
Application-Centric Bandwidth Allocation in

Datacenters

Mohammadreza Katebzadeh
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

The University of Edinburgh

2022

Abstract
Today’s datacenters host a large number of concurrently executing applications with di-

verse intra-datacenter latency and bandwidth requirements. Some of these applications,

such as data analytics, graph processing, and machine learning training, are data-

intensive and require high bandwidth to function properly. However, these bandwidth-

hungry applications can often congest the datacenter network, leading to queuing delays

that hurt application completion time.

To remove the network as a potential performance bottleneck, datacenter oper-

ators have begun deploying high-end HPC-grade networks like InfiniBand. These

networks offer fully offloaded network stacks, remote direct memory access (RDMA)

capability, and non-discarding links, which allow them to provide both low latency

and high bandwidth for a single application. However, it is unclear how well such

networks accommodate a mix of latency- and bandwidth-sensitive traffic in a real-world

deployment.

In this thesis, we aim to answer the above question. To do so, we develop RPerf,

a latency measurement tool for RDMA-based networks that can precisely measure

the InfiniBand switch latency without hardware support. Using RPerf, we benchmark

a rack-scale InfiniBand cluster in both isolated and mixed-traffic scenarios. Our key

finding is that the evaluated switch can provide either low latency or high bandwidth,

but not both simultaneously in a mixed-traffic scenario. We also evaluate several options

to improve the latency-bandwidth trade-off and demonstrate that none are ideal. We

find that while queue separation is a solution to protect latency-sensitive applications, it

fails to properly manage the bandwidth of other applications.

We also aim to resolve the problem with bandwidth management for non-latency-

sensitive applications. Previous efforts to address this problem have generally focused

on achieving max-min fairness at the flow level. However, we observe that differ-

ent workloads exhibit varying levels of sensitivity to network bandwidth. For some

workloads, even a small reduction in available bandwidth can significantly increase

completion time, while for others, completion time is largely insensitive to available

network bandwidth. As a result, simply splitting the bandwidth equally among all

workloads is sub-optimal for overall application-level performance.

To address this issue, we first propose a robust methodology capable of effec-

tively measuring the sensitivity of applications to bandwidth. We then design Saba,

an application-aware bandwidth allocation framework that distributes network band-

width based on application-level sensitivity. Saba combines ahead-of-time application

iii

profiling to determine bandwidth sensitivity with runtime bandwidth allocation using

lightweight software support, with no modifications to network hardware or protocols.

Experiments with a 32-server hardware testbed show that Saba can significantly increase

overall performance by reducing the job completion time for bandwidth-sensitive jobs.

iv

Lay summary
Online applications have become ubiquitous in modern society, serving a wide range

of purposes and functions. From social networking and entertainment to finance and

education, these platforms have transformed the way we interact, access information,

and go about our daily lives. Whether for personal or professional use, online appli-

cations have become an essential tool for many people. There are a variety of online

applications that are used for different purposes, and each of these applications has

its own unique set of requirements when it comes to the network. For example, some

applications are designed to handle large volumes of data and require a network with

a high bandwidth in order to function effectively. Other applications may not need as

much bandwidth, but instead, require ultra-low latency in order to perform well. In

either case, it’s important to carefully consider the network requirements of different

applications in order to ensure optimal performance.

Online applications are deployed in modern datacenters, where hundreds to thou-

sands of diverse applications are run concurrently. In these environments, the network

must be shared among all of these applications, which can present challenges in allocat-

ing the necessary resources to each application in order to ensure optimal performance.

To address the diverse network requirements of the various applications running in the

datacenter, operators have begun to deploy high-end networks with low latency and high

bandwidth. Such networks are known to provide both low latency and high bandwidth

for a single application; however, there is no consensus on how well these networks

accommodate the traffic from a mix of applications.

In a real-world deployment, bandwidth-hungry applications often congest the data-

center network, causing the performance and responsiveness of other applications to

suffer. Many existing solutions for addressing network congestion fail to adequately

improve the performance of applications. While these works can improve network

utilization and achieve network-level fairness across applications, they generally ignore

application-level performance.

As a step toward improving the performance of shared network datacenter appli-

cations, this thesis analyzes the impact of concurrent applications on each other and

proposes a novel network bandwidth distribution system that respects the network

demands of applications. First, we introduce a performance measurement tool that is

capable of accurately measuring the performance of high-end networks. Using our

measurement tool, we observe that high-end networks may struggle to provide both

low latency and high bandwidth simultaneously in the presence of diverse applications.

v

Next, propose a robust methodology capable of effectively measuring the network

requirements of applications. Finally, we design an application-aware bandwidth allo-

cation scheme, that uses the knowledge about the network demands of applications to

distribute bandwidth among applications with the goal of improving their performance.

vi

Acknowledgements
My journey through the Ph.D. program has been a challenging and rewarding

experience that has taught me a great deal about myself and the world around me. It has

pushed me to think critically, communicate effectively, and problem-solve creatively.

It has also helped me develop new skills, such as time management and organization,

which will serve me well in my future endeavors. It could not have been completed

without the support and inspiration of the people around me.

First and foremost, I would like to express my heartfelt appreciation to my principal

advisor, Boris Grot, for his constant guidance, support, and encouragement. His

invaluable insights have been crucial in shaping my research and enabling me to

complete this thesis. I am deeply grateful for the countless hours he has dedicated

to discussing my work, reading and commenting on drafts, providing feedback and

direction, and patiently helping me with my writing skills. His patience, generosity, and

belief in me have been a constant source of motivation, and I am immensely grateful

for all that he has done for me.

Next, I would like to thank Paolo Costa for his invaluable contributions to my

research and for his support and guidance throughout my studies. Paolo has been an

invaluable source of expertise, always taking the time to carefully review my work

and provide insightful feedback and direction. His expertise and insights have been

instrumental in shaping my research and helping me to complete this thesis. I am deeply

grateful for his dedication and support.

I would also like to extend my sincere gratitude to Mahesh Marina and Marios

Kogias, my thesis examiners. I am truly appreciative of their time and effort in helping

mold this thesis into a more polished and insightful piece of research. Their insightful

and thought-provoking comments opened up exciting possibilities for future directions

in my research.

I am fortunate to have had the opportunity to work with and learn from my teammates

in the EASE lab. Amna, Artemiy, Priyank, Antonios, Vasilis, David, and Dmitrii have

been invaluable sources of support, always willing to lend a helping hand and offer

advice and guidance. Their camaraderie and friendship have made my time in the lab

enjoyable and rewarding, and I am deeply grateful for their partnership and friendship.

I would also like to express my gratitude to my dear friends, now scattered around

the globe, for their steadfast friendship, assistance, and inspiration. I am forever grateful

for the kindness that I received from Arash, Negar, Afshin, Amir, and Mahsa in the past

12 years, and their presence and support have meant the world to me.

vii

I would like to extend my deepest gratitude to my family for their unconditional

love and support. My father, Majid, and my mother, Nasrin, have always believed in

me and encouraged me to pursue my dreams. Their numerous sacrifices and support

have enabled me to complete this journey, and I hope I have made them proud and

happy. My sister, Yasna also has been a constant source of support and encouragement;

her willingness to cheer me on every step of the way has been an invaluable source of

strength and motivation, and I am thankful for her love.

Last but certainly not least, my beloved wife and the love of my life, Zohreh; you

deserve special thanks for your unwavering love, support, and sacrifices throughout my

Ph.D. journey. Your belief in me, encouragement, and understanding have consistently

motivated and sustained me. You have always been there to listen, offer support and

advice, and provide a shoulder to lean on during the highs and lows of my studies.

Your sacrifices and support have enabled me to focus on my studies and complete this

journey. In many ways, you have contributed just as much to my success as I have,

and my appreciation and gratitude for you are boundless and could be captured in a

never-ending list of thanks. Without your love and support, I would not have been able

to complete this journey.

viii

Declaration

I declare that this thesis was composed by myself, and that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following paper(s):

[66] M.R.S. Katebzadeh, P. Costa, B. Grot. “Saba: Rethinking Datacenter Net-

work Allocation from Application’s Perspective”, in Proceedings of the Eigh-

teenth European Conference on Computer Systems (EuroSys), 2023.

[64] M.R.S. Katebzadeh, P. Costa, B. Grot. “Evaluation of an InfiniBand Switch:

Choose Latency or Bandwidth, but Not Both”, in International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2020.

In addition to the work(s) mentioned above, which form the backbone of this thesis,

I also contributed to other relevant publications during my studies including:

[68] A. Katsarakis, V. Gavrielatos, M. R. S. Katebzadeh, A. Joshi, A. Dragoje-

vic, B. Grot, and V. Nagarajan. “Hermes: A fast, fault-tolerant and linearizable

replication protocol”, in Proceedings of the 25th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASP-

LOS). ACM, 2020. Honorable mention in IEEE Micro Top Picks 2020.

[130] D. Ustiugov, P. Petrov, M. R. S. Katebzadeh, and B. Grot. “Bankrupt Covert

Channel: Turning Network Predictability into Vulnerability”, in Proceedings of

the 14th USENIX Workshop on Offensive Technologies (WOOT), co-located with

USENIX Security, 2020.

[65] M.R.S. Katebzadeh, P. Costa, B. Grot. “Smart Priority Assignment in

Datacenter Networks”, in the 2nd Young Architect Workshop (YArch), 2020.

