
Lukewarm Serverless Functions:
Characterization and Optimization

David Schall
d.h.schall@sms.ed.ac.uk
University of Edinburgh

Edinburgh, United Kingdom

Artemiy Margaritov∗
artemiy.margaritov@huawei.com
Turing Core, Huawei 2012 Labs
Edinburgh, United Kingdom

Dmitrii Ustiugov∗
dmitrii.ustiugov@ed.ac.uk

ETH Zurich
Zurich, Switzerland

Andreas Sandberg
andreas.sandberg@arm.com

Arm Research
Cambridge, United Kingdom

Boris Grot
boris.grot@ed.ac.uk

University of Edinburgh
Edinburgh, United Kingdom

ABSTRACT
Serverless computing has emerged as a widely-used paradigm for
running services in the cloud. In serverless, developers organize
their applications as a set of functions, which are invoked on-
demand in response to events, such as an HTTP request. To avoid
long start-up delays of launching a new function instance, cloud
providers tend to keep recently-triggered instances idle (or warm)
for some time after the most recent invocation in anticipation of
future invocations. Thus, at any given moment on a server, there
may be thousands of warm instances of various functions whose
executions are interleaved in time based on incoming invocations.

This paper observes that (1) there is a high degree of interleaving
among warm instances on a given server; (2) the individual warm
functions are invoked relatively infrequently, often at the granu-
larity of seconds or minutes; and (3) many function invocations
complete within a few milliseconds. Interleaved execution of rarely
invoked functions on a server leads to thrashing of each function’s
microarchitectural state between invocations. Meanwhile, the short
execution time of a function impedes amortization of the warm-
up latency of the cache hierarchy, causing a 31-114% increase in
CPI compared to execution with warm microarchitectural state.
We identify on-chip misses for instructions as a major contribu-
tor to the performance loss. In response we propose Jukebox, a
record-and-replay instruction prefetcher specifically designed for
reducing the start-up latency of warm function instances. Jukebox
requires just 32KB of metadata per function instance and boosts
performance by an average of 18.7% for a wide range of functions,
which translates into a corresponding throughput improvement.

∗This work was done while the authors were at University of Edinburgh

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527390

CCS CONCEPTS
• Computer systems organization → Architectures; Cloud
computing; Processors and memory architectures; Architectures;
Cloud computing; Processors and memory architectures; • Infor-
mation systems→ Computing platforms; Computing plat-
forms.

KEYWORDS
Serverless, characterization, microarchitecture, instruction prefetch-
ing

ACM Reference Format:
David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg,
and Boris Grot. 2022. Lukewarm Serverless Functions: Characterization andOp-
timization. In The 49th Annual International Symposium on Computer Archi-
tecture (ISCA ’22), June 18–22, 2022, New York, NY, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3470496.3527390

1 INTRODUCTION
Serverless computing, also known as Function-as-a-Service (FaaS),
has emerged as a popular cloud computing paradigm. In serverless,
developers organize their applications as a set of functions, which
are invoked on demand in response to external requests (e.g., clicks)
or by other functions. Developers fully cede the management of re-
sources used by their functions to the cloud provider, who spawns
and shuts down function instances based on observed load. For
developers, the serverless model offers two significant advantages:
first, they do not need to worry about scalability of their applica-
tions, which are taken care of by the cloud provider; and secondly,
they pay only for the time that their function is executing (i.e.,
per invocation). The latter contrasts sharply with traditional cloud
deployments, including microservices, where a running instance
incurs a cost to the developer regardless of whether it is processing
requests or is idle.

Often, serverless functions execute fine-grained, short-running
tasks [11, 12, 25]. Indeed, developers are incentivized to break down
their applications into a collection of fine-grained functions to max-
imize elasticity, thus allowing different parts of business logic of the
application to scale independently. Moreover, serverless providers,
such as AWS Lambda and Google Cloud Functions, charge users for
the maximum amount of memory that each of their functions con-
sumes [5, 19], which further pushes the developers toward leaner,

https://orcid.org/0000-0002-3587-3253
https://orcid.org/0000-0003-2126-8906
https://orcid.org/0000-0003-3156-010X
https://orcid.org/0000-0001-9349-5791
https://orcid.org/0000-0001-6525-0762
https://doi.org/10.1145/3470496.3527390
https://doi.org/10.1145/3470496.3527390

ISCA ’22, June 18–22, 2022, New York, NY, USA D. Schall, et al.

finer-grained functions. For instance, 70% of AWS Lambda func-
tions are deployed with a 128–256MB memory limit [11]. In the
case of interactive services, for which serverless is a common im-
plementation model [15], the end-to-end latency must often meet
an SLO target in the order of a few tens of milliseconds [20]; to
do so, the individual functions may be expected to complete in a
millisecond or less [25, 45, 54].

To avoid the long delays of booting a new function instance,
cloud providers tend to keep recently-invoked instances alive (or
warm, in serverless parlance) instead of shutting them down, in
anticipation of additional invocations to that instance. Recent work
has shown that Amazon, Google and Microsoft all keep recently-
invoked function instances warm for at least several minutes and
up to an hour [49]. The combination of small memory footprints
for many functions, long keep-alive intervals enforced by cloud
providers [49], and hundreds of gigabytes of memory in a represen-
tative server results in thousands of warm function instances resid-
ing on a typical cloud server [2]. The execution of these functions
is interleaved in time based on invocation traffic, with many warm
functions experiencing invocation inter-arrival rates measured in
seconds or minutes [43] – an invocation rate that is relatively in-
frequent compared to their run time.

The high degree of co-residency and interleaving of serverless
functions on a server, combined with short execution times (mil-
liseconds or less) and relatively long inter-invocation intervals
(seconds or minutes), mean that when a given warm function is
invoked, it often finds none of its microarchitectural state on the
core or in the cache hierarchy. Thus, while the function itself is
memory-resident, the actual execution of the function is cold from
the CPU perspective. We refer to this phenomenon as a lukewarm
execution.

Our analysis reveals that lukewarm executions of functions re-
sult in a 31-114% performance degradation compared to executions
with fully warmed up microarchitectural state (i.e., back-to-back
executions of the same function on the same core). The reason for
such a high performance degradation is that the short running time
of the functions (typically on the order of a few milliseconds or less)
is insufficient to amortize the warm-up time of microarchitectural
structures. Using the Intel Top-Down performance analysis [52],
we show that for 20 functions (including two distributed appli-
cations implemented as serverless workflows) the single largest
source of performance loss (56% on average) is in the CPU front-end,
specifically the on-chip misses for instructions.

Based on this finding, we examine the instruction footprints
across multiple invocations of the same function and find signifi-
cant commonality across invocations: 90% of all instruction cache
blocks accessed by one invocation are also accessed by a subse-
quent invocation. We further find that the instruction footprints
of individual invocations for the studied functions ranges from
300KB to over 800KB. With hundreds or thousands of co-running
warm function instances on a serverless host, it is infeasible to keep
the combined instruction footprints of all functions in processor
caches.

Spurred by the observations above, we propose Jukebox, a record-
and-replay instruction prefetcher for accelerating lukewarm server-
less function executions. The idea of a record-and-replay instruction
prefetcher is not new; indeed, prior works have proposed them for

long-running server workloads by recording entire streams of in-
struction cache accesses or misses [16, 28, 29], requiring over 100KB
of on-chip storage for metadata. In contrast to these works, Juke-
box solves a different problem: how to accelerate short-running
tasks that have no microarchitectural state or metadata on-chip.
To accommodate thousands of warm functions, Jukebox stores its
metadata in main memory using simple spatio-temporal compres-
sion designed for high coverage and low metadata redundancy. Our
evaluation shows that 32KB of metadata (i.e., eight OS pages) is
sufficient for high efficacy; for a thousand warm function instances,
the required metadata cost is a mere 32MB. Jukebox requires simple
hardware support and a negligible amount of on-chip state with
no modifications to the processor caches. Our full-system simula-
tion of Jukebox reveals that it speeds-up execution of lukewarm
functions by 18.7%, on average.

To summarize, our contributions are as follows:
• We show that a high degree of interleaving in the execution of
warm serverless functions with short running times leads to
obliteration of their on-chip microarchitectural working sets
between invocations, resulting in 31-114% performance degra-
dation relative to an execution with warm microarchitectural
state.

• We perform a detailed Top-Down analysis of the causes of the
performance loss in the interleaved setup and show that the
largest fraction (56%) of extra execution cycles is attributed to
fetch latency indicating a bottleneck in instruction delivery.

• We propose Jukebox, a record-and-replay instruction prefetcher
that accelerates lukewarm function executions. Jukebox re-
quires a small amount (32KB) of metadata in main memory
per function instances (32MB for a thousand functions) and
provides 18.7% performance improvement on lukewarm invo-
cations, on average.

2 MOTIVATION
2.1 Serverless Workloads Characteristics
Serverless, also known as Function-as-a-Service (FaaS), has emerged
as a new cloud programming paradigm in which the providers take
complete responsibility of managing the cloud infrastructure leav-
ing service developers to focus only on writing their business logic.
In serverless, developers write their services as a set of stateless
event-triggered tasks, called functions, which are invoked via HTTP
requests. The providers spawn and tear down instances of each
function on demand, following changes in the function invocation
traffic.

