ ✓ 0.52 4.15 × 10−13 × ✓ 0.16 3.69 × 10−2
reactors × × 0.05 7.66 × 10−1 × × 0.25 1.72 × 10−1
rx-scrabble ✓ ✓ 0.21 2.54 × 10−14 ✓ ✓ 0.59 9.85 × 10−119
scala-doku × ✓ 0.62 3.77 × 10−10 ✓ ✓ 0.88 1.71 × 10−28
scala-kmeans ✓ ✓ 0.87 0.00 ✓ ✓ 0.94 0.00
scala-stm-bench7 ✓ ✓ 0.72 1.38 × 10−44 ✓ ✓ 0.52 3.96 × 10−20
scrabble ✓ ✓ 0.81 0.00 × × 0.05 7.36 × 10−2

0.60 0.653

4

5

(coeff: 0.66, p-val: 3.68 × 10−65)
chi-square

No GC
GC

3.2 3.3 3.4
80

90

100

(coeff: 0.94, p-val: 2.45 × 10−28)
page-rank

0.22 0.23 0.24

1.0

1.5

2.0

2.5
(coeff: 0.19, p-val: 3.15 × 10−11)

rx-scrabble

0.19 0.20
1.6

1.8

2.0

(coeff: 0.83, p-val: 0.00)
scala-kmeans

1.2 1.4

60

70

80

(coeff: 0.81, p-val: 1.02 × 10−63)
scala-stm-bench7

0.0 0.2 0.4 0.6 0.8 1.0

Time/iteration (sec)
0.0

0.2

0.4

0.6

0.8

1.0

LL
C 

m
iss

es
/it

er
. (
x1

07 )

Figure 8. Correlation between LLC misses and iteration duration for 5 Renaissance benchmarks. The Pearson correlation
coefficient (“coeff.” in the figure) and p-value are listed for each benchmark.

bottom-left side of the plots and the GC iterations closer to
the upper-right quadrant. This trend suggests that GC activ-
ity correlates with both higher execution time and higher
LLC misses. Page-rank illustrates this observation best. For
completeness, the plot also shows the Pearson correlation
statistics computed for each benchmark. The coefficient has
a value between -1 and 1; a value of 0 indicates no correla-
tion. Notably, all 5 benchmarks pass the test, according to a
p-value smaller than the reference value of 0.05.
In conclusion, we find that a subset of the Renaissance

benchmarks show, with reasonable confidence, a correlation
between GC-induced cache pollution and negative effects

on application performance. However, even for these bench-
marks, the measured GC impact is very small: as already
evaluated in Section 5 we are looking at an overhead of at
most 10 %. For the other 17 Renaissance benchmarks, no cor-
relation between LLC misses and application performance
can be inferred. We suspect that the inconsistency in results
between the synthetic micro-benchmark (Section 4) and the
Renaissance benchmarks, representative of real-world work-
loads, comes from the fact that typical Java applications are
either not LLC-friendly or have very small working-sets. To
validate our hypothesis, we analyze the sensitivity of the
Renaissance benchmarks to the LLC size in Section 6.2.
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Figure 9. Sensitivity of Renaissance benchmarks and micro-
benchmark to LLC capacity. The execution time is normal-
ized to the baseline (using the full 30.25MiB LLC).

6.2 LLC Sensitivity Analysis
This section quantifies the sensitivity of the Renaissance
benchmarks and micro-benchmark (Section 4) to the LLC
size. To do so, we restrict the available LLC capacity of spe-
cific processes using the Cache Allocation Technology (CAT)
from the Intel Resource Director Technology [9].

We conduct this set of experiments on a different machine
from the one described in Section 4.2 since only specific
Intel server processors have Intel CAT enabled. We use a
dual-socket system with a 22-core Intel Xeon Gold 6238T
and 30.25MiB of LLC per socket, running Ubuntu 20.04 on a
5.15.0 Linux kernel. The processor has 11 slices of LLC which
can be enabled or disabled independently on demand. Thus,
we can split the LLC at a granularity of 2.75MiB. We control
the available cache size with the resctrl Linux interface.We
limit the execution of the Renaissance benchmarks and that
of the cache-sensitive micro-benchmark to a single socket
and its local memory (NUMA node) using numactl, and we
control the LLC size available for all the cores of the socket.