(Mohammadreza Katebzadeh)

ix

To my wife, Zohreh,

my parents, Nasrin and Majid, and my sister, Yasna.

x

Contents

1 Introduction 1

1.1 Datacenter application and network trends 2

1.2 Bandwidth allocation in datacenters 4

1.3 Problem discussion . 5

1.4 Our Approach . 6

1.5 Thesis contributions . 9

1.6 Thesis organization . 10

2 Background 11

2.1 Datacenter applications . 11

2.1.1 Communication patterns . 12

2.1.2 Workloads . 14

2.2 Datacenter network architecture . 16

2.3 RDMA-based interconnection technologies 18

2.3.1 RDMA verbs . 19

2.3.2 RDMA transport . 20

2.3.3 RDMA execution path . 20

2.4 QoS support in datacenter networks 21

2.4.1 QoS in RDMA networks . 22

2.4.2 QoS in non-RDMA Ethernet networks: 22

2.5 Bandwidth allocation in datacenters 23

3 Characterizing the Impact of Bandwidth on Applications 31

3.1 Methodology . 32

3.2 Sensitivity to bandwidth in applications 33

3.3 Does flow-level fairness offer optimal performance? 34

3.4 Why does the bandwidth sensitivity arise? 35

xi

3.5 Implications for future application design 36

3.6 Discussion . 37

3.7 Summary . 38

4 Saba: Application-Aware Bandwidth Allocation Scheme 41
4.1 Saba overview . 43

4.2 Profiler . 44

4.2.1 Profiling process . 45

4.2.2 Accuracy of sensitivity models 45

4.3 Controller . 49

4.3.1 Bandwidth calculation and assignment 50

4.3.2 Bandwidth enforcement . 50

4.3.3 Mapping applications to queues 51

4.3.4 Centralized vs distributed controller 55

4.4 Saba library . 57

4.4.1 Connection manager . 57

4.4.2 Software interface . 57

4.5 Implementation . 58

4.5.1 Profiler . 58

4.5.2 Controller . 59

4.5.3 Saba library . 59

4.6 Evaluation . 60

4.6.1 Methodology . 60

4.6.2 Main results . 61

4.6.3 Sensitivity studies . 62

4.6.4 Simulation results . 65

4.6.5 Overhead of the controller 68

4.6.6 Discussion . 69

4.7 Summary . 72

5 Characterization of an InfiniBand Switch 73
5.1 InfiniBand latency measurement . 75

5.2 RPerf . 77

5.2.1 Excluding remote-side processing 77

5.2.2 Excluding local-side processing 78

5.2.3 RTT calculation . 78

xii

5.3 Evaluation of InfiniBand switches 79

5.3.1 Methodology . 80

5.3.2 Performance under one-to-one traffic 81

5.3.3 Coexistence of flows with different types 85

5.4 Attempts to protect latency-sensitive flows 88

5.4.1 Bandwidth-intensive flows with different message sizes 88

5.4.2 Packet scheduling policy at the switch 89

5.4.3 Queue separation through priority levels 93

5.4.4 Discussion . 97

5.5 Summary . 98

6 Conclusions and Future Work 99
6.1 Summary of contributions . 100

6.2 Limitations and Future Work . 101

Bibliography 102

xiii

List of Figures

2.1 Communication patterns in distributed applications. 12

2.2 Execution sequence of RDMA operations. 21

3.1 Impact of available bandwidth on the performance of workloads. . . . 33

3.2 Impact of bandwidth allocation scheme on the performance of two

co-running workloads. 34

3.3 Impact of available bandwidth on resource utilization and completion

time. 35

4.1 An overview of the main components of Saba. 43

4.2 Details of the offline profiler. 44

4.3 Sensitivity models of SQL and LR workloads with various degrees of

polynomial (k). 46

4.4 Impact of degree of the polynomial on the accuracy of sensitivity models. 46

4.5 Impact of dataset size at runtime on the accuracy of sensitivity models. 48

4.6 Impact of the number of nodes at runtime on the accuracy of sensitivity

models. 48

4.7 Application-to-PL mapping for the studied Spark workloads (S = 3).

Groups of workloads are circled. 52

4.8 An example of clustering 8 PLs, assuming that the minimum number

of queues supported in the switches is 2. Circles and boxes represent

PLs and clusters, respectively. The controller clusters PLs based on

the closeness of bandwidth sensitivity of associated applications in a

hierarchical manner. 53

4.9 Example of PL-to-queue mapping for two switches at runtime. 55

4.10 High-level overview of a distributed deployment of Saba. 55

4.11 High-level overview of the workflow between the profiler and a dis-

tributed controller. 56

xv

4.12 High-level overview of interactions between the software interface, the

connection manager, the controller, and a network switch. 58

4.13 Speedup of workloads with Saba over the baseline. 61

4.14 CDF of the average speedup of 500 cluster setups. 61

4.15 Impact of dataset size at runtime on the performance of Saba. 63

4.16 Impact of the number of nodes at runtime on the performance of Saba. 63

4.17 Impact of degree of polynomial on the performance of Saba. 64

4.18 Simulation results. (a) speedup of Saba, ideal max-min, Homa, and

Sincronia, all over the baseline. (b) the average speedup with centralized

versus distributed controllers. (c) impact of the number of queues on

the performance of Saba. 65

4.19 Overhead of a centralized controller. 68

5.1 Ping-pong style RTT calculation. 75

5.2 RTT calculation by RPerf. 79

5.3 Back-to-back setup, where two servers are directly connected. 81

5.4 One-to-one setup, where two servers are connected through a switch. . 81

5.5 RTT calculated by RPerf for different packet sizes with and without the

switch. 82

5.6 End-to-end RTT calculated by Perftest and Qperf for different packet

sizes with the switch. 83

5.7 Bandwidth for different packet sizes with and without the switch. . . . 84

5.8 Mixed-flow-type setup, where from 1 to 5 servers asynchronously send

BI flows (number of servers varies in different runs) and 1 server sends

LS flow, all to the same destination. 86

5.9 RTT of LS flow . 87

5.10 Total bandwidth of all BI flows . 87

5.11 RTT of the LS flow. Note that BI flows have different message sizes in

each test. 88

5.12 Total bandwidth achieved by BI flows as a function of the message size. 88

5.13 The impact of the number of BI flows on the RTT of LS flow in the

simulator. 90

5.14 Simulation with a multi-hop setup. 92

5.15 RTT of the LS flow in a multi-hop setup. 93

5.16 RTT of the real LS flow in different setups. 94

xvi

5.17 Total bandwidth achieved by BI workloads under converged traffic. . . 96

xvii

Chapter 1

Introduction

Today’s high-performance datacenters have become the backbone of our digital world.

The datacenter market size is expected to increase from an estimated 220.0 billion USD

at the beginning of 2022 to 343.6 billion USD by 2030 [56]. A key driving force behind

the growth of the market is the exponential growth in data volume due to the emergence

of mobile and web applications, online storefronts, analytics, social media platforms,

and cloud services. Many companies provide such services to upwards of billions of

users by increasingly deploying a variety of applications in their datacenters to facilitate

several petabytes of data processing every day. For example, reports show that Google

offers a range of services, including Google Search, Gmail, YouTube, and Google Maps,

to 4.3 billion active users around the world [116]. Reports also show that over 2.87

billion people use at least one of Meta’s core products, including Facebook, WhatsApp,

Instagram, and Messenger, on a daily basis [117]. Similarly, Amazon provides a mixture

of services to over 300 million active users [128]. Offering online services to such a

colossal user base is only enabled by the massive computational power of datacenters.

Modern datacenters are immense computing infrastructures, consisting of thousands

of multi-core servers. The network that interconnects the servers is the core of the

datacenter infrastructure. The sustained growth in demand for datacenter applications

continues to stress the datacenter network; for example, due to the need to process

ever-growing datasets, network bandwidth demand within datacenters is growing. To

remove the network as a potential performance bottleneck, datacenter operators are

striving to improve the performance of their datacenter networks by investing in physi-

cal network equipment and enhancing network control algorithms. While datacenters

have seen rapid innovation and have evolved significantly in terms of both network

infrastructure and network control algorithms, ensuring high-performance and reliable

1

2 Chapter 1. Introduction

communication in datacenters remains an open problem. One reason for this is that

in datacenters, application-level and network-level performance objectives are often

misaligned, making it difficult to effectively manage the network and optimize perfor-

mance. When there is a mismatch between these objectives, it can lead to inefficient

use of the network resources, resulting in a decline in the performance of applications.

1.1 Datacenter application and network trends

Datacenter applications: Today’s datacenters host a mix of traditional and emerging

applications. Many of these applications are distributed and run on multiple servers si-

multaneously and are constantly exchanging data between these servers; thus, requiring

high-performance networking.

Datacenters feature a heterogeneous range of bandwidth-intensive applications,

including machine learning training [138, 47, 114, 81, 146, 11], SQL queries [13,

70, 136], graph processing [45, 84, 86] and big-data analytics [102, 115]. To deal

with growing data volumes, these workloads embrace parallel frameworks, such as

Hadoop, Spark, and TensorFlow [141, 122, 28, 1] that operate in multiple stages:

computation and communication stages. During a single computation stage, several

computation tasks run in parallel. In these frameworks, intermediate data is transferred

over the datacenter network in between successive computation stages, known as the

communication stage. To efficiently transfer large volumes of data during this stage,

these frameworks often use a bulk communication model with hundreds of connections

between servers. Consequently, the bandwidth requirements within the datacenter

spike during these communication stages, reflecting the priority of bandwidth-intensive

applications.