Recent studies of AWS Lambda show that production deploy-
ments feature many short-running functions with a small memory
footprint [11, 12]. For instance, 67% of Lambda@Edge functions
complete within 20ms [12]. One reason for the prevalence of short-
running functions is their frequent usage for implementation of
interactive services. For example, Eismann et al. [15] found that the
most common application domain for serverless functions is web
services (33% out of 89 studied functions).

The demand for short functions continues to increase; for exam-
ple, one of the AWS Lambda studies shows that the median function
duration became 2× shorter in 2020 as compared to the median

Lukewarm Serverless Functions: Characterization and Optimization ISCA ’22, June 18–22, 2022, New York, NY, USA

duration in 2019 [12]. In response to this trend, AWS Lambda de-
creased the billing granularity from 100ms to 1ms [5]. Lastly, both
the AWS Lambda and Azure Functions demonstrate that >70% of
functions have little memory footprint, allocating less than 300MB
of memory [11, 43].

Despite the short running time of many function instances and
their small memory footprints, cold-booting a function is a long-
latency operation that can take hundreds of milliseconds in today’s
clouds [49, 50]. To avoid this latency in the critical path of function
invocation, cloud providers tend to keep idle function instances
alive (or warm) for 5-60 minutes [36–38, 49]. Although keeping
function instances warm comes at a cost for the providers because
users are billed only for the actual processing time of individual
invocations, all major providers deploy this performance optimiza-
tion.

With providers keeping function instances warm for 5-60 min-
utes, approximately 20-40% of all deployed functions have a warm
instance when a request arrives, according to the study of Azure
Functions [43]. The same study shows that fewer than 5% of all in-
vocations have an inter-arrival time (IAT) of under a second. Thus,
the IAT of a vast majority of invocations to warm instances lies in
the range of 1 second to a few minutes.

2.2 Serverless Functions on a Cloud Server
As discussed above, many serverless functions have modest mem-
ory footprints and are kept warm for a number of minutes by the
cloud provider to reduce the incidence of cold boots. With typical
cloud servers today configured with hundreds of gigabytes of main
memory [47], a thousand or more instances of warm functions
may be resident on a server [4]. The warm instances tend to stay
memory-resident as providers disable swapping to avoid the as-
sociated performance and security issues [48]. Meanwhile, many
functions have short execution times of a few milliseconds or less,
with invocations that are rare compared to their processing time.

The combination of these trends results in a high degree of func-
tion interleaving. Simplistically assuming a server, with instances
of functions, whose invocation processing time is 1ms with a 1s
inter-arrival time (IAT) for each instance, a thousand unrelated
invocations will be interleaved between two invocations of the
same function. In fact, function execution time may vary and their
inter-arrival time distribution is not uniform, but with thousands
of function instances kept warm on a host and typical inter-arrival
times of seconds to minutes, a huge degree of interleaving is likely.

The problem that stems from such extensive interleaving is that
a new invocation to a warm function instance is likely to find its on-
chip microarchitectural state largely obliterated. Thus, a function
instance that is warm from a runtime’s perspective (i.e., has its state
fully loaded in memory) faces a cold CPU, requiring the instance
to fill all of the microarchitectural structures both in the core and
throughout the cache hierarchy – a phenomenon we refer to as a
lukewarm invocation. Lukewarm invocations pose a particularly
acute problem for serverless functions with invocations times in
the range of milliseconds, since the short execution times do not
offer the opportunity to amortize the latency needed to warm up
microarchitectural structures over a long execution period.

0 10 100 1000 10000
Inter-arrival time [ms]

100%

150%

200%

250%

300%

N
or

m
al

iz
ed

 C
PI

Auth Python
AES NodeJS

Figure 1: Effect of request inter-arrival time on the CPI of a
given function on a high-occupancy server. CPI is normalized
to back-to-back invocations.

To illustrate the problem, we study the performance of represen-
tative serverless functions, packaged as Docker containers, running
on a modern server. Multiple instances of many function are kept
warm on the server. The hardware setup and the functions are
described in Sec. 4. Clients send invocation requests to the vari-
ous instances maintaining a stable load on the server (around 50%
of peak CPU load). In each experiment, one function instance is
selected as a function-under-test (FUT). The invocation IAT for
the FUT is fixed for the duration of the experiment. For each in-
vocation, we sample a set of performance counters using perf. We
then repeat the experiment with a different IAT for the FUT. Each
experiment with IATs lower than 100ms was run for 3 minutes
while the experiments with 100ms or longer IATs – for 10 minutes.

Figure 1 represents the cycles per instruction (CPI) for two rep-
resentative FUTs: an authentication function written in Python and
an AES encryption function written in NodeJS. For this experiment,
we choose functions written in different languages to highlight the
language-independent nature of the behavior. The figure clearly
shows that increasing the invocation IAT tends to increase the CPI.
The number of cycles spent per invocation of an authentication
function increases by more than 2x and stabilizes at a 270% higher
CPI with IAT of over 1 second. With the same IAT, the AES encryp-
tion function requires 150% more cycles per instruction compared
to back-to-back execution. The reason why the CPI grows as the
invocation IAT is increased is that the execution of numerous other
instances between two invocations of the FUT thrashes all of the
microarchitectural state on the CPU core where the FUT executes
and throughout the cache hierarchy. Thus, when a new invocation
to a FUT arrives after a long IAT, the FUT experiences a lukewarm
execution, with poor performance.

2.3 Top-Down Analysis of Lukewarm
Executions

To get a deeper understanding of the sources of performance loss
in lukewarm executions, we study each of the 20 functions in our
suite (Table 2) in two configurations. In the first configuration,
the FUT is invoked repeatedly on the same core on an otherwise
idle server – this yields the lowest possible execution time for the
studied function as each invocation after the first one enjoys fully
warmed up microarchitectural state and caches. We refer to this as

ISCA ’22, June 18–22, 2022, New York, NY, USA D. Schall, et al.

Fib
-P
AE
S-P
Au
th-P
Em
ail-
P
Rec
O-P Fib

-N
AE
S-N
Au
th-NCu

rr-NPay
-N

Fib
-G
AE
S-G
Au
th-GGe

o-G
Pro
dL-
G
Pro
f-G
Rat
e-G
Rec
H-G
Use
r-G
Shi
p-G Me

an
0.00

1.00

2.00

3.00

4.00

C
PI

Retiring Frontend_Bound Bad_Speculation Backend_Bound

Figure 2: Top-Down CPI analysis of serverless functions. Striped bars: reference execution, solid bars: interleaved execution.

Fib-P
AES-P

Auth-P
Email-

P
RecO

-P
Fib-N

AES-N
Auth-N

Curr-N Pay-N
Fib-G

AES-G
Auth-G

Geo-G
ProdL-G

Prof-G
Rate

-G
RecH

-G
User

-G
Ship-G

Mean
0%

100%

200%

300%

N
or

m
al

iz
ed

 C
PI

Fetch_Bandwidth
Fetch_Latency

Figure 3: Top-Down CPI analysis of the front-end stall cycles. The striped portions show the reference execution, solid portions
show the additional cycles due to interleaving. Normalized to the front-end portion of the CPI for the reference execution in
Figure 2.

0% 50% 100% 150%
Normalized CPI

Fetch Latency Fetch Bandwidth Rest

Figure 4: Average CPI in the interleaved setup normalized to
the average CPI in the reference execution. The striped part
represents CPI in the reference execution, the solid part –
the extra CPI observed in the interleaved setup. Rest includes
all other cycle categories except the front-end stall.

the reference execution. The second configuration runs a stressor
after each invocation of the FUT.

To achieve the effect of interleaving with other functions, we
use stress-ng [9] as a stressor and run it on the same core as the
FUT in order to thrash caches and the core’s microarchitectural
state.

The performance degradation experienced by the functions in
this configuration is similar to that of combining a high degree of
interleaving with high IAT (Sec. 2.2).

Using the data collected from performance counters, we per-
form an analysis of each function’s CPI stack using the Top-Down
methodology [52]. Figure 2 shows the results of the analysis for the
top-most level of the Top-Down tree, which classifies all pipeline

slots into one of four categories: front-end bound (e.g., instruc-
tion cache and I-TLB misses), back-end bound (e.g., data cache
misses, structural hazards for execution resources), bad speculation
(e.g., branch mispredictions) and retiring. Note, the first three cat-
egories relate to microarchitectural bottlenecks, which should be
minimized, and only the last one corresponds to useful work.

We make two observations based on the results presented in Fig-
ure 2. First, aggressive interleaving (modeled by the stressor in this
experiment) has a detrimental effect on all functions, increasing
their CPI by 31-114% (70% on average). Second, 51% and 55% of all
cycles are classified as front-end stall cycles1 in reference and inter-
leaved execution, respectively. Moreover, on average, the front-end
is responsible for 62% of all stall cycles in reference execution (65%
in the interleaved execution). On 15 out of 20 studied functions,
the front-end contributes to more than 50% of the extra stall cycles
observed in the interleaved execution compared to reference exe-
cution. As a result, the front-end is the main source of stalls for the
majority of the studied functions.