Figure 9 presents the results of the LLC sensitivity analysis
for the Renaissance benchmarks and the micro-benchmark.
The x-axis shows the available LLC sizes. The y-axis presents
the execution time of the benchmarks for specific LLC sizes
normalized to the execution time when the full 30.25MiB
LLC is used. The Renaissance benchmarks are executed as
described in Section 5.1, but with the default number of iter-
ations and discarding the first half of the execution. As we
study the normal behavior of the benchmarks themselves,
we use the default configuration of Renaissance benchmark
suite in which explicit GCs are triggered before each iter-
ation. Because this increases the number of deterministic
GCs, the variability of the iteration durations is also reduced.
Furthermore, we run each experiment three times and take
the mean of the results for each workload. For the baseline
execution, i.e., with the full LLC, we take the result with
the shortest execution time of the three runs. For the cache-
sensitive micro-benchmark, we use a 11.44MiB hash table,
which is fully LLC-resident in the baseline run. Similarly

to Section 5.1, we use 2MiB huge pages. Figure 9 shows all
Renaissance benchmarks in the same color (orange), as we
want to emphasize the trends related to the execution of
these benchmarks under reduced LLC size, rather than the
individual trend for each benchmark.
We see in Figure 9 that for the cache-sensitive micro-

benchmark (in blue) the performance scaling with varying
LLC sizes is close to our expectations. For an LLC size of
11.44MiB and higher, we expected the performance of the
micro-benchmark to be stable as its working-set can fit in the
LLC. However, we observe that for LLC sizes from 13.75MiB
up to 19.25MiB the execution time is still above the baseline
execution time. We associate the performance overheads
at those LLC sizes with the memory overheads of the JVM
itself and the system threads running concurrently with our
micro-benchmark. When the available LLC capacity further
decreases below the hash table size (i.e., the size of the micro-
benchmark’s working-set), we see the expected behavior.
The execution time increases linearly with the miss rate in
the hash table due to the fact that all accesses are uniformly
random and only a smaller part of the hash table fits in LLC.

Figure 9 also reveals that all Renaissance benchmarks ex-
perience a minimal slow-down, i.e., less than 15%, when
we reduce the available LLC size by 8/11, from 30.25MiB to
8.25MiB. Even the benchmarks identified in Section 6.1 as
having a correlation between GC-induced cache pollution
and the negative effect on application performance, show
less than 12% performance degradation. When we reduce
the available LLC size from 8.25MiB to 2.75MiB, some of
the benchmarks (scrabble, fj-kmeans, finagle-http and
finagle-chirper) experience a considerable performance
drop (higher than 50 %). This effect can be attributed to hav-
ing hit a working-set size cliff (e.g., working-set of instruc-
tions or data that would have been LLC-resident otherwise).

The cache sensitivity analysis indicates that the working-
set size of the Renaissance benchmarks is either larger than
the LLC capacity or smaller than 2.75MiB, which is the min-
imum we are able to measure with Intel CAT. We would oth-
erwise expect to see a steep performance degradation when
the available LLC capacity is close to the working-set size,
as demonstrated by the micro-benchmark. This result is well
aligned with our previous observations. Even if we restrict
the LLC for the Renaissance benchmarks to just a fraction
of its full capacity, by artificially reducing its size, there is
no noticeable difference in performance. A concurrent GC
polluting the LLC would have the same effect. Therefore,
we can conclude that GC-induced cache pollution can only
have a limited impact on the performance of Renaissance
benchmarks, which, indeed, is what we have observed.

7 Related Work
Garbage collection is a rich source of scientific work. While
generally addressing the most evident problems of automatic
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memory management, such as pause times or memory foot-
print, there is little literature aimed at analyzing the impact
of concurrent GC on applications’ cache locality.
Among the earliest efforts in this direction, Blackburn

et al. [2] aim to illustrate the costs of GC and its impact
on application performance and locality. However, as GC
algorithms evolved over the years, the observations extracted
in this work are not directly applicable to today’s ultra-low
latency concurrent GCs. Similarly, Ha et al. [14] perform a
microarchitectural characterization of GCs, together with
other JVM components, such as the JIT compiler. In order
to obtain accurate results, they limit their evaluation to non-
concurrent GCs running in a uniprocessor environment. By
contrast, our work overcomes this limitation and adapts
our tools and methodology for quantifying the impact of
concurrent GCs on application performance and correlating
it with microarchitectural events.