Meanwhile, some applications, including those relying on disaggregated memory

[37, 120, 67, 49, 3, 121] and distributed in-memory storage [36, 83, 82, 87, 19, 32,

63, 92, 39], are latency sensitive and mandate ultra-low network latency to provide

the illusion of a scale-up system; thus, in the realm of latency-sensitive applications,

a different set of challenges and priorities come to the forefront. Typically, latency-

sensitive applications send and receive short messages and make up a minority of bytes

sent/received inside a datacenter. In many instances, such as memory disaggregation,

achieving the lowest possible per-packet latency (on the order of a few microseconds) is

critical to the success of service [37]. In such scenarios, any increase in network latency

directly correlates with a decrease in service quality. Furthermore, when the processing

1.1. Datacenter application and network trends 3

is distributed among multiple servers, it is not sufficient to achieve low average latency

since the slowest server determines the actual latency of task completion. For example,

consider a hypothetical datacenter comprising multiple servers, each with a typical

response time of 10 milliseconds, while the 99th percentile latency for these servers is

considerably higher, reaching one second. This means that a non-negligible fraction

of requests, representing the tail end of the latency distribution, experience latency

exceeding one second. For a fan-out query or when numerous microservices collaborate

to produce a result when multiple servers are concurrently engaged to process a user

request, the task completion time is dictated by the server with the highest latency,

leading to potential delays in the overall response time. Even in scenarios where only a

tiny fraction of requests (e.g., one in 10,000) encounters high latency on an individual

server, a substantial number of user requests will still endure latency exceeding one

second if a sizable number of servers (e.g., 2,000) are involved. For that reason,

tail latency (e.g., 99th or 99.9th percentile) is a common metric of interest [27], and

minimizing network latency and addressing tail latency become paramount concerns.

Datacenter networks: To address the increasing demands for high bandwidth and low

latency in datacenters, datacenter operators have begun deploying high-end networking

solutions and introduced fully offloaded network stacks through the use of FPGA-

enabled network interface cards (NICs) [20, 150, 34] or natively-offloaded fabrics such

as InfiniBand [14, 15]. These networks tend to combine custom fully offloaded network

stacks, remote direct memory access (RDMA) capability, and lossless links to provide

high end-to-end performance.

In spite of datacenter operators scaling the network bandwidth and using offloaded

fabric to meet the demands of hosted applications, the network in datacenters contin-

ues bottlenecking the performance of applications [59]. The main reason is that the

network in datacenters is shared among coexisting applications, giving rise to possible

interference between different applications and resulting in contention. Meanwhile,

recent works have shown that most datacenter operators do not build full bisection

bandwidth (i.e., non-blocking) networks due to financial concerns and cost limitations.

The bandwidth in these datacenters is oversubscribed, resulting in applications needing

more bandwidth than what is available [57]; thus, congestion is more likely to hap-

pen. Consequently, as a result of this persistent oversubscription, congestion continues

to be a pervasive and significant problem in datacenters, significantly impeding the

performance of critical applications.

4 Chapter 1. Introduction

1.2 Bandwidth allocation in datacenters

In order to control the network bandwidth contention in the presence of congestion,

datacenter networks deploy bandwidth allocation schemes and allocate bandwidth

according to an allocation policy. Bandwidth allocation policy defines how to distribute

the link capacity among flows when congestion happens. Many bandwidth allocation

schemes have been proposed in recent years to optimize bandwidth allocation within

datacenters. In this pursuit, datacenter networks often implement traffic classification

and Quality of Service (QoS) mechanisms. Traffic classes are used to categorize data

traffic based on specific attributes, allowing for differentiated treatment of various types

of traffic within the network. QoS encompasses a set of policies and mechanisms

that ensure a certain level of service quality for different traffic classes, prioritizing

and guaranteeing bandwidth, latency, and other performance parameters according to

the needs of each class. These mechanisms collectively enhance the efficiency and

effectiveness of bandwidth allocation strategies, enabling datacenters to better meet the

diverse demands of their applications and workloads. Most of the bandwidth allocation

scheme proposals apply one of the following categories of policies:

• Static reservations address bandwidth guarantees for competing applications.

These solutions offer strong protection by granting each application independent

bandwidth, but they suffer from two key issues. First, network underutilization

occurs when applications do not fully use their reserved bandwidth, leading

to inefficient resource usage. Second, static reservations require precise band-

width demands from each application, a challenging requirement in the dynamic

landscape of datacenters.

• Minimum bandwidth guarantees, a more flexible approach than static reservations,

establish a minimum absolute bandwidth allocation for each application while

striving for work conservation to maximize utilization. This approach allows

applications to consume more bandwidth than their guarantees when additional

bandwidth is available, promoting better network resource usage. However,

similar to static reservations, applications still need to specify their bandwidth

requirements, which may not align well with the dynamic nature of datacenter

workloads.

• Best-effort sharing, in contrast to the aforementioned approaches, does not neces-

sitate explicit network demand expressions from applications. However, it lacks

1.3. Problem discussion 5

deterministic guarantees for network performance among competing applications.

The two main categories that follow such an approach are as follows:

– The first category attempts to achieve some variant of max-min fairness

at the flow level. Max-min fairness is a widely used allocation policy

that provides an optimal isolation guarantee by maximizing the minimum

bandwidth allocated to each flow.

– The second category aims to achieve optimal average completion time at

the flow level by prioritizing short flows.

Best-effort-sharing solutions are particularly practical for the dynamic and ever-

evolving nature of the datacenter landscape. But they have one thing in common: they

are application-agnostic and focus on optimizing bandwidth allocation at the network

level. These application-agnostic approaches can be beneficial in terms of simplicity and

practicality, as they do not require a detailed understanding of the specific requirements

of each application. These approaches, however, have a key drawback: they do not

take into account the actual usage of the bandwidth by the applications. As a result,

applications that require more bandwidth than they are allocated may not be able to

access the necessary bandwidth, leading to poor performance. In addition, applications

that are allocated more bandwidth than they need may be wasting resources, leading to

inefficient use of bandwidth.

1.3 Problem discussion

In this section, we delve into two critical problems in modern datacenter networks,

where the coexistence of bandwidth-intensive and latency-sensitive applications poses

significant challenges. These problems highlight the inadequacy of application-agnostic

approaches and the complexities of accurately measuring latency-sensitive application

performance in this dynamic environment.

1. Insufficiency of application-agnostic bandwidth allocation schemes: This dis-

sertation argues against the effectiveness of application-agnostic approaches at the

application level. It emphasizes that network-level properties, such as flow size, do

not provide a comprehensive understanding of application-level networking demands.

One fundamental issue with these approaches is their equal treatment of all flows,

disregarding their collective impact on application performance. We show that different

bandwidth-intensive applications exhibit different degrees of sensitivity to the amount of

6 Chapter 1. Introduction

network bandwidth available, and such sensitivity cannot be captured through flow-level

approaches. Our analysis of an InfiniBand deployment, a high-end networking solution,

also shows that these schemes are suboptimal as they do not effectively distribute

bandwidth.

2. Precise latency measurement challenges: Assessing the impact of the coexistence

of bandwidth-intensive and latency-sensitive applications is imperative in modern data-

centers. Nevertheless, in the context of emerging networking technologies, measuring

latency presents a formidable challenge. The crux of the issue lies in the fact that while

tools for measuring latency are available for traditional network stacks such as TCP/IP,

the task becomes considerably more challenging when dealing with RDMA networks,

which have become increasingly prevalent in modern datacenters. Specifically, ex-

isting tools and methodologies are not tailor-made to accurately measure latency for

RDMA-based networks with sub-10-microsecond round-trip time.

1.4 Our Approach

This thesis begins by focusing on bandwidth-intensive applications and subsequently

evaluates the performance of latency-sensitive ones. By scrutinizing the behavior of

bandwidth-intensive applications, we aim to gain insights into their resource demands

and their potential impact on other applications sharing the network infrastructure.

Furthermore, we seek to provide a comprehensive understanding of how the intricate

interplay between the two types of applications (latency-sensitive and bandwidth-

intensive applications) can influence the overall efficiency and reliability of datacenter

operations.

1. A case for application-centric bandwidth allocation in datacenters: We first

attempt to address the deficiency of existing bandwidth allocation schemes from a new

angle that moves higher up in the stack and argues that the solution lies in exposing

the performance of applications to the network. We posit that in order to contain

the impact of network contention on the performance of applications, the bandwidth

allocation scheme must evolve to take the performance of applications into account

while distributing the bandwidth.

Goal: Our goal is to design a bandwidth allocation scheme that improves the end-to-end

performance of applications. Crucially, we want to ensure that such an allocation scheme

is practical and well-suited for the datacenter environments that host diverse applications.

In the course of this dissertation, we consider packet latency for latency-sensitive

1.4. Our Approach 7

applications and application completion time for bandwidth-intensive applications as

our metrics of interest.

Insight: In the context of optimizing best-effort bandwidth allocation schemes within

datacenters, our analysis reveals a crucial insight: the impact of available network

bandwidth on different applications can exhibit significant variations. Recognizing

this variability and the need to develop a more tailored approach to address it, we

propose a novel metric called bandwidth sensitivity. This metric represents the

cornerstone of our thesis and is designed to capture the specific impact of network

bandwidth on the completion time of individual applications. By quantifying this

relationship, we aim to address the issue with best-effort-sharing policies and provide a

more precise and granular understanding of how network bandwidth allocation affects

the performance of different applications within the datacenter environment. This

innovative contribution seeks to enhance the effectiveness of best-effort bandwidth

allocation schemes by tailoring them to the unique characteristics and requirements of

each application, ultimately optimizing the overall performance and resource utilization

of datacenter networks.

Approach: Instead of aiming for fairness or completion time at the flow level, we want

a scheme that takes into account how bandwidth affects each application, such that

more bandwidth can be given to applications that are more affected by bandwidth

constraints. Such a scheme can learn the bandwidth sensitivity of applications by

ahead-of-time profiling and use the sensitivity information to derive the bandwidth

share of applications with the goal of maximizing their end-to-end performance.

Challenges: As part of our efforts to develop an application-aware bandwidth allocation

scheme, we need to address the following challenges:

• Sensitivity Differentiation: Such a solution requires a robust approach to capture

the application’s sensitivity to network bandwidth.

• Dynamism: At the datacenter scale, a multitude of applications share the network,

with new applications arriving and others terminating or migrating over time. A

bandwidth allocation mechanism must be able to handle such dynamism in a

timely and resource-effective manner.

• Practicality: To facilitate adoption and maximize generality, a bandwidth alloca-

tion scheme should not require changes to deployed hardware and/or network

protocols.

8 Chapter 1. Introduction

Design: We design a novel bandwidth allocation scheme called Saba, that leverages

the bandwidth sensitivity metric by learning the sensitivity of applications with ahead-

of-time profiling and sharing bandwidth among different applications accordingly. We

put particular effort into the design of Saba with the goal of being widely deployable in

existing datacenters by minimizing resources needed during profiling and the number

of queues used in switches. Saba is fully compatible with existing switches, NICs, and

switches without requiring any changes to congestion-control protocols and requires

only a lightweight shim layer at end hosts.

Summary of results: Experiments with a 32-server hardware testbed show that Saba

can significantly increase overall performance across a broad set of workloads by

reducing job completion time up to 3.94× for bandwidth-sensitive jobs, while only

marginally affecting completion times for the others. Furthermore, we evaluate Saba

at scale in simulation with 1,944 servers using synthetic workloads and compare it

against InfiniBand, an ideal implementation of max-min fairness, and Homa (the state-

of-the-art networking protocol designed for datacenters). Our evaluation shows that

Saba improves the average performance of studied workloads by 1.27×, 1.11×, and

1.13× compared to InfiniBand, ideal implementation of max-min fairness, and Homa,

respectively.

2. Precise latency measurement for RDMA networks in datacenters: Next, this

thesis attempts to evaluate the impact of bandwidth-intensive applications on latency-

sensitive ones. However, measuring latency with a high level of precision presents a

new challenge in datacenters. Specifically, existing tools are not designed to accurately

measure latency in emerging technologies, particularly RDMA-based networks, which

are increasingly common in datacenters.

Goal: Our goal is to design a latency measurement tool capable of assessing port-to-port

latency in RDMA-based networks, while ensuring it minimizes software stack overhead

and remains compatible with commodity gear lacking hardware-based timestamping.

Design: To address this gap, we introduce RPerf, a tool crafted to measure latency with

high precision. RPerf effectively overcomes the limitations of existing tools, enabling

precise latency measurement without the need for costly hardware-based solutions or

support for hardware timestamping on NICs. RPerf achieves this by leveraging the

primitive operations in RDMA, thus effectively excluding software overheads from

latency measurements.

Summary of results: Through the utilization of RPerf, we evaluate our hardware testbed

and show that our setup achieves remarkably low latency in an unloaded network,

1.5. Thesis contributions 9

validating prior research findings. However, our observations also reveal that our

RDMA-based switch, even after a variety of attempts to optimize the network at the

flow level, struggles to maintain low latency for latency-sensitive flows in the presence

of bandwidth-intensive flows, shedding light on a critical performance challenge in

datacenter environments.

1.5 Thesis contributions

Thesis Statement
Exposing application-level performance to datacenter networks enables mitigating the

impact of the network on co-running applications.

To support our thesis statement, in this dissertation, we make five principal contributions:

1. We provide a characterization of co-running applications and find that en-

forcing network-level max-min fairness or shortest-flow first on a per-flow basis

can lead to poor overall application performance when multiple applications are

sharing the network. Our research indicates that these approaches are unable to

accurately identify the actual bandwidth requirements of individual applications.

As a result, they are unable to effectively allocate bandwidth and improve the

overall performance of applications.

2. We propose the concept of bandwidth sensitivity as a guiding principle for allo-

cating bandwidth among applications and show how this metric can be learned

through profiling. By taking into account the relative importance of bandwidth to

different applications, we show that it is possible to make more informed deci-

sions about how to allocate bandwidth in order to maximize overall application

performance.

3. We present Saba, an application-aware bandwidth allocation scheme that

utilizes bandwidth sensitivity to make allocation decisions. We compare Saba

to a baseline approach using InfiniBand’s congestion control and demonstrate

that Saba is able to significantly reduce the completion time for bandwidth-

sensitive jobs by up to 3.94×, while only causing a minor slowdown (1-5%) for

a few bandwidth-insensitive jobs. Overall, Saba is able to improve the average

completion time by 1.88×.

10 Chapter 1. Introduction

4. We introduce RPerf, a micro-benchmarking tool that is able to provide sub-

microsecond precision measurement of latency. We discuss the limitations of

current latency measurement tools and demonstrate how RPerf compares favor-

ably to these existing tools in terms of accuracy and precision.

5. We present a detailed characterization of the latency and bandwidth per-
formance of an InfiniBand switch. Our studies reveal that while the switch

can provide low per-packet latency (on the order of microseconds) and high

bandwidth for a single application, it is unable to offer low latency for a latency-

sensitive flow in the presence of bandwidth-intensive flows. In order to improve

the performance of coexisting applications, we investigate various strategies such

as using different packet sizes and priority levels. However, we find that all of the

evaluated approaches are deficient in some respect, have some shortcomings, and

do not fully address the issue of balancing latency and bandwidth for multiple

applications.

1.6 Thesis organization

The remainder of this thesis is organized as follows:

• Chapter 2 gives an overview of the background related to the work presented in

this thesis.

• Chapter 3 characterizes the performance of applications in a shared environ-

ment. We present the motivation and discuss the shortcomings of conventional,

application-agnostic bandwidth allocation schemes.

• Chapter 4 arrives at the complete design of an application-aware bandwidth allo-

cation scheme, Saba. We compare the Saba against the state-of-the-art bandwidth

allocation schemes and demonstrate how Saba outperforms other application-

agnostic/aware approaches.

• Chapter 5 characterizes an InfiniBand switch in a rack-scale deployment. We

first introduce RPerf, a precise latency measurement tool. We then use RPerf to

conduct a set of experiments and evaluate the switch.

• Chapter 6 concludes the dissertation, summarizing the key contributions and

outlining the directions for future work.

Chapter 2

Background

In this chapter, we present the background relevant to the dissertation. Firstly, we

explore the different types of datacenter applications, their communication patterns,

and their network demands. Secondly, we describe the architectures of modern data-

centers that are used to provide the necessary scalability and performance to meet the

demands of today’s datacenter applications. Thirdly, we provide essential background

information on RDMA technology, InfiniBand, and RoCE networking solutions, which

are mentioned throughout this dissertation. Finally, we explore the various types of

bandwidth allocation schemes and discuss two flow-level bandwidth allocation schemes

and how they aim to ensure efficient use of bandwidth.

2.1 Datacenter applications

Datacenters are facilities that house a large number of servers, storage systems, and

networking equipment, all of which are used to support the operation of applications

and services. These applications and services may include web servers, email servers,

database servers, file servers, and other types of servers. Thus, datacenter applications

play a key role in the datacenter ecosystem. Due to ever-growing datasets, datacenter

applications are designed to be distributed and run across a cluster of servers. Many of

these applications are implemented on top of distributed frameworks to perform data

processing (e.g., MapReduce [28] and Spark [141]), graph processing (e.g., Giraph [43]),

stream processing (e.g., Storm [129]), machine learning training (e.g., Tensorflow [1]),

distributed key-value stores (e.g., Memcached [36]) and distributed database systems

(e.g., Spanner [26]). The communication pattern of these frameworks along with the

type of workloads running on them determine the networking requirements of the

11

12 Chapter 2. Background

... ...

... ...

Mapper

Reducer

(a) MapReduce

... ...

Aggregators

Aggregator

Workers

(b) Partition-Aggregate

Workers

Parameter
Server

(c) Star-Like

...

...superstep(i)

superstep(i+1)

barrier

(d) Bulk Synchronous Parallel

Figure 2.1: Communication patterns in distributed applications.

applications.

2.1.1 Communication patterns

In datacenters, a communication pattern refers to the specific manner in which data and

information flow between various components or nodes within the network. It describes

the regular or recurring pathways and interactions that data takes as it travels from its

source to its destination, often influenced by the architecture, topology, and design of

the datacenter network. These patterns play a crucial role in the design and operation of

datacenters, as they determine how data is transmitted, processed, and stored within the

datacenter.

There are several basic communication patterns that are commonly used in datacen-

ter applications, including point-to-point communication, publish-subscribe communi-

cation, and request-response communication. In addition to these basic communication

patterns, there are also more complex patterns that are widely being used in datacenter

applications, such as MapReduce, partition-aggregate, star-like, and bulk-synchronous

parallel.

MapReduce (Figure 2.1a) is a well-known and widely used programming model

in distributed frameworks. In this model, a mapper reads its input from a distributed

2.1. Datacenter applications 13

filesystem, performs user-defined computations, and then stores intermediate data on

the distributed filesystem. A reducer then retrieves the intermediate data from multiple

mappers, merges it, and stores the final output on the distributed filesystem. The

communication stage of MapReduce, in which the intermediate data is transferred from

each mapper to each reducer, is called the shuffle. The MapReduce model produces a

total of X × Y flows in the shuffle phase if there are X mappers and Y reducers, as well

as at least Y flows for writing the final results.

Partition-aggregate (Figure 2.1b) covers a broad category of data-intensive frame-

works, including interactive online services (e.g., Facebook home feeds and Google

Search results), big data analytics, graph processing, machine learning training, and

real-time stream processing. In this model, a request from a user is passed to multiple

workers, and a set of aggregators gather responses from the workers. The aggregation

tree can have multiple levels, with the leaf nodes being the workers and the root node

being the final aggregator. The worker responses are aggregated and sent back to the

user within strict deadlines. If a response cannot be delivered within the deadline, it

may be left behind or sent later asynchronously. This model imposes a many-to-few

traffic pattern on the datacenter network.

Star-like (Figure 2.1c) is a common communication pattern among traditional

machine-learning applications. A machine-learning application that fits a model to data

requires multiple iterations until the model’s parameters are converged. Because of the

large amount of input data that needs to be processed, machine learning frameworks

use a distributed architecture. A typical machine-learning framework usually has server

nodes, called parameter servers, that store globally shared parameters, and worker nodes

that perform local computations on their assigned data. In this approach, each worker

node can read and update all model parameters. The synchronization required between

worker nodes and server nodes to update the model makes network performance a

critical factor in the performance of machine learning applications. For example, when

the computation is synchronous, the parameter server needs to aggregate the parameters

from the workers after each iteration. If one of the workers is slow to respond, the overall

training time increases significantly due to the wait for that worker’s parameter updates.

In modern machine-learning applications, an alternative to the traditional parameter

server model is the All-Reduce approach. This technique streamlines the synchronization

of model parameters across multiple trainers, which involves two key steps: i) Reduce-

Scatter, where data from multiple workers is aggregated using a specified reduction

function (e.g., summation or minimum), ensuring that each worker retains a portion of

14 Chapter 2. Background

the final data; and ii) All-Gather, where after Reduce-Scatter, the reduced state is shared

across all workers, ensuring that each worker possesses the complete and updated model

parameters. This technique enforces an all-to-all communication pattern, which can be

costly in machine-learning training. Emerging approaches are now tackling the expense

associated with this pattern in the All-Reduce technique. These methods optimize

inter-worker communication by focusing on data exchanges solely between consecutive

layers assigned to different workers, reducing data volume and streamlining exchanges

to point-to-point communication. This optimization proves especially advantageous for

large-scale models during distributed training [97].

Bulk-synchronous parallel (Figure 2.1d) is a common communication model in

distributed computing, used in various frameworks for graph processing, matrix com-

putation, and network algorithms. A bulk-synchronous parallel computation, called a

superstep, consists of concurrent computation, communication between worker nodes,

and barrier synchronization. In this model, the communication phase can be globally

optimized for the superstep using explicit barriers at the end of each superstep.

Overall, communication patterns play a critical role in the design and operation

of the datacenter. While datacenter applications differ in execution mechanisms and

communication patterns, their common trait is that they run across a large number

of servers and their logic is organized in multiple computation and communication

stages. By understanding the various communication patterns available, it is possible

to optimize the performance and efficiency of the network and ensure that it is able to

meet the needs of applications.

2.1.2 Workloads

Datacenters accommodate a variety of workloads to provide services to users. These

workloads generally fall into one of the following categories:

Latency-sensitive workloads require extremely low network latency and are sensitive

to individual message latency. These applications typically send and receive short

messages and make up a small percentage of bytes sent and received within a datacenter.

An example of this type of workload is Memcached, a distributed in-memory key-

value store [36]. In a system using Memcached, clients can access data stored on a

Memcached server remotely over the network through various operations, including

insertion and retrieval. Previous research has shown that even a minor increase of

20µs in network latency can result in a 25% drop in performance for a Memcached

2.1. Datacenter applications 15

Table 2.1: Workloads

Workload Description

Logistic Regression is a popular machine learning algorithm to predict a cate-

gorical response.

Random Forest is a machine learning algorithm that is widely used for

classification and regression tasks.

Gradient Boosted Trees is a machine learning technique that uses ensembles of

decision trees to predict a continuous or categorical out-

come.

Support Vector Machines is a widely used method for large-scale classification

tasks.

Nutch Indexing tests the indexing sub-system in Nutch, a popular open-

source (Apache project) search engine.

NWeight computes associations between two vertices that are n-

hop away.

PageRank measures the importance of each vertex in a graph.

SQL contains Hive queries (Aggregation and Join) performing

the typical OLAP queries.

WordCount counts the occurrence of each word in the input data.

TeraSort sorts data as fast as possible to benchmark the perfor-

mance of the MapReduce/Spark framework.

workload [110], and this drop can be even more significant in the presence of congestion

in datacenters.

Bandwidth-intensive workloads such as big-data analytics on top of Hadoop or

Spark, distributed machine-learning training, data backup, and VM migrations, employ

a bulk communication model that requires exchanging large amounts of data among

the nodes, necessitating high bandwidth. Logistic Regression is an example of an

iterative bandwidth-intensive workload. In Logistic Regression, each iteration includes

a large broadcast and a shuffle operation, and it usually takes the workload hundreds of

iterations to converge. In each iteration, the processing is held up by the slowest server

to complete. Recent work shows that in an implementation of Logistic Regression

on Spark, 42% of the job completion time is spent on communication [22]. Such a

large fraction of the completion time spent on communication shows the importance of

16 Chapter 2. Background

network bandwidth on bandwidth-hungry workloads such as Logistic Regression.

Throughout this dissertation, we use a range of workloads listed in Table 2.1 from

Intel’s industry benchmarks running on top of Spark and Flink. These workloads use

different combinations of operations, such as map, reduce, filter, and collect in their

implementations, resulting in different communication patterns.

2.2 Datacenter network architecture

One of the key challenges in designing and operating datacenters is to ensure that

they are able to meet the networking demands of the applications and services they

support. This involves not only ensuring that there is sufficient bandwidth and capacity

to handle the traffic generated by these applications, but also ensuring that the network

is reliable, secure, and able to support the performance and availability requirements of

the applications. To address these factors, the architecture of the datacenter network has

recently received significant research interest from academia and industry.

A datacenter network architecture is the physical and logical layout of the network-

ing infrastructure within a datacenter and is designed to support the efficient flow of

data and communications between servers, storage devices, and other networking com-

ponents. It is imperative that the datacenter network is well designed so that both the

deployment and maintenance of the infrastructure remain cost-effective. This section

discusses the various components of a datacenter network architecture, the different

types of architectures that are commonly used, and the considerations that go into

designing and implementing a datacenter network.

Switch: One of the key components of a datacenter network architecture is the network

switch. Switches are used to connect servers and other devices within the datacenter and

enable them to communicate with each other. They can be either fixed-configuration

switches, which are pre-configured with a fixed number of ports, or programmable

switches, which can be expanded with additional modules as needed. In addition to

switches, a datacenter network architecture may also include other networking devices

such as routers, firewalls, load balancers, and network-attached storage (NAS) devices.

These devices perform specialized functions within the network and help to ensure the

security and performance of the overall system.

Network topology: Another main component of a datacenter network architecture is

the topology of the network that interconnects servers and switches. A datacenter net-

work topology describes the layout of the cabling infrastructure and the way thousands

2.2. Datacenter network architecture 17

of datacenter servers are connected via switches. Network topology has a significant

impact on the reconfigurability of the datacenter infrastructure to respond to changing

application demands and service requirements; thus, a topology must strike a balance

between reliability, performance, scalability, and cost around the capabilities and con-

straints of existing technologies. The most widely-deployed topologies in datacenters

are as follows:

Fat-tree is a non-blocking Clos-based topology [124]. It consists of three layers:

core, aggregation, and edge.The core layer consists of switches and routers that are

interconnected by high-speed links known as backbone connections. The aggregation

layer aggregates uplinks from the edge layer to the core layer using higher bandwidth

links. The edge layer, which consists of Top of Rack (ToR) switches, connects servers

to the datacenter network. The fat-tree topology aims to alleviate bandwidth bottlenecks

closer to the core by adding additional links. In this topology, the number of links

connecting a switch to its lower layer switches is equal to the number of links connecting

the switch to its parent switch.

VL2 [48] is another Clos-based 3-layer network topology that consists of inter-

mediate, aggregation, and ToR switches.In this topology, each ToR switch connects

to different aggregation switches, and each aggregation switch is connected to every

intermediate switch. The main difference between the fat-tree and VL2 topologies

is that in the VL2 topology, switch-to-switch links have much higher capacity than

server-to-switch links, which reduces the number of cables required to connect the

aggregation and intermediate (core) switches.

Leaf-spine is a 2- or 3-layer network topology composed of spine and leaf layers.In

this topology, servers are connected to the leaf layer and every spine switch is directly

connected to all leaf switches. The connections between the servers and leaf layer

may have a different capacity from the ones connecting leaf switches to the spine. The

leaf-spine topology minimizes point-to-point latency, as each packet only has to travel

to a spine switch and another leaf switch to reach its destination.

Bisection bandwidth: Network topologies are characterized by their bisection band-

width, a key factor that reflects the true bandwidth available in a given datacenter

network. Bisection bandwidth is defined as the maximum amount of bandwidth in

the datacenter measured by bisecting the network at any given point. Non-blocking

networks offer full bisection bandwidth, allowing any input port to transfer data to

any unused output port at the full line rate. While providing full bisection bandwidth

mitigates the network bottlenecks, datacenter operators often deploy oversubscribed

18 Chapter 2. Background

networks to contain costs. For example, Facebook’s leaf-spine style datacenter network

has a 4:1 oversubscription ratio from rack to rack, as described in [112].

Datacenter network architecture considerations: There are several factors that need

to be considered when designing and implementing a datacenter network architecture.