We next focus on the front-end stall cycles to understand the
source(s) of the bottleneck. Following the Top-Down methodology,
we classify the front-end stall cycles into two categories: fetch
latency and fetch bandwidth. As shown in Figure 3, the vastmajority

1In Top-Down, a stall cycle is defined as a CPU cycle in which the pipeline cannot
make progress because at least one architectural component is fully utilized and cannot
take additional work. However, we note that in an out-of-order architecture, other
components can often make progress in the shadow of a pipeline stall. Furthermore,
stalls can overlap with each other as well as with retiring.

Lukewarm Serverless Functions: Characterization and Optimization ISCA ’22, June 18–22, 2022, New York, NY, USA

of front-end stall cycles in both reference and interleaved executions
are due to fetch latency. In the interleaved execution, fetch latency
stall cycles increase by an average of 94% over the reference while
fetch bandwidth stalls grow only by 22% on average.

Figure 3 puts the front-end performance problem in focus by
isolating the portion of the CPI due to front-end stalls from Figure 2
and breaking down the stall cycles into fetch latency and fetch
bandwidth. Figure 4 focuses on the front-end related stalls portion
of the Mean bar for the interleaved execution from Figure 2. To
identify the source of the extra stall cycles in the interleaved setup,
the CPI stack in Figure 4 is normalized to the reference execution.
Our key observation is that with function interleaving, most of
the extra stall cycles occur due to front-end inefficiencies. More
specifically, the figures clearly point out fetch latency as a key
performance bottleneck in the execution of serverless functions,
responsible for 56% of all extra stall cycles in the interleaved setup,
on average.

2.4 The Story of Cache Misses
To understand the source of fetch latency stalls, we examine in-
struction misses throughout the cache hierarchy and compare them
to data misses. Noting that L1-I misses are consistently high in both
reference and interleaved executions, which is expected in light of
the findings above, we focus our study on L2 and L3 caches.

Figure 5a shows the L2 MPKI for both instruction and data ref-
erences. We make several observations. First, miss rates are high
for both reference and interleaved executions, with an average
MPKI of 54 for the former and 72 for the latter. Second, we note
that misses for instructions are more frequent than misses for data,
which suggests that the instruction working set is larger than the
data working set. Given that the in-order front-end can not overlap
processing of instruction cache misses while the out-of-order back-
end often can hide some of the latency of data cache misses, it is not
surprising that the front-end is a more significant contributor to
total stall cycles than the back-end (Figure 2). Lastly, we note that
the high L2 miss rates for the reference setup can, at least partially,
be attributed to a relatively small L2 of 256KB in the evaluated
server as compared to the large instruction footprints of the studied
functions, as discussed in Sec. 2.5. Meanwhile, in the interleaved
setup, L2 miss rates are expected to be high due to the cold cache
in the wake of interleaving.

We next shift our attention to the LLC (i.e., L3 cache), whose
MPKI is shown in Figure 5b. The striking trend in the figure is that
reference executions have no LLC misses for instructions and very
few misses for data, which is explained by the fact the working sets
of the studied functions easily fit in the 25MB LLC of the evaluated
server and that the back-to-back invocation pattern facilitates LLC
residency. Meanwhile, the LLC misses for interleaved executions
exceeds 10 MPKI, with several functions experiencing MPKIs in
excess of 40. The majority of the misses are for instructions, which
explains the high fraction of front-end related stall cycles in in the
interleaved setup: each L1-I miss to the main memory leaves the
core front-end starved of instructions for an extended period of
time.

Fib-
P
AES-P

Auth
-P

Email
-P

RecO
-P

Fib-
N
AES-N

Auth
-N
Curr

-N
Pay

-N
Fib-

G
AES-G

Auth
-G
Geo

-G

Prod
L-G

Prof
-G
Rate

-G

RecH
-G
User

-G
Ship

-G
Mean

0
20
40
60
80

100
120
140

L2
 M

PK
I

Data
Instructions

(a) L2 MPKI breakdown

Fib-
P
AES-P

Auth
-P

Email
-P

RecO
-P

Fib-
N
AES-N

Auth
-N
Curr

-N
Pay

-N
Fib-

G
AES-G

Auth
-G
Geo

-G

Prod
L-G

Prof
-G
Rate

-G

RecH
-G
User

-G
Ship

-G
Mean

0

20

40

60

L3
 M

PK
I

Data
Instructions

(b) L3 MPKI breakdown

Figure 5: MPKI breakdowns of level 2 (a) and level 3 (b) caches.
The striped bars (on the left in each pair of bars): reference
execution, solid bars: interleaved execution.

2.5 Instructions in Focus
Having identified long-latency misses for instructions as a key per-
formance bottleneck in the execution of warm serverless functions,
we next study the instruction footprints of individual invocations
of functions from our suite. For this analysis, we use the gem5
full-system simulator and run the same containerized function in-
stances as we do on real hardware. Sec. 4.2 details our simulation
setup. We load the warmed-up system state from a checkpoint and
execute each function 25 times. For each execution, we trace L1-I
accesses, at cache block granularity, eliminating any repeated cache
block addresses from the trace to get the set of unique instruction
blocks accessed per invocation. We record both user and kernel
instruction accesses.

Figure 6a shows the instruction footprint sizes of individual
invocations for the studied functions in blue. Error bars indicate
the range of recorded values for a given function. We observe that
with only a few exceptions, the instruction footprints of individual
invocations ranges from just over 300KB to around 800KB with
notably low variance for the vast majority of functions.

Lastly, we study the commonality in the instruction footprints
across invocations. For this study, we compare the footprints (in
terms of cache block addresses) of each invocation with that of
each other 24 invocations, for a total of 300 pair comparisons. For
each pair of invocations, we compute commonality as the Jaccard
index [23] which is defined as the ratio between the intersection
and the union of unique cache block addresses that belong to the
instruction footprint of the pair of invocations.

Results of the commonality study are shown in Figure 6b. For
all but three functions the mean of commonality among the 300

ISCA ’22, June 18–22, 2022, New York, NY, USA D. Schall, et al.

Fib-
P
AES-P

Auth
-P

Email
-P

RecO
-P

Fib-
N
AES-N

Auth
-N
Curr

-N
Pay

-N
Fib-

G
AES-G

Auth
-G
Geo

-G

Prod
L-G

Prof
-G
Rate

-G

RecH
-G
User

-G
Ship

-G
MEAN

0

256K

512K

768K

M
em

or
y

si
ze

 [B
]

(a) Instruction footprint sizes

Fib-
P
AES-P

Auth
-P

Email
-P

RecO
-P

Fib-
N
AES-N

Auth
-N
Curr

-N
Pay

-N
Fib-

G
AES-G

Auth
-G
Geo

-G

Prod
L-G

Prof
-G
Rate

-G

RecH
-G
User

-G
Ship

-G
MEAN

0.5

0.75

1.0

Ja
cc

ar
d

in
de

x

(b) Instruction commonality

Figure 6: (a) Instruction footprint sizes of individual invoca-
tions. (b) The distribution of Jaccard indices calculated from
the 25 function invocations. The Jaccard index ranges from
0 (nothing in common) to 1 (identical), a higher value sug-
gests that record and replay to be more likely to prefetch
that function.

compared pairs of invocations exceeds 90%. Their commonality
distributions ranges above 80% and half of them do not even subceed
90%. Only two functions show outliers in their 300 compared pairs
that have footprints with a commonality less than 75%. We thus
conclude that multiple invocations of the same function have high
commonality in their individual instruction footprints.

2.6 Summary
Many serverless functions have small memory footprints, short
execution times and comparatively long IATs. Thousands of such
function instances may run simultaneously on a cloud server, re-
sulting in a very high degree of interleaving between two invo-
cations of the same function. The interleaving obliterates on-chip
microarchitectural state of the functions, resulting in a lukewarm
execution with cold caches and a cold core. Lukewarm executions
carry an average performance penalty of 70% compared to an ex-
ecution with fully warmed microarchitectural state. The single
biggest source of performance overhead in a lukewarm execution
is the core front-end, particularly fetch latency, which constitutes
56% of all additional stall cycles, on average. Frequent L2 and LLC
misses for instructions are a key contributor to the high fetch la-
tency. The high on-chip miss rates for instructions in interleaved
invocations of serverless functions can be explained by their large
instruction footprints of individual invocations, commonly in the
range of 300KB to over 800KB. At the same time, there exists high
commonality in the instruction footprints of different invocations
of the same function.

3 DESIGN
3.1 Design Overview
Based on the insights of Sec. 2, we introduce Jukebox, an instruction
prefetcher specifically designed to accelerate lukewarm executions
of serverless functions. Jukebox exploits instruction commonal-
ity the high commonality of instruction blocks across invocations
by recording the working set of one invocation and replaying it
whenever a new invocation to the same instance arrives.