Cao et al. [6] attempt to measure the overhead introduced
by concurrent GCs as well, among other JVM services. They
highlight two main challenges in evaluating concurrent col-
lectors: (i) the difficulty to obtain data per thread for some
metrics (e.g., energy), and (ii) the intricacy of the GC house-
keeping work needed within the application execution, as
opposed to the case of STW collectors. The authors propose
separately measuring the GC and application work in an
STW setting and then deducing the concurrent GC overhead
from the difference between a concurrent run and a STW
run. They use Jikes Research VM for evaluation. We argue
that it is not straightforward to apply this approach to a pro-
duction VM, such as HotSpot, as the higher complexity of
the VM implies more effort to obtain the same GC algorithm
implemented both as stop-the-world and concurrent.
Another recent study [5] recognizes the complexity of

measuring the overhead of concurrent GCs. The authors
propose a methodology that employs a lower bound for
the cost of GC. They argue that absolute GC overheads are
not clear to this day and that typical GC evaluation results
can be misleading. Their study compares the collectors in
OpenJDK 17 and finds that the newer GCs, i.e., ZGC and
Shenandoah, are more costly than the default GC, G1. This
work is orthogonal to our study, which focuses on the cache-
level effects. However, it strongly supports our motivation
for quantifying the extent to which modern concurrent GCs
affect applications’ locality in the cache hierarchy.

The work of Sareen and Blackburn [27] explores the cost
differences between manual and automatic memory manage-
ment. In their paper, the authors also propose a methodology
for quantifying the impact of GC-induced cache pollution
on application performance, but they use stop-the-world
home-brewed GCs. In contrast, our analysis extends to con-
current collectors and their impact on application locality
and aims to show the effects of widely-used production GCs
on application performance.

Yang et al. [31] also conduct an investigation focused on
GC impact on application performance from a cache locality
perspective. They evaluate ZGC in this context and propose
a new heap organisation that improves application locality.
However, the authors of [31] measure cache-level events for
the whole JVM runs, instead of the application thread alone,
warning that these results should be taken “with a grain
of salt”. Our extensive and targeted analysis complements
this work with precise insights regarding the GC effect on
application data locality in the caches.

8 Conclusions and Future Work
Automatic memory management is a double-edged sword:
on the one hand it offers important run-time correctness
guarantees, eliminating any risk of dangling pointers, mem-
ory leaks, or use-after-free hazards. On the other hand, a
relatively high price has to be paid for the provided memory
management. Modern concurrent garbage collectors solved
the original problem of long application pauses introduced
by old-style STW GCs. However, the changes needed for re-
moving the pauses prompted new sources of overhead. There
are several possible components to this overhead: resource
sharing, non-application work done by application threads
to help the GC, and memory footprint for GC bookkeeping.

To this end, our work aims to shed light on the overhead
contributed by one single component, namely the effect of
GC on the cache. We experiment with a cache-sensitive
micro-benchmark and the Renaissance benchmark suite.
On the former, specifically tailored for demonstrating GC-
induced cache-pollution, we find a combined effect of a 3×
increase in application execution time (as measured per iter-
ation of the micro-benchmark) and a 3-order of magnitude
increase in LLC misses. However, the experiments on Renais-
sance change the perspective. We show that for 17 out of 22
benchmarks, no statistically significant correlation can be
found between GC-induced LLC misses and execution time.
A further study on theworking-set size of Renaissance bench-
marks reveals that these workloads lack LLC-sensitivity. As
such, we conclude that the impact of concurrent GCs on
the application’s data locality in the cache is a non-problem
in real-world scenarios where applications themselves are
oblivious to cache locality.

Thiswork represents just a small step towardsmore clearly
understanding the impact of concurrent GCs on application
performance. Our study on cache locality can be further
consolidated by quantifying the contributions of the GC and
application towards cache pollution at amemory-access level.
Another research direction could focus on other individual
overhead components of concurrent GCs. A clear breakdown
on the relative contribution of each component to the total
overhead of concurrent GCs would represent an important
advancement towards a more targeted improvement of the
Java memory management system.
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