One of the most important is performance. A datacenter network must meet the network-

ing demands of the applications and services inside the datacenter. The performance of

the network can be critical for certain types of applications, such as those that require

low latency or high bandwidth. Applications that are sensitive to network performance

may require specialized networking equipment or technologies to ensure that they can

operate effectively. Another important factor is scalability. A datacenter network must

be able to grow and evolve as the needs of the business change, so it is important to

design it in a way that allows for easy expansion. Other considerations include security,

reliability, and cost.

In conclusion, a datacenter network architecture is a critical component of any

datacenter, providing the infrastructure that enables the efficient flow of data and

communications within the facility. There are several different components and types

of architectures that can be used to create a datacenter network and a range of factors

need to be considered when designing and implementing one.

2.3 RDMA-based interconnection technologies

In order to provide both high bandwidth and low latency, datacenter operators are imple-

menting high-performance interconnection solutions that utilize Remote Direct Memory

Access (RDMA) technology. RDMA addresses the issues commonly associated with the

traditional TCP stack, such as packet processing and data copy overhead, by operating

at the network layer below the transport layer where traditional networking protocols

such as TCP operate. This allows RDMA to bypass the operating system’s overhead

and provide direct access to memory, resulting in low latency and high bandwidth.

One of the main benefits of RDMA is its low latency. Because the data is transferred

directly from one server’s memory to another, there is no need for the data to be

processed or routed through the operating system. This results in much lower latency

compared to traditional networking technologies that rely on the CPU and the operating

system to process and route data and brings the end-to-end network latency down from

milliseconds to microseconds.

RDMA is also very efficient in terms of CPU utilization. As the data is transferred

2.3. RDMA-based interconnection technologies 19

directly between the memories of servers, there is no need for the CPU to process the

data or for the data to pass through the operating system. This means that the CPU can

be used for other tasks, rather than being tied up with data transfer.

In an RDMA-based fabric, servers are equipped with RDMA-enabled NICs (RNICs)

connected through RDMA switches. InfiniBand and RDMA over Converged Ethernet

(RoCE) are well-known RDMA-based networking solutions used in today’s datacenters.

InfiniBand is a high-speed interconnect technology that connects servers with remote

storage and networking devices. Instead of Ethernet, InfiniBand performs RMDA over

InfiniBand adapters and switches, removes network software stack overheads, eliminates

context switches, and avoids the need for software execution on the remote CPU.

High bandwidth, data integrity, and reliability are other important features that make

InfiniBand well-suited for high-end datacenter networks. Further, due to InfiniBand’s

hop-by-hop credit-based flow control, where a sender cannot send packets in excess

of the credit amount advertised by the receive buffer at the other end of the link, the

transport layer ensures lossless communication.

RoCE is another networking solution, which enables RDMA on Ethernet networks.

RoCE offloads the network stack to RNICs to support efficient RDMA transport ser-

vices over Ethernet and delivers high-performance networking for latency-critical and

bandwidth-intensive applications. Early studies have found that RoCE fabric achieves

high end-to-end performance only when the underlying Ethernet network is lossless,

leading datacenter operators to use Ethernet’s Priority Flow Control (PFC) mechanism

to minimize packet loss [93]. Studies have also shown that RoCE has higher latency

and lower bandwidth compared to InfiniBand [133].

The performance of an RDMA network is influenced by various factors, including

the type of RDMA primitives, the transport type, and the quality-of-service (QoS)

configuration. In this section, we provide background information on these factors and

explain how they interact with each other.

2.3.1 RDMA verbs

In RDMA terminology, a verb refers to the type of communication operation. There are

two types of verbs: two-sided (send, receive) and one-sided (read, write). Two-sided

verbs involve both communication endpoints, while one-sided verbs only involve one

endpoint (the source). Two-sided communication requires the remote host to pre-post

an RDMA receive, and the local host to post an RDMA send. In contrast, the local host

20 Chapter 2. Background

can use an RDMA write primitive to directly write data to the remote host’s memory

region, or an RDMA read primitive to fetch data from the remote host’s memory region

without involving the remote host.

RDMA verbs use the asynchronous I/O model, in which data transfers are non-

blocking and allow the application to continue executing before a posted request is

completed. Both one-sided and two-sided verbs can use a completion signal (CQE)

issued by the RNIC to notify the host when a request is finished. The CQE is added to

an application-visible completion queue and the application can receive the notification

by polling the queue.

2.3.2 RDMA transport

RDMA offers two transport types: unreliable (UD) and reliable (RC). UD transport

only provides two-sided verbs and does not ensure that requests will be delivered. RC

transport, in contrast, uses acknowledgments to guarantee the delivery of requests and

supports both one-sided and two-sided verbs.

2.3.3 RDMA execution path

The sequence of interactions between communicating hosts in an RDMA transaction

depends on the RDMA verb and transport type chosen. Figure 2.2 illustrates the

complete sequence of interactions between hosts and RNICs for various RDMA verb

and transport pairs.

At the start of each transaction, regardless of the type of verb and transport, the local

host posts a request to the local RNIC via an MMIO transaction over PCIe. The local

RNIC processes the request based on the verb type specified in the request as follows:

RDMA read: Initially, the local RNIC sends the request over the network fabric. The

remote RNIC serves the request through a DMA read from the host’s memory hierarchy

and sends the data back to the local RNIC. Upon receipt of the data, the local RNIC

issues a DMA write to store the data in local memory. The local RNIC then issues

another DMA write to add a CQE to the completion queue (Figure 2.2a).

RDMA write: To initiate the transaction, the local RNIC retrieves the payload through

a DMA read. The request is then sent over the network fabric, where the remote RNIC

stores the data in its host’s memory with a DMA write and sends an ACK back to the

local RNIC. Upon receiving the ACK, the local RNIC issues a CQE with a DMA write

(Figure 2.2b).

2.4. QoS support in datacenter networks 21

Host RNIC RNIC Host

Local Remote

(a) Read operation using RC

Host RNIC RNIC Host

Local Remote

(b) Write operation using RC

Host RNIC RNIC Host

Local Remote

(c) Send operation using UD

Host RNIC RNIC Host

Local Remote

(d) Send operation using RC

Figure 2.2: Execution sequence of RDMA operations.

RDMA send: To begin the transaction, the local RNIC retrieves the payload through

a DMA read and sends the request over the network fabric. When the remote RNIC

receives the request, it sends an ACK (for RC transport) and stores the payload in its

host’s memory with a DMA write. Depending on the RDMA transport used by the

RDMA send request, the local RNIC issues a CQE either immediately after sending the

request over the fabric (UD, Figure 2.2c) or after receiving the ACK from the remote

RNIC (RC, Figure 2.2d).

2.4 QoS support in datacenter networks

Datacenter networks handle a wide range of traffic patterns and require high QoS to

meet the diverse needs of different flows. QoS enables the assignment of priorities

22 Chapter 2. Background

to flows and supplies various network characteristics, such as buffer allocation, flow

control, queuing, and scheduling, to each priority.

2.4.1 QoS in RDMA networks

RDMA allows for per-flow differentiation by providing a set of priority levels that can

be assigned to flows and exposed to the application developer. These priorities are

carried in the header of InfiniBand/RoCE packets as they are transmitted through the

network.

InfiniBand uses a set of priority levels, called Service Levels (SLs) to hide two of its

architectural components that help in achieving QoS:

1) Virtual lane (VL): The concept of VLs allows a physical link to be divided into

different logical communication links, each with its own buffering, flow-control, and

congestion management resources. A VL arbiter controls the bandwidth usage by

selecting flows according to the VL arbitration table. InfiniBand specification specifies

that each port must have a minimum of two and a maximum of 16 VLs [14].

2) Virtual lane arbitration: Every network component in the subnet of an InfiniBand

fabric has a Service Level to Virtual Lane (SL2VL) mapping table which specifies the

VL and priority for each packet. The SL to VL mapping and the priorities set for each

VL are configurable in every InfiniBand switch.

In RoCE, the flow differentiation and assigning each flow to a hardware priority

level, called Traffic Class (TC), consists of several actions:

1) The application sets the desired priority.

2) This priority is translated into a socket priority.

3) The system administrator maps the socket priority to a user priority.

4) The network/system administrator maps the user priority to a TC.

2.4.2 QoS in non-RDMA Ethernet networks:

In non-RDMA Ethernet networks, QoS employs various techniques to ensure optimal

performance for critical applications like VoIP, video conferencing, and online gaming.

These techniques include Resource Reservation Protocol (RSVP), queuing, and traffic

marking [127].

Traffic Marking: QoS identifies applications that need traffic management and marks

their specific traffic. This marking enables routers to create separate virtual queues for

2.5. Bandwidth allocation in datacenters 23

each application. Techniques for marking traffic include Class of Service (CoS) and

Differentiated Services Code Point (DSCP).

Class of Service (CoS): CoS is a 3-bit field in Ethernet frames that supports VLANs.

It marks traffic at Layer 2 by altering frame header bits, allowing QoS to identify and

manipulate traffic based on its class.

Differentiated Service Code Point (DSCP): DSCP assigns different service levels to

network traffic by tagging DSCP codes to packets in Layer 3 headers. This enables

varying levels of service treatment.

Queuing: Queuing involves creating policies that prioritize specific data streams over

others. Routers and switches use high-performance memory buffers called queues

for this purpose. A Queue is a high-speed buffer present in a router or switch that

stores network traffic until it is ready to be processed or sent in sequence. Routers and

switches feature two kinds of hardware queues: ingress (inbound) and egress (outbound)

queues. These hardware queues can be classified into two categories: standard queues

and strict priority queues. Standard queues treat all traffic equally, without any special

treatment or prioritization. In contrast, strict priority queues are specifically reserved

for high-priority traffic, making them the preferred choice for QoS-enabled interfaces

to handle high-priority packets.