Compared to state-of-the-art instruction prefetchers [7, 16, 28,
33] which target the L1-I, a unique feature of Jukebox is that it
prefetches into the L2. This choice is motivated by two observations.
First, the instruction footprints of individual invocations of the
containerized functions generally stay within 800KB, a value much
higher than a typical L1-I capacity of 32–64KB. However, such
instruction footprints fit comfortably within the L2 capacities of
today’s server processors, including Intel Skylake and later [1],
Amazon Graviton 2 [46], and the upcoming AMD Zen 4 [40], all
of which have L2 caches of 1MB. Secondly, prefetching into the
large L2 significantly simplifies the prefetcher’s design, since it
avoids the need to place prefetches into the small L1-I. With a
small cache as a prefetch target, it is essential that prefetches arrive
just in time to avoid being evicted (if they arrive too early) or not
being useful (if late). With L2 as the prefetch target, an aggressive
prefetcher can simply fill it at the start of execution and expect
instructions to not be evicted in the duration of a short-running
function. Prefetching into the L2 does sacrifice some performance
compared to prefetching into the L1-I; however, since the latency
of an L2 hit is approximately 10 cycles, while an LLC hit is typically
over 30 cycles and an LLCmiss is hundreds of cycles, the bulk of the
opportunity in reducing stalls in a serverless environment comes
from avoiding L2 misses. While Jukebox replays prefetches into
the L2, its record logic sits at the L1-I, which enables recording of
virtual addresses of instruction cache misses. Operating on virtual
addresses is essential for the prefetcher to work well with the virtual
memory subsystem and not be impacted by, for instance, page
migrations due to memory compaction [26].

We next discuss details of Jukebox, whose operation consists
of two distinct phases: record and replay. The record phase begins
as soon as the container running the function has been launched.
The replay phase is triggered when the OS resumes the process of
a function that has been suspended waiting for new invocations.
Both record and replay phases are initiated by the OS initializing
a pair of dedicated registers with a pointer to the memory region
for Jukebox’s metadata, similar to how the OS initializes the CR3
register holding the pointer to the root of the page table of a process.

3.2 Record
Jukebox records the stream of L2 misses for instructions using a
spatio-temporal encoding that provides for a compact metadata
footprint and facilitates timely prefetching. The main component
tracking addresses to record is the Code Region Reference Buffer
(CRRB), a small fully-associative FIFO structure that is accessed us-
ing the virtual address of a code region. Each CRRB entry contains
a pointer to a memory region (region pointer) and an access vector
holding one bit per cache line within that region. The least signif-
icant bits of the pointer used to address individual bytes within

Lukewarm Serverless Functions: Characterization and Optimization ISCA ’22, June 18–22, 2022, New York, NY, USA

the region are not included in a CRRB entry. The region pointer
can address fixed-sized regions with size chosen at design time. We
study a Jukebox configuration with a CRRB entry comprising of
a 38-bit region pointer and a 16-bit access vector (assuming 48-bit
virtual addresses and 64B cache lines), for a total of 54 bits per entry
(see Sec. 5.1 for an analysis of preferred code region size).

Recording logic is outlined in Figure 7a. Upon an L1-I miss, the
request is forwarded to the L2 as usual. On an L2 hit, the Jukebox
record mechanism takes no action, effectively filtering all L2 hits.
If there was a miss in the L2, when the miss finally returns to the
L1-I, it is recorded by Jukebox. This is done by generating a lookup
into the CRRB, where the virtual address of the corresponding
code region is checked against the existing entries 1 . The code
region virtual address is generated by taking the most significant
bits of the missed block’s virtual address corresponding to a CRRB
pointer (38 bits for the studied Jukebox design). If a matching entry
is found, the prefetcher sets the 𝑛th bit in the access vector of the
found entry where 𝑛 is the offset of the cache line within the code
region. Otherwise, the oldest entry in the CRRB is evicted 2 , and a
new entry is allocated 3 . The evicted entry is written to memory,
optionally bypassing the cache hierarchy since on-chip reuse of the
metadata is not expected.

An entry evicted from the CRRB cannot be modified; thus, if
an L2 instruction miss occurs to a region whose corresponding
entry has already been pushed to memory, a new entry for the
same region is created in the CRRB. As a result, a given code region
might appear multiple times in the trace recorded by Jukebox. The
effect of this design choice is that it increases the metadata footprint
of Jukebox but simplifies the design, since evicted entries do not
need to be brought back from memory.

There are two possible options for determining whether an L1-I
miss also missed in the L2. The first option is to propagate the result
of the L2 tag check back to the L1-I using a dedicated 1-bit signal.
The second option is to measure the delay of an outstanding L1-I
request and compare that to the expected L2 hit latency (e.g., using
a timer at the L1-I MSHR [27].) Jukebox can work equally with
either of these options.

The FIFO order of the entries in the recorded metadata directly
encodes the temporal order of accesses at the chosen granularity.
That is, the first metadata entry written to memory will encode
the addresses of the cache lines in the first code region accessed
after the function was invoked. This organization allows Jukebox
to prefetch the entries in approximately the same order they are
likely to be accessed, thus improving timeliness at replay time.

Note that because the recording is done in a region-basedmanner,
the replay stream will first prefetch all of the indicated cache blocks
from one code region before moving on to the next region. As a
result, some reordering of individual cache blocks will happen at
prefetch time compared to recording. However, recording at the
region granularity enables a small metadata footprint, makes better
use of address translation resources (a single lookup for all the
blocks in a region), and reduces the number of DRAM activations
due to spatial locality within a page.

The record phase is triggered by the OS by programming a pair
of architecturally-exposed registers containing the base and limit
of the metadata storage. The limit register is optional and lets the

L1I cache

2

...a[0] a[15]base

3

Metadata

CRRB

0 35 36 53

1

L2 cache

LLC cache

Memory

Core

(a) Jukebox record

Page Table
Walker

1

2

3

M
et

ad
at

a

P
re

fe
tc

h
re

q.

L2 cache

LLC cache

Memory

L1I TLB
Virtual base

Physical base

PF
engine

(b) Jukebox replay

Figure 7: Jukebox prefetcher overview.

OS control the amount of metadata stored per function instance
process.

3.3 Replay
The replay phase in Jukebox is triggered by the OS upon receiving
a new function invocation. The OS triggers the replay by program-
ming a pair of base and limit registers, similarly to how recording is
triggered. The replay can be triggered by the OS’s scheduler when-
ever the function instance thread is assigned to a core to process
an invocation.

The replay phase is outlined in Figure 7b. The prefetch engine
starts the replay phase by issuing sequential reads starting from
the beginning of the metadata region 1 , reading the metadata in
the same order it was written to memory. This enables prefetching
of instruction cache blocks in the same temporal order as was
recorded, albeit at page granularity.

The metadata entries are prefetched into a small FIFO inside the
prefetch logic. Once the metadata entry is returned from memory,
the prefetcher passes the base address of the code region to the
I-TLB 2 , triggering address translation like a normal code request.
This serves two purposes: first, it ensures that Jukebox does not
rely on physical addresses that may change as a consequence of
normal OS activity such as paging or memory compaction. Second,
it effectively pre-populates the TLB with translations for code pages.
As soon as the physical base address of the code region is known,
using the information from the entry’s access vector, the prefetch
engine reconstructs full addresses of each of the accessed cache
lines within the code region, and enqueues them in the L2 prefetch
queue 3 .

Once prefetch requests for all of the cache blocks encoded in an
entry’s access vector have been launched, the entry is retired from
the FIFO. The next set of entries is fetched using a single 64B cache
line read once the equivalent of 64B of data have been consumed
from the FIFO.

3.4 Discussion
3.4.1 Metadata memory management. Upon a function instance’s
start (i.e., first invocation received by the host), the OS allocates
two memory regions for the function instance process, each of
which is contiguous in the physical space. These regions are used
for bookkeeping of the Jukebox metadata of the function instance
process. The OS associates the physical addresses of the two buffers

ISCA ’22, June 18–22, 2022, New York, NY, USA D. Schall, et al.

with the PID of the function instance process. For example, in
Linux, the addresses of the buffers can be stored in task_struct.
Upon an invocation of a function, as part of assigning the function
instance process to a core for execution, the scheduler consults
the instance’s task_struct and write addresses of the buffers to
the registers that define where the Jukebox metadata is written (at
record) and where the metadata is fetched from (at replay). Once the
invocation completes and the function instance process is desched-
uled, the values of buffer pointers are saved in the task_struct. A
subsequent invocation received by the same instance thus replays
the metadata from the memory region that has been written by
the previous invocation. Operating with the metadata buffers using
physical addresses avoids the need for address translation while
fetching/recording metadata which (1) improves the timeliness of
Jukebox prefetches and (2) does not cause contention for TLBs and
hardware page walkers.

3.4.2 Virtualization. Under virtualization, the guest OS triggers
Jukebox record and replay. Jukebox metadata is stored in guest
physical memory, i.e., as a part of the virtual machine state. Hence,
in addition to lukewarm execution, Jukebox can accelerate the
lengthy cold boots of serverless instances provided that a function
snapshotting technique [13, 44, 50] is used and that the Jukebox
metadata has been recorded before taking the snapshot.