Resource Reservation Protocol (RSVP): RSVP is a transport layer protocol that

reserves network resources to achieve different Quality of Service levels for application

data streams. RSVP uses path and reservation messages:

Path Messages: Sent from source to receiver, storing path state at each node. These

states guide the receiver to reserve network resources on nodes along the path.

Reservation Messages: Sent from receiver to sender, identifying the resources needed

for a data stream.

In summary, QoS in non-RDMA Ethernet networks employs techniques like traffic

marking (using CoS and DSCP), queuing (with standard and strict priority queues), and

RSVP to provide service differentiation and manage network resources effectively.

2.5 Bandwidth allocation in datacenters

Bandwidth allocation is a key aspect of network design and management in datacenters,

which refers to the allocation of available bandwidth among different applications within

the network according to an allocation policy. Bandwidth allocation policy defines how

to distribute the link capacity among flows/applications. There are several ways to apply

24 Chapter 2. Background

a bandwidth allocation policy.

One common approach to bandwidth allocation in datacenters involves the inte-

gration of traffic shaping (rate limiting) and congestion control algorithms, where

congestion control techniques play a foundational role in this allocation process. Con-

gestion control algorithms are responsible for continuously monitoring the traffic within

the network and dynamically adjusting the allocation of bandwidth in response to fluc-

tuations in traffic levels. For instance, when the network experiences congestion, these

algorithms may proactively or reactively reduce the allocated bandwidth for specific

flows or applications, thereby mitigating overall congestion and maintaining network

stability. Such an approach enhances the network performance by ensuring that all

applications have equitable access to the necessary bandwidth. Traffic shaping, or rate

limiting, is a complementary mechanism that relies on the principles of congestion

control and involves setting limits on the bandwidth that different flows or applications

can utilize. By doing so, traffic shaping prevents any single flow or application from

monopolizing an excessive portion of the available bandwidth.

The general consensus is that the traditional transport-layer protocols, such as

TCP, do not perform bandwidth allocation efficiently in datacenters [149, 6, 53, 8];

consequently, network traffic from competing applications interferes with each other,

resulting in a severe lack of predictability of application performance. To resolve such

a critical issue, a substantial amount of recent research has focused on bandwidth

allocation in datacenter networks. These solutions can be categorized into one of the

following groups:

1. Static reservations: One area of research focuses on providing bandwidth guarantees

to competing applications through static bandwidth reservations [50, 134, 148, 76].

These solutions offer strong protection by ensuring that the bandwidth available to an

application is independent of other applications. However, they require applications to

explicitly specify their bandwidth requirements. Each application has a virtual network

with guaranteed bandwidth based on its demand, and rate limits are statically enforced.

Virtual machines are placed appropriately to achieve these guarantees, and an admission

control system ensures sufficient bandwidth reservations for all existing applications

upon request. While static reservations provide predictable application performance

through bandwidth isolation, they are not efficient in utilizing network bandwidth

in datacenters. For example, when an application does not fully use its bandwidth

reservations, the unused bandwidth cannot be utilized by other applications, leading

to wasted bandwidth and inefficient utilization. Additionally, many solutions based

2.5. Bandwidth allocation in datacenters 25

on static reservations are difficult to implement due to their complexity in network

management.

2. Minimum guarantees: A less strict version of static reservations is minimum band-

width guarantees, which provide a minimum absolute bandwidth for each application

and aim for work conservation to achieve high utilization. With work conservation,

applications are permitted to use more bandwidth beyond their guarantees when there

is available bandwidth. There are two types of mechanisms that ensure minimum

guarantees:

1) End-to-end bandwidth sharing through congestion control, which either assumes

that the network core is congestion-free, e.g., Gatekeeper [111] and EyeQ [58], or does

not rely on such an assumption, e.g., ElasticSwitch [106] and Hadrian [18]. These

works combine admission control and VM placement with congestion control, to ensure

minimum bandwidth guarantees and work conservation.

2) In-network bandwidth sharing using weighted fair queuing (WFQ), which offers

minimum bandwidth guarantees for tree-based topologies (e.g., fat-tree, VL2, and

leaf-spine) by providing WFQ scheduling policy at every switch in the network [105].

However, such an approach lacks practicality, as it requires switches to maintain per-

application queues.

3. Network proportionality: In public cloud environments, tenants pay to access

resources. Network proportionality is a bandwidth allocation policy that shares band-

width between tenants in proportion to their payments, similar to how other resources

are shared in the cloud. However, implementing this policy can be difficult due to the

varying communication patterns of applications, capacity constraints, and the demands

of tenants. Additionally, recent research has shown that it is challenging to achieve

network proportionality and that there is a trade-off between network proportionality

and high utilization [105].

4. Best-effort sharing: Best-effort sharing is another approach to bandwidth allocation

and unlike the aforementioned approaches, it does not require applications to explicitly

express their network demands. However, it does not provide deterministic guarantees

for the network performance of competing applications. Solutions based on best-effort

sharing generally apply an allocation policy at the flow level in order to achieve either

flow-level fairness, where each flow receives an equal amount of bandwidth compared

to other flows, or optimized completion time, where the completion time of flows is

proportional to their size [104].

1) Flow-level fairness: Traditionally, per-flow fair scheduling has been advocated

26 Chapter 2. Background

as a way to make Internet bandwidth sharing more efficient and robust. Fairness is

achieved when bandwidth is equally allocated among flows and each flow can increase

its bandwidth utilization without decreasing the utilization of other flows beyond their

allocation. Max-min fairness is a widely-used allocation policy that aims to prevent

any flow from monopolizing the network and to ensure that all flows have access to the

necessary bandwidth. One of the benefits of max-min fairness is that it can help prevent

congestion in the network by ensuring that no flow consumes more than its fair share of

available bandwidth. This allows the network to more effectively manage the flow of

data and avoid bottlenecks.

Max-min fairness aims at achieving high utilization while maintaining fairness

among flows. To this end, max-min fairness maximizes the minimum amount of

bandwidth allocated to each flow. In max-min fairness, initially, bandwidth is allocated

equally among all flows. If one or more flows cannot utilize their share, the max-min

fairness policy allocates the unused bandwidth equally among the rest of the flows until

all flows are satisfied or bandwidth is fully allocated. As a result, this allocation policy

is work-conserving, meaning that in the presence of sufficient demand, it allocates

the whole link capacity. Recently proposed protocols like DCTCP [7], NDP [54],

and Swift [71] aim to achieve max-min fairness while keeping low queue utilization.

For example, NDP is a receiver-driven flow control mechanism designed to reduce

congestion in networks, particularly at the downlink from the ToR to the receivers.

When a new message is sent using NDP, the sender transmits the first Bandwidth Delay

Product (BDP) of the message at the maximum rate of the NIC. This helps to reduce

latency for short messages. After the initial BDP is sent, the sender will not send any

more packets for the message until instructed to do so by the receiver. The receiver

controls the rate at which new packets are received by sending a ‘pull’ packet for every

data packet it receives. This helps to prevent congestion at the ToR switch by pacing the

arrival of packets on the downlink. In this way, the receiver is able to regulate the flow

of data to avoid overwhelming the network. NDP requires special switches to operate

and modifications to applications.

An ideal implementation of max-min fairness transfers data from flows using a

bit-by-bit Round-Robin scheduling algorithm, where one bit of each flow is serviced per

round [52]. Such an implementation, however, is not practical as the transmission unit at

the link level is a packet not one bit of data. A variety of algorithms have been developed

for approximating an ideal max-min fairness implementation by calculating rates and

enforcing the share of flows in different settings [42, 30, 119, 143, 103, 75, 44]. Also,

2.5. Bandwidth allocation in datacenters 27

recent studies propose extending max-min fairness to the level of VM pairs and tenants

to prevent users from misusing the allocation policy by initiating more connections.

NetShare [74] approximates max-min fairness at the tenant level in a hierarchical

manner. FairCloud [105] provides weighted max-min fairness on congested links.

Seawall [118] addresses VM-level fairness by enforcing VM-to-VM rates for VMs

belonging to one tenant. Silo [57] focuses on VM placement and a hypervisor-based

packet pacing to provide latency and bandwidth guarantees at the datacenter scale. None

of these approaches considers the application-level sensitivity in bandwidth allocation,

and hence, they provide sub-optimal performance.

Overall, max-min fairness is an important bandwidth allocation scheme in datacenter

networks. By ensuring that all flows receive a fair share of the available bandwidth, the

allocation scheme can help to prevent congestion, improve performance, and ensure

that all applications receive the bandwidth equally.

2) Optimal flow completion time: One of the assumptions in bandwidth allocation studies

is that flow completion time directly translates to application performance [23, 96]. The

intuition is that if flows are completed sooner, the communication stages of applications

will be completed faster. It is proven that the Shortest-Remaining-Processing-Time

(SRPT) scheduling algorithm can achieve optimal average flow completion time among

competing applications.

The SRPT algorithm works by continuously monitoring the remaining processing

time of each flow and prioritizing the flow with the shortest remaining. This ensures that

the flow with the least amount of processing time left is completed as soon as possible,

thereby reducing the overall processing time for all flows.

One of the main advantages of SRPT flow scheduling is its simplicity. The algorithm

only requires a small amount of data to make its scheduling decisions, making it easy

to apply in designing bandwidth allocation schemes. However, SRPT flow scheduling

is not without its limitations. One of the main drawbacks is that it can lead to unfair

bandwidth allocation, as flows with shorter processing times may be prioritized over

those flows with longer processing times. This can lead to long waiting times for flows

with longer processing times, which can negatively impact the overall performance of

the network. Another drawback of SRPT is that today’s datacenter switches do not

support the SRPT algorithm, and this scheduling algorithm cannot be ported to the

newer scheduling mechanisms like PIFO [125].

Several proposals have borrowed this idea and designed bandwidth allocation

schemes and congestion control protocols that implement or approximate the behavior

28 Chapter 2. Background

of the SRPT algorithm, such as pFabric [9], Homa [94], and pHost [38]. Many of these

proposals try to overcome the limitations of SRPT by emulating its behavior through

using a small number of independent priority-scheduled queues (most of today’s com-

modity switches support eight queues), where all packets from a higher priority queue

are sent before packets from lower priority queues. However, the fact that the infor-

mation about the remaining processing time of flows needed for SRPT is not currently

available in today’s transport protocols, makes these solutions impractical in the current

datacenter settings [152]. pFabric is a transport mechanism that uses priority queues

and DCTCP for the rate control mechanism to improve the efficiency and speed of data

transfer. It is particularly effective for transferring short messages and is able to achieve

low latency while also maximizing the use of network bandwidth. pFabric was the first

to discover that using priority queues in this way could significantly reduce the time it

takes for data to be transferred or the latency of the message. pFabric, however, requires

modifications to the switch hardware in order to support an infinite number of priority

levels, which limits its practicality. Homa is another transport protocol that employs

a combination of network priority queues and receiver-driven packet scheduling to

improve the performance of data transfer in datacenters, particularly for short messages.

Like pFabric, it uses priority queues to prioritize short flows, and like NDP, it uses

receiver-driven scheduling to regulate the flow of data and prevent congestion at the

downlink of hosts. Homa has been shown to be particularly effective at reducing latency,

especially under high network loads, and has been found to have lower tail latencies

than other transport protocols such as TCP, DCTCP, InfiniBand, and NDP. All of the

aforementioned solutions optimize for network-level metrics and ignore the impact

of bandwidth sensitivity for different applications, which can result in poor aggregate

application performance.

5. Application-aware bandwidth allocation: There have been a few attempts to

use the application-level network demands in bandwidth allocation, many of which

are specialized for specific types of applications and require software modification.

AppSch [78] relies on a priori knowledge of the flow size of all flows in applications

and allocates paths for their flows.

In order to bridge the gap between network demands of applications and network-

level properties like flow, a new concept called coflow [23] (collection of related flows)

has been introduced in datacenter networks. A coflow refers to the flow of data between

multiple pairs of endpoints that have the same application-level semantics and share

a common performance goal. For example, the flows in the shuffle stage between the

2.5. Bandwidth allocation in datacenters 29

mappers and the reducers in MapReduce (Section 2.1.1) can be considered as a coflow.

By capturing the collective objective of related flows, coflow enables application-

aware bandwidth distribution in datacenter networks. The completion time of coflows

has become an important metric in coflow-aware flow scheduling algorithms. These

algorithms aim to minimize the coflow completion time while also maximizing the

utilization of available bandwidth. There has been significant research focused on

optimizing coflow completion time, such as Coflow [23], Orchestra [24], Varys [25],

and Sincronia [2]. For example, Sincronia is a network design for coflows that aims to

achieve near-optimal performance. It can be implemented on top of any transport layer

that supports priority scheduling and uses a greedy mechanism to periodically order

unfinished coflows. Each host in the network sets priorities for its flows based on the

coflow order, and the scheduling and rate allocation of the flows is then handled by the

underlying priority-enabled transport layer. By using this approach, Sincronia is able to

achieve high levels of efficiency and performance for coflow-based data transfer. Many

of these coflow-aware flow scheduling approaches require a centralized coordinator to

perform complex per-flow bandwidth allocation. Such centralized per-flow bandwidth

allocation, however, has its limitations. The main drawback is that the coordinator

needs to be aware of where congestion is occurring in the network and the paths taken

by each flow, which makes using these designs difficult as the location of congestion

changes dynamically. In addition, coflow-based approaches require modifications to

applications to use the coflow API [23].

Another direction in informing networks about the networking demands of appli-

cations is through the proactive prediction of application performance. Performance

prediction through application modeling has been explored in recent works. Ernest [132]

is a performance prediction framework that is designed to work with unmodified jobs

and has low overhead. It does this by running a set of instances of the entire job on

samples of the input, and using the data from these training runs to create a performance

model. If the model is not appropriate for a particular workload, Ernest can detect

this and can use small extensions to model more complex workloads. CherryPick [5]

is a system that uses Bayesian Optimization to build performance models for various

applications. These models are able to accurately identify the best or near-best configu-

ration for an application with only a few test runs. CherryPick leverages information

from history jobs, aiming at finding a cloud configuration (CPU, memory, number of

nodes, etc.) for a single application that minimizes the cost of executing the application.

Additionally, some works have delved into performance modeling as a function of

30 Chapter 2. Background

network latency. One such study employs polynomial fitting to experimental data

obtained through a systematic degradation of network latency during an offline profiling

phase [109, 107]. This approach helps quantify the impact of varying network latency

on application performance, offering valuable insights into network optimization for

different applications and workloads.

At the heart of this thesis lies a fundamental focus on best-effort-sharing approaches

for bandwidth allocation within datacenter environments. The choice of best-effort

methods is driven by their inherent generality and versatility. These approaches offer a

robust foundation for addressing the diverse networking demands of various applications

while accommodating the dynamic nature of datacenter workloads. By prioritizing

best-effort techniques, this thesis aims to provide a solution that can be readily adopted

and adapted to the ever-evolving landscape of datacenter networking, ensuring both

flexibility and effectiveness in meeting the diverse needs of modern applications.

Chapter 3

Characterizing the Impact of Bandwidth

on Applications

A diverse range of data-intensive applications coexists in today’s private datacenters,

including machine learning training [138, 47, 114, 81, 146, 11], SQL queries [13, 70,

136], graph processing [45, 84, 86], and big-data analytics [102, 115] co-exist. The

vast majority of these applications are repetitive, distributed, and leverage parallel

frameworks, such as Hadoop, Spark, Flink, and TensorFlow [122, 28, 141, 12, 1].

These frameworks follow communication models that involve sending data between

servers through hundreds of connections in large amounts, causing a high demand on

the network, leading to congestion and queueing delays, and affecting applications’

completion time.

Datacenter operators regularly scale the capacity of the network fabric to keep up

with the growth in bandwidth demands of the hosted applications; however, congestion

continues to be a problem. In order to control the use of network bandwidth in the

presence of congestion, datacenter networks deploy bandwidth allocation schemes and

allocate bandwidth according to allocation policy. Bandwidth allocation policy defines

how to distribute the link capacity among flows when congestion happens.

There has been a slew of proposals in the literature on how to improve congestion

control and bandwidth allocation in datacenters and efficiently share network bandwidth

among competing flows and applications. Some of these proposals focus on providing

per-flow fairness [75, 30, 44] with various network-level objectives, such as minimizing

per-packet latency [54] or flow completion time [7, 94, 9] using network-level properties,

such as flow size or deadlines [21, 9, 94, 54, 7, 131]. Other works aim to provide

isolation among tenants or applications when running in shared datacenters [50, 16, 58,

31

32 Chapter 3. Characterizing the Impact of Bandwidth on Applications

Table 3.1: Dataset size of workloads in profiling.

Workload Dataset Size

LR (Logistic Regression) 10k samples

RF (Random Forest) 20k samples

GBT (Gradient Boosted Trees) 1k samples

SVM (Support Vector Machines) 150k samples

NI (Nutch Indexing) 100G samples

NW (NWeight) Graph size (# of edges): 4250M

PR (PageRank) 50M pages

SQL Two tables (# of records): 5000M and 120M

WC (WordCount) 300GB

TS (TeraSort) 280GB

17, 106, 135, 72].

A common trait of all of these proposals is that they aim to achieve some variant

of max-min fairness at the flow or application level. In this chapter, we challenge this

conventional wisdom and argue that max-min fairness is not the right metric to optimize

for as different applications exhibit different degrees of sensitivity to the amount of

network bandwidth, and hence, splitting the bandwidth equally among them may lead

to sub-optimal performance.

Our analysis using a broad collection of workloads shows that the impact of network

bandwidth varies across applications. Thus, different applications exhibit various

degrees of sensitivity to bandwidth. For example, given a 56Gbps network link, reducing

link capacity by 25% has no noticeable impact on a TeraSort (TS) workload, while for

a Logistic Regression (LR) workload, job completion time increases by 28%.

The main contribution of this chapter is to show that enforcing network-level max-

min fairness as an application-agnostic bandwidth allocation scheme can lead to poor

aggregate application performance when multiple applications share the network.

3.1 Methodology

Setup: We conduct our experiments on a cluster of 8 servers. Each server runs Ubuntu

18.04 and is equipped with two 8-core Intel Xeon E5-2650v2 (Ivy Bridge) CPUs at

2.60GHz. Each CPU has 20 MB of L3 cache and two hardware threads per core, though

3.2. Sensitivity to bandwidth in applications 33

LR RF GBT SVM NI NW PR SQL WC TS

1

2

3

4

S
lo

w
do

w
n

BW
75%
25%

Figure 3.1: Impact of available bandwidth on the performance of workloads.

we disable SMT in our experiments. Each server has 64 GB of system memory and

a single-port 56Gb InfiniBand NIC (ConnectX-3) connected on socket 0. NICs are

interconnected via a Mellanox SX6036G InfiniBand switch, which supports 9 VLs

(only 8 VLs are configurable).

Workloads: We use ten workloads from Intel’s industry benchmarks [55] running on

top of Spark and Flink. The workloads and the evaluated dataset sizes are summarized

in Table 3.1.

Metric: We measure the slowdown