3.4.3 Enabling Jukebox. Jukebox can be enabled for a particular
thread upon its creation, similar to choosing a thread’s sched-
uling priority by setting the corresponding attribute of the cre-
ated thread [39]. For example, when the serverless runtime of a
function instance starts a gRPC/HTTP server with a number of
worker threads (or when spawning them at run time), it can enable
Jukebox by setting the corresponding attribute before making a
pthread_create [34] system call.

3.4.4 Generality. While Jukebox is particularly beneficial for luke-
warm functions, it can accelerate start-up times for any memory-
resident thread.

4 METHODOLOGY
4.1 Hardware Infrastructure
We perform the measurements on on an xl170 node in Cloud-
Lab [14] Utah datacenter, featuring a 2.4GHz 10-core Intel Broad-
well CPU with 32KB L1-I, 32KB L1-D, 256KB L2, and 25MB LLC
caches, 64GB DRAM. The node runs Ubuntu 20 with a stock Linux
kernel v5.4. We disable SMT, following the production guidelines
by AWS Lambda [2, 48]. Performance counters are collected using
linux perf [30] during the entire execution of the target instance’s
container, thus capturing all kernel and user-level activity.

4.2 Simulation Infrastructure
To evaluate Jukebox, we use gem5 [8, 35], a full-system cycle-
accurate simulator modeling a server-grade x86 CPU. Our simulated
baseline is configured similar to Intel Skylake [1], with parameters
of the modeled hardware summarized in Table 1. We also study a
Broadwell-like configuration (Sec. 5.6), which resembles the real
hardware platform used for the characterization studies in Sec. 2.3.
We run an identical software stack in simulation as we do on real

Core
Architecture: Skylake-like, ISA: x86-64, Freq.: 2.6GHz
Fetch BW 16 bytes / cycle
BP Unit LTAGE (16K gShare 4K bimodal) + BTB 8K

entries
ROB 224 entries
LSQs 72 load + 56 store entries
Scheduler 97 entries
Registers 180 Int + 168 FP

Memory Hierarchy
L1-I Cache 32KB, 64B line, 8-way set assoc., 4 cycles ac-

cess latency, private, LRU, 10 MSHR
L1-D Cache 32KB, 64B line, 8-way set assoc., 12-cycle ac-

cess latency, private, 10 MSHRs, LRU, next-
line prefetcher

L2 Cache 1MB, 8-way set assoc., 36 cycles, private, LRU,
32 MSHRs

LLC 8MB, 16-way set assoc., 36 cycles access la-
tency, shared, non-inclusive, 32 MSHRs, 64
store buffers

Memory DDR4 2400MHz, RCD(14ns), RP(14ns),
CL(14ns)

Jukebox CRRB: 16 entries, Region size: 1KB, 32KB
metadata size (16KB record + 16KB replay)

Table 1: Parameters of the simulated processor.

hardware; i.e., the same OS and the same containers running gRPC
servers. Before performing the measurements, we boot the system
in functional mode (KVM core) and execute 20000 invocations of
each function, at which point we create a checkpoint of the sys-
tem state. The checkpoints form the common starting state for all
subsequent experiments. For the experiments, we switch to cycle-
accurate timing mode and simulate 20 invocations.2

4.3 Workloads
In our experiments, we evaluate Jukebox using a large set of short-
running serverless functions, developed to work with a number
of runtimes (namely, Python, NodeJS and Go), as listed in Ta-
ble 2. The functions were adopted from the Hotel Reservation
application from the DeathStarBench suite of microservices [18],
Google’s Online Boutique application [21], AWS’ authentication
serverless functions [6], and AES encryption application from Func-
tionBench [31, 32]. Similarly to vHive [50], the state-of-the-art
serverless experimentation framework, each function is deployed
as a handle of a gRPC [22] server, which represents a function
instance. Each function is deployed in a separate container.3

Several functions in our workload are written in NodeJS, a lan-
guage which utilize just-in-time (JIT) compilation for code opti-
mization. In order to avoid performance noise induced by the JIT

2Configurations and guidance on how to setup gem5 to run containerized, serverless
workloads are made available at https://github.com/ease-lab/vSwarm-u
3All function codes have been released and made available for the research community
at https://github.com/ease-lab/vSwarm

https://github.com/ease-lab/vSwarm-u
https://github.com/ease-lab/vSwarm

Lukewarm Serverless Functions: Characterization and Optimization ISCA ’22, June 18–22, 2022, New York, NY, USA

Function Abbreviation Function Abbreviation
Hotel Reservation [18] Online Boutique [21]

Geo Geo-G Currency Curr-N
Profile Prof-G Email Email-P
Rate Rate-G Payment Pay-N
Recommendation RecH-G ProductCatalog ProdL-G
User User-G Shipping Ship-G

Other [6, 31, 32] Recommendation RecO-P
Authentication Auth-P/N/G
Fibonacci Fib-P/N/G
AES encryption AES-P/N/G
Table 2: Serverless functions and their language runtimes
(legend – P: Python, N: NodeJS, G: Go).

engine to ensure stable and reproducible results, we invoke each
JIT’ed function 20000 times before starting measurements [51]. We
empirically found that for our functions more invocations do not
trigger further code optimization. For the hardware simulation, we
generate the gem5 checkpoint after these initial invocations. We
note that Jukebox is orthogonal to JIT compilation and can speedup
execution of unoptimized code. Moreover, by recording each func-
tion execution for subsequent replay, Jukebox can trivially adapt to
changes in the instruction working set induced by the JIT engine.

5 EVALUATION
5.1 Parameterizing Jukebox
Recall from Sec. 3.1 that Jukebox uses a spatio-temporal encoding
that exploits locality in code accesses by organizing its metadata as
a sequence of entries, each corresponding to a spatial region. Each
entry contains the upper bits of the address of the region and a bit
vector, with one bit per cache line. Larger regions require a longer
bit vector but may allow for fewer entries given sufficiently high
spatial locality in the code. The entries are created in the CRRB,
which coalesces accesses to the same region before the entry is
written to the in-memory metadata storage. A larger CRRB may
allow more accesses to the same region to be coalesced before an
entry is evicted, resulting in a smaller metadata footprint at the
cost of more on-chip storage and higher access energy.

To find the preferred code region size and CRRB size, we measure
the size of the metadata required to store all of the entries produced
by the Jukebox recording logic while a function executes. We do
this for a range of code region sizes, from 512B to 8KB, and three
different CRRB buffer sizes: 8, 16 and 32 entries.

Figure 8 presents the results of the study for a 16-entry CRRB. For
the majority of the workloads, the metadata size reaches a minimum
with the code region size of 1KB, resulting in 9.6KB to 29.5KB of
metadata storage. Our experiments with the two other CRRB sizes
(not shown) reveal very similar trends and modest sensitivity to
the size of the CRRB.

We next study the impact of limiting the size of Jukebox’s meta-
data storage on its efficiency. Since we found in Figure 8 the most
space efficient code region size to be 1KB, we use this configuration
and a 16-entry CRRB for this sensitivity study. Figure 9 shows the
speedup Jukebox is able to achieved when constrained to various

128 256 512 1K 2K 4K 8K
Region Size (B)

0

8K

16K

24K

32K

40K

M
et

ad
at

a
Si

ze
 (B

)

CRRB = 16

Fib-P
AES-P
Auth-P

Email-P
RecO-P
Fib-N

AES-N
Auth-N
Curr-N

Pay-N
Fib-G
AES-G

Auth-G
Geo-G
ProdL-G

Prof-G
Rate-G
RecH-G

User-G
Ship-G

Figure 8: Sensitivity of Jukebox’s metadata size to the code
region size with a 16-entry CRRB.

Email-P Pay-N ProdL-G GEOMEAN

0

10

20

Sp
ee

du
p

[%
]

Baseline 8KB 12KB 16KB 32KB

Figure 9: Speedup with Jukebox as a function of the size of its
metadata storage compared to the baseline without Jukebox.

metadata storage capacities. In Figure 9, we plot only one represen-
tative function for each of the three implementation languages 4

together with the average across all 20 functions in our evaluation
suite.

The figure shows that workloads with large working sets, e.g.
Pay-N, tend to be more sensitive to the limited metadata size than
workloads with small working sets, e.g. ProdL-N. This is expected
given that the metadata represents a compressed form of a func-
tion’s working set. Note that Jukebox is designed to seamlessly
extend to dynamic metadata sizes. For that a metadata size field
needs to be added in the bookkeeping mechanism described in
Sec. 3.4.1. When scheduling a thread, the OS sets up the size of
the metadata of a function instance and assigns the addresses for
record and replay metadata storage. We use the same size of meta-
data storage for all our workloads in further experiments.

As Figure 9 shows, on average, there is a little gain with increas-
ing metadata storage beyond 16KB. Thus, unless stated otherwise,
in the rest of the evaluation we use a Jukebox configuration with
16KB metadata storage, 1KB code-region size and 16-entry CRRB.

5.2 Performance
Figure 10 presents the main result of the evaluation. We compare
three configurations: (1) the baseline, which represents a high de-
gree of function interleaving; (2) Jukebox applied to the baseline
setup; and (3) Perfect I-cache which draws the maximum opportu-
nity without any instruction misses. The baseline (1) is modeled
by flushing all microarchitectural state in-between function invo-
cations. For (3), we use an infinite-sized L1-I cache that maintains

4We found that the language in which the function is written is the single biggest
determinant of a given function’s runtime and Jukebox’s efficacy.

ISCA ’22, June 18–22, 2022, New York, NY, USA D. Schall, et al.

Fib-P
AES-P

Auth-P
Email-P

RecO-P
Fib-N

AES-N
Auth-N

Curr-NPay-N
Fib-G

AES-G
Auth-G

Geo-G
ProdL-G

Prof-G
Rate-G

RecH-G
User-G

Ship-G

GEOMEAN

0

20

40

60

Sp
ee

du
p

[%
] Baseline Jukebox Perfect I-cache

Figure 10: Performance results on the Skylake-like configuration.

Fib-
P

AES-P

Auth
-P

Email
-P

RecO
-P

Fib-
N

AES-N

Auth
-N
Curr

-N
Pay

-N
Fib-

G
AES-G

Auth
-G
Geo

-G

Prod
L-G

Prof
-G
Rate

-G

RecH
-G
User

-G
Ship

-G
MEAN

0

25

50

75

100

L2
 M

is
se

s [
%

]

Covered Uncovered Overpredicted

Figure 11: Fractions of L2 instruction misses covered and
overpredicted by Jukebox (normalized to the number of L2
misses in the baseline).

the complete instruction footprint a function accumulates over all
simulated invocations.

The performance of the three evaluated configurations is shown
in Figure 10 with the results normalized to the baseline. We find
the maximum opportunity without any instruction misses boosts
performance of the studied functions by 31% on average (46% max
on Auth-N). Jukebox delivers consistent speedups that correlates
well with the opportunity; that is, functions that have a large differ-
ence in performance between Perfect I-cache and the baseline enjoy
large speedups (e.g., Auth-G: 29.5% speedup with Jukebox), while
the opposite is true for functions with a small difference between
Perfect I-cache and the baseline (e.g., AES-P: 6.2% speedup with
Jukebox). On average, Jukebox speeds up interleaved executions by
18.7%.

5.3 Miss Coverage
We next study Jukebox’s ability to cover instruction misses. Since
Jukebox prefetches into the L2 cache, we present fractions of L2
instruction misses in the baseline that are (1) covered, (2) not cov-
ered, and (3) overpredicted (i.e., prefetched but not referenced) by
Jukebox.

Figure 11 shows the result of this study. One can see that cov-
erage correlates well with the choice of a programming language;
benchmarks that are written in Go show high Jukebox coverage
(75-90%) while those written in Python and NodeJS exhibit lower
coverage (48-74%). This can be explained by the fact that for the ma-
jority of the Go benchmarks, metadata fits into Jukebox’s metadata
storage, which is not the case for Python and NodeJS benchmarks
(see Figure 8).

Furthermore, the figure shows that Jukebox induces few wrong
prefetches with an overprediction rate of just 10% (max. 15.8%).

Fib-
P

AES-P

Auth
-P

Email
-P

RecO
-P

Fib-
N

AES-N

Auth
-N
Curr

-N
Pay

-N
Fib-

G
AES-G

Auth
-G
Geo

-G

Prod
L-G

Prof
-G
Rate

-G

RecH
-G
User

-G
Ship

-G
MEAN

0

10

20

M
em

. B
W

 in
cr

ea
se

 [%
] Overpredicted Metadata Record Metadata Replay

Figure 12: Jukebox’s memory bandwidth overhead.

This result is anticipated by the high commonality in instruction
footprints across invocations (Sec. 2.5). The high accuracy of Juke-
box’s prefetches affirm its record and replay approach to be highly
effective in delivering the relevant instruction blocks on chip.

5.4 Memory Bandwidth
Figure 12 plots memory bandwidth usage of Jukebox normalized
to the baseline. Memory bandwidth includes all requests issued
to memory, which includes both instruction and data, demand
and prefetches. Note that Jukebox does not change the amount
of bandwidth consumed for correct timely prefetches. Overheads
lie in overpredicted (i.e. unused) prefetches as well as metadata
traffic associated with recording and replaying. Jukebox introduces
a modest memory bandwidth overhead of 14% on average and
23% in the worst case. The overhead comprises 40% of Jukebox’s
metadata and 60% overpredicted traffic.

Similar to the coverage study (Sec. 5.3), we note that a memory
bandwidth increase correlates with the choice of a programming
language. Go workloads experience a higher bandwidth increase
than workloads written in Python and NodeJS. Higher memory
bandwidth on Go workloads compared to Python and NodeJS ones
can be explained by a larger number of uncovered misses in Go
workloads observed in the coverage study. Jukebox’s metadata
storage is too small to hold all metadata required for prefetching
the whole instruction working set of Python and NodeJS workloads.
As a result, at replay, Jukebox stops restoring the working set of
Python and NodeJS workloads before completing prefetching of
the whole instruction working set, which results in a lower number
of overpredictions on Python and NodeJS workloads compared to
Go ones.

Lukewarm Serverless Functions: Characterization and Optimization ISCA ’22, June 18–22, 2022, New York, NY, USA

Email-P Pay-N ProdL-G GEOMEAN

0

10

20

Sp
ee

du
p

[%
]

Baseline PIF PIF-ideal JB JB + PIF-ideal

Figure 13: Comparison of performancewith PIF and Jukebox.

5.5 Comparison to a State-of-the-Art
Instruction Prefetcher

In this section, we compare Jukebox to a state-of-the-art instruc-
tion prefetcher, called PIF [16]. PIF is a stream-based prefetcher,
which works by recording and replaying the sequences of retired
instruction addresses. Recording all instruction addresses allows
PIF to be be independent of variations in L1-I cache content and ap-
plication’s control flow, thus achieving good prefetch accuracy. To
enable replay of instruction streams, PIF requires an index, which
uses an instruction address to find the most recent recorded stream
that starts with that address.

By using the same parameters as in [16], we configure PIF with
a 49KB index, 164KB of stream metadata storage and an unrealistic
single-cycle lookup latency for each of these components. Because
PIF was designed for long-running traditional server workloads, it
does not save its state across function invocations. To understand
the best possible performance of PIF, we simulate another design,
PIF-ideal, with an unlimited index and unlimited metadata storage
that persist across function invocations.

Figure 13 plots the results of this study. We find that PIF delivers
2.4% speedup on average (4.8% max) while PIF-ideal boosts perfor-
mance by 6.7% (12.4% max). Meanwhile, Jukebox with metadata
size limited to 16KB provides a 18.7% speedup, on average – a sig-
nificant improvement over PIF and PIF-ideal. The reason for PIF’s
relatively poor efficacy can be explained by the fact that whenever
the recorded stream differs from the actual access stream of the
core, PIF stops prefetching and re-indexes to find the correct stream.
Re-indexing prevents PIF from running far enough ahead of the
core to cover the long latency of a main memory access.

The big picture is that PIF was designed to reduce L1-I misses
for accesses expected to hit in the L2 or L3 caches. In contrast,
lukewarm functions have instruction footprints in main memory,
which requires a prefetcher that can effectively hide the associated
high latency. PIF needs to stop and re-index any time the actual
control flow diverges from the prefetch stream, whereas Jukebox
prefetches all of the instruction blocks recorded in its metadata
without synchronizing with the core. By doing such bulk prefetch-
ing, Jukebox sacrifices the ability to prefetch into the small L1-I but
achieves high instruction miss coverage in the L2 and L3.

5.6 Jukebox on a Broadwell-like CPU
As we perform the Top-Down analysis on a platform with an Intel
Broadwell CPU (Section 2.3), we compare Jukebox performance
results obtained with a simulated Intel Skylake configuration to the

L2 instructions misses LLC instruction misses
Skylake -74% -86%
Broadwell -15% -91%
Table 3: Reduction in L2 and L3 MPKI with Jukebox.

Broadwell-based platform. A distinguishing feature in the Broad-
well configuration is a different cache hierarchy, with a 32KB L1-I,
256KB L2 and 8MB LLC. We re-assess Jukebox parameters in light
of the smaller L2 as compared to the 1MB L2 in Skylake, and find
that the smaller L2 results in more conflict misses for instructions,
thus necessitating a larger 32KB Jukebox metadata store per func-
tion. Other Jukebox parameters (region size and CRRB size) are
unchanged from the Skylake configuration.

Across our suite of serverless functions, we find that Jukebox
delivers a 12% geomean speedup on the Broadwell configuration.
Noting that the speed-up is smaller than the 18.7% achieved on
Skylake (Sec. 5.2) despite a similar opportunity with a perfect L1-
I, we examine the cache miss rates for instructions in the two
simulated platforms.

The data is presented in Table 3, which shows the reduction
in MPKI for instructions in the L2 and L3 of the two simulated
platforms with Jukebox. The table shows that Jukebox is highly
effective at eliminating the vast majority of LLC misses for instruc-
tions in both platforms. These are the crucial misses to cover due to
their excessively high latency. When it comes to the L2, however,
Jukebox struggles to cover most L2 misses for instructions in the
Broadwell configuration. This can be explained by the high inci-
dence of conflicts in Broadwell’s small L2, which result in many
of Jukebox’s prefetches being evicted from the L2 before they are
consumed.

To summarize, Jukebox is most effective in CPUs with a large
L2, which have featured in recent server processors [1, 40, 46], yet
also provides a tangible benefit in CPUs with a smaller L2.

6 RELATEDWORK
To date, there has been little work in understanding microarchitec-
tural implications of serverless programming. Shahrad et al. [42]
examined execution of five serverless functions, identifying issues
such as a high cold-start latency, high variability in execution time,
and performance overheads due to containerization. The work
observed that short-running functions experienced much higher
variability in execution time than long-running tasks, but did not
attempt to understand the sources of variability other than high
branch mispredictions. In contrast, the focus of our paper is on
understanding and improving the microarchitectural behavior of
lukewarm functions. To that end, we conducted a Top-Down per-
formance analysis [52] of 20 diverse functions on a modern server,
identifying concrete microarchitectural sources of performance loss
stemming from a high degree of function interleaving. Based on
our analysis, we identified on-chip instruction misses as the main
performance bottleneck in lukewarm executions and proposed a
specialized prefetcher to tackle the problem.

Priorworks examine the problem of fine-grained context switches
in highly-consolidated virtual machines [10, 53]. These works fo-
cus on a setting where a single virtual machine occupies the entire

ISCA ’22, June 18–22, 2022, New York, NY, USA D. Schall, et al.

CPU for multiple milliseconds, followed by a context switch to
another VM. The problem solved in these works is restoring the
entire multi-megabyte LLC state via prefetching by saving the ad-
dress footprint of the LLC to main memory upon a context switch.
The proposed designs suffer from large metadata overheads for
high coverage and high bandwidth overheads associated with in-
discriminate restoration of the entire LLC (in some cases more than
doubling the amount of memory traffic compared to the no-prefetch
baseline [10, 53]).

In contrast, Jukebox targets on-chip instructionmisses by prefetch-
ing directly into the L2 cache using a minimal amount of meta-
data. Due to high instruction commonality across invocations of a
given serverless function instance, Jukebox achieves high accuracy
with low overprediction. While both Jukebox and prior works save
prefetcher metadata in main memory, prior works save physical
addresses, which are the only ones available at the LLC; in contrast,
Jukebox saves virtual addresses, which makes Jukebox naturally
compatible with a modern virtual memory manager that can move
pages in memory (e.g., for memory compaction purposes).

Jevdjic et al. [24] record spatial footprints of data pages to re-
duce off-chip bandwidth pressure for aggressive data prefetching.
While Jukebox also uses the idea of footprints, it targets instruction
prefetching with low metadata cost.

Ahn et al. also examines fine-grained context switches for vir-
tualized systems and proposes a context-preservation technique
that controls the LLC capacity available for each virtual machine,
to preserve LLC working set across context switches [3]. Zhu et
al. examine event-driven server-side applications and identify L1-I
misses to be a major performance bottleneck [55]. The authors
observe that instruction working sets of the studied applications fit
in the LLC and propose a specialized cache replacement policy to
preserve an instruction working in the LLC and augment it with a
temporal prefetcher in the L1-I cache. Both of these techniques tar-
get settings where the instruction working set fits in the LLC, which
is not the case for serverless functions with infrequent invocations
and a huge degree of interleaving.

There is a long history of works in instruction prefetching for
server workloads. These papers fall into one of two categories: tem-
poral streaming and BTB-directed. The former category records en-
tire traces of instruction cache accesses or misses at the cache block
granularity, resulting in metadata size of hundreds of kilobytes
and requiring a complex indexing mechanism to find the correct
metadata when the actual execution diverges from the recorded
trace [16, 17, 28]. To store the metadata, existing temporal stream-
ing proposals either use dedicated on-chip storage [16] or virtualize
the metadata into the LLC [28]. In contrast, Jukebox uses aggressive
filtering and spatial encoding resulting in low metadata costs, does
not require any indexing, prefetches into the L2 to further simplify
the prefetcher design and stores its metadata in memory to support
thousands of warm functions.

The second category uses the BTB together with the branch
predictor to identify upcoming control flow discontinuities to drive
the instruction prefetch engine [33, 41]. This approach relies on a
fully warmed up BTB and branch predictor, which makes it funda-
mentally at odds with lukewarm executions that have to contend
with a cold core.

7 CONCLUSION
This paper identifies and addresses microarchitectural bottlenecks
in the execution of serverless functions, thousands of which may
reside concurrently in the memory of a modern cloud server. Due
to the long invocation inter-arrival times as compared to execution
latencies of each function, numerous other functions’ executions
may be interleaved between two invocations of a given function in-
stance. This leads to the lukewarm execution phenomenon, whereby
an invoked memory-resident function instance may find all of the
on-chip microarchitectural state obliterated by other function in-
stances.

The analysis of performance counters on a real server shows the
core front-end to be the critical performance bottleneck in luke-
warm executions due to the need to fetch instructions from main
memory. In response, we proposed Jukebox, a record-and-replay
prefetcher specifically designed to accelerate lukewarm invocations.
Jukebox exploits instruction commonality across invocations to pro-
vide high instruction miss coverage with a low metadata cost and
low design complexity.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers as well as themembers
of the EASE Lab at the University of Edinburgh for their valuable
feedback on this work. We are grateful to Yuchen Niu for develop-
ing the initial platform for the Top-Down analysis of a serverless
system and Harshit Garg for helping make the studied workloads
publicly available. This research was generously supported by the
University of Edinburgh, Arm and by EASE Lab’s industry partners
and sponsors: Facebook, Google, Huawei, Intel and Microsoft.

REFERENCES
[1] 7-Zip LZMA Benchmark. 2022. Intel Skylake. Retrieved April 12, 2022 from

https://www.7-cpu.com/cpu/Skylake_X.html
[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In Proceedings of the 17th Symposium
on Networked Systems Design and Implementation (NSDI). 419–434.

[3] Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh. 2014. Micro-Sliced Virtual
Processors to Hide the Effect of Discontinuous CPU Availability for Consolidated
Systems. In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 394–405.

[4] Amazon. 2022. A Demo Running 4000 Firecracker MicroVMs. Retrieved April
12, 2022 from https://github.com/firecracker-microvm/firecracker-demo

[5] Amazon Web Services. 2022. AWS Lambda Pricing. Retrieved April 12, 2022
from https://aws.amazon.com/lambda/pricing

[6] Amazon Web Services. 2022. Use API Gateway Lambda Authorizers. Re-
trieved April 12, 2022 from https://docs.aws.amazon.com/apigateway/latest/
developerguide/apigateway-use-lambda-authorizer.html

[7] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2020. Divide and
Conquer Frontend Bottleneck. In Proceedings of the 47th International Symposium
on Computer Architecture (ISCA). 65–78.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[9] Colin Ian King. 2022. Stress-ng. Retrieved April 12, 2022 from https://github.
com/ColinIanKing/stress-ng

[10] David Daly andHaroldW. Cain. 2012. Cache restoration for highly partitioned vir-
tualized systems. In Proceedings of the 18th IEEE Symposium on High-Performance
Computer Architecture (HPCA). 225–234.

[11] Datadog. 2020. The State of Serverless 2020. Retrieved April 12, 2022 from
https://www.datadoghq.com/state-of-serverless-2020

[12] Datadog. 2021. The State of Serverless 2021. Retrieved April 12, 2022 from
https://www.datadoghq.com/state-of-serverless

https://www.7-cpu.com/cpu/Skylake_X.html
https://github.com/firecracker-microvm/firecracker-demo
https://aws.amazon.com/lambda/pricing
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://doi.org/10.1145/2024716.2024718
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://www.datadoghq.com/state-of-serverless-2020
https://www.datadoghq.com/state-of-serverless

Lukewarm Serverless Functions: Characterization and Optimization ISCA ’22, June 18–22, 2022, New York, NY, USA

[13] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin,
Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond Startup for
Serverless Computing with Initialization-less Booting. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXV). 467–481.

[14] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuang-ChingWang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In Proceedings of the 2019 USENIX Annual
Technical Conference (ATC). 1–14.

[15] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup. 2020. A
Review of Serverless Use Cases and their Characteristics. CoRR abs/2008.11110
(2020).

[16] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive instruction
fetch. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 152–162.

[17] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal instruction fetch streaming. In Proceedings of
the 41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–10.

[18] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems. In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXIV). 3–
18.

[19] Google. 2022. Cloud Functions Pricing. Retrieved April 12, 2022 from https:
//cloud.google.com/functions/pricing

[20] Google Cloud. 2022. Implementing SLOs. Retrieved April 12, 2022 from
https://sre.google/workbook/implementing-slos

[21] GoogleCloudPlatform. 2022. Online Boutique. Retrieved April 12, 2022 from
https://github.com/GoogleCloudPlatform/microservices-demo

[22] gRPC Authors. 2022. gRPC: A High-Performance, Open Source Universal RPC
Framework. Retrieved April 12, 2022 from https://grpc.io

[23] Paul Jaccard. 1912. THE DISTRIBUTION OF THE FLORA IN THE ALPINE
ZONE.1. New Phytologist 11, 2 (1912), 37–50. https://doi.org/10.1111/j.1469-8137.
1912.tb05611.x arXiv:https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-
8137.1912.tb05611.x

[24] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-Stacked DRAM
Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache. SIGARCH Comput. Archit. News 41, 3 (jun 2013), 404–415. https://doi.
org/10.1145/2508148.2485957

[25] Zhipeng Jia and EmmettWitchel. 2021. Nightcore: efficient and scalable serverless
computing for latency-sensitive, interactive microservices. In Proceedings of the
26th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXVI). 152–166.

[26] Jonathan Corbet. 2010. Memory compaction. Retrieved April 12, 2022 from
https://lwn.net/Articles/368869

[27] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. 2001. Cache decay:
Exploiting generational behavior to reduce cache leakage power. In Proceedings
28th annual international symposium on computer architecture. IEEE, 240–251.

[28] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. SHIFT: shared history in-
struction fetch for lean-core server processors. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 272–283.

[29] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: unified instruc-
tion supply for scale-out servers. In Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 166–177.

[30] kernel.org. 2020. perf: Linux profiling with performance counters. Retrieved
April 12, 2022 from https://perf.wiki.kernel.org/index.php/Main_Page

[31] Jeongchul Kim and Kyungyong Lee. 2019. FunctionBench: A Suite of Workloads
for Serverless Cloud Function Service. In Proceedings of the 12th IEEE International
Conference on Cloud Computing (CLOUD). 502–504.

[32] Jeongchul Kim and Kyungyong Lee. 2019. Practical Cloud Workloads for Server-
less FaaS. In Proceedings of the 2019 ACM Symposium on Cloud Computing (SOCC).
477.

[33] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.
Boomerang: A Metadata-Free Architecture for Control Flow Delivery. In Pro-
ceedings of the 23rd IEEE Symposium on High-Performance Computer Architecture
(HPCA). 493–504.

[34] Linux Foundation. 2008. pthread_create – Linux manual page. Retrieved April
12, 2022 from https://man7.org/linux/man-pages/man3/pthread_create.3.html

[35] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,

Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator:
Version 20.0+. https://doi.org/10.48550/ARXIV.2007.03152

[36] Mikhail Shilkov. 2021. When Does Cold Start Happen on AWS Lambda? Re-
trieved April 12, 2022 from https://mikhail.io/serverless/coldstarts/aws/intervals

[37] Mikhail Shilkov. 2021. When Does Cold Start Happen on Azure Functions?
Retrieved April 12, 2022 from https://mikhail.io/serverless/coldstarts/azure/
intervals

[38] Mikhail Shilkov. 2021. When Does Cold Start Happen on Google Cloud Func-
tions? Retrieved April 12, 2022 from https://mikhail.io/serverless/coldstarts/
gcp/intervals

[39] Oracle Corporation. 2010. Chapter 3 Thread Create Attributes. Retrieved April 12,
2022 from https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032j/index.html

[40] Paul Lilly. 2021. Leaked AMD Zen 4 Cache Upgrades Could Be Key In Competing
With Alder Lake. Retrieved April 12, 2022 from https://hothardware.com/news/
amd-zen-4-cache-key-competing-alder-lake

[41] Glenn Reinman, Brad Calder, and ToddM. Austin. 1999. FetchDirected Instruction
Prefetching. In Proceedings of the 32nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 16–27.

[42] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
Implications of Function-as-a-Service Computing. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1063–
1075.

[43] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In Proceedings of the 2020 USENIX
Annual Technical Conference (ATC). 205–218.

[44] Simon Shillaker and Peter R. Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In Proceedings of the 2020 USENIX Annual
Technical Conference (ATC). 419–433.

[45] Akshitha Sriraman and Thomas F. Wenisch. 2018. µTune: Auto-Tuned Threading
for OLDIMicroservices. In Proceedings of the 13th Symposium on Operating System
Design and Implementation (OSDI). 177–194.

[46] The Cloudflare Blog. 2021. ARMs Race: Ampere Altra Takes on the AWS Gravi-
ton2. Retrieved April 12, 2022 from https://blog.cloudflare.com/arms-race-
ampere-altra-takes-on-aws-graviton2

[47] The Cloudflare Blog. 2021. The EPYC Journey Continues to Milan
in Cloudflare’s 11th Generation Edge Server. Retrieved April 12,
2022 from https://blog.cloudflare.com/the-epyc-journey-continues-to-milan-in-
cloudflares-11th-generation-edge-server

[48] The Firecracker Authors. 2022. Production Host Setup Recommendations. Re-
trieved April 12, 2022 from https://github.com/firecracker-microvm/firecracker/
blob/master/docs/prod-host-setup.md

[49] Dmitrii Ustiugov, Theodor Amariucai, and Boris Grot. 2021. Analyzing Tail
Latency in Serverless Clouds with STeLLAR. In Proceedings of the 2021 IEEE
International Symposium on Workload Characterization (IISWC). IEEE.

[50] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. 2021. Benchmarking, analysis, and optimization of serverless function
snapshots. In Proceedings of the 26th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXVI). 559–
572.

[51] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable Execution
Optimized for Page Sharing for a Managed Runtime Environment. In Proceedings
of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19).
Association for Computing Machinery, New York, NY, USA, Article 39, 16 pages.
https://doi.org/10.1145/3302424.3303978

[52] Ahmad Yasin. 2014. A Top-Down method for performance analysis and coun-
ters architecture. In Proceedings of the 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 35–44.

[53] Jason Zebchuk, Harold W. Cain, Xin Tong, Vijayalakshmi Srinivasan, and An-
dreas Moshovos. 2013. RECAP: A region-based cure for the common cold (cache).
In Proceedings of the 19th IEEE Symposium on High-Performance Computer Archi-
tecture (HPCA). 83–94.

https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://sre.google/workbook/implementing-slos
https://github.com/GoogleCloudPlatform/microservices-demo
https://grpc.io
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://arxiv.org/abs/https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://arxiv.org/abs/https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1145/2508148.2485957
https://doi.org/10.1145/2508148.2485957
https://lwn.net/Articles/368869
https://perf.wiki.kernel.org/index.php/Main_Page
https://man7.org/linux/man-pages/man3/pthread_create.3.html
https://doi.org/10.48550/ARXIV.2007.03152
https://mikhail.io/serverless/coldstarts/aws/intervals
https://mikhail.io/serverless/coldstarts/azure/intervals
https://mikhail.io/serverless/coldstarts/azure/intervals
https://mikhail.io/serverless/coldstarts/gcp/intervals
https://mikhail.io/serverless/coldstarts/gcp/intervals
https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032j/index.html
https://hothardware.com/news/amd-zen-4-cache-key-competing-alder-lake
https://hothardware.com/news/amd-zen-4-cache-key-competing-alder-lake
https://blog.cloudflare.com/arms-race-ampere-altra-takes-on-aws-graviton2
https://blog.cloudflare.com/arms-race-ampere-altra-takes-on-aws-graviton2
https://blog.cloudflare.com/the-epyc-journey-continues-to-milan-in-cloudflares-11th-generation-edge-server
https://blog.cloudflare.com/the-epyc-journey-continues-to-milan-in-cloudflares-11th-generation-edge-server
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
https://doi.org/10.1145/3302424.3303978

ISCA ’22, June 18–22, 2022, New York, NY, USA D. Schall, et al.

[54] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. 2016. Treadmill:
Attributing the Source of Tail Latency through Precise Load Testing and Statisti-
cal Inference. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA). 456–468.

[55] Yuhao Zhu, Daniel Richins, Matthew Halpern, and Vijay Janapa Reddi. 2015.
Microarchitectural implications of event-driven server-side web applications. In
Proceedings of the 48th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 762–774.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Serverless Workloads Characteristics
	2.2 Serverless Functions on a Cloud Server
	2.3 Top-Down Analysis of Lukewarm Executions
	2.4 The Story of Cache Misses
	2.5 Instructions in Focus
	2.6 Summary

	3 Design
	3.1 Design Overview
	3.2 Record
	3.3 Replay
	3.4 Discussion

	4 Methodology
	4.1 Hardware Infrastructure
	4.2 Simulation Infrastructure
	4.3 Workloads

	5 Evaluation
	5.1 Parameterizing Jukebox
	5.2 Performance
	5.3 Miss Coverage
	5.4 Memory Bandwidth
	5.5 Comparison to a State-of-the-Art Instruction Prefetcher
	5.6 Jukebox on a Broadwell-like CPU

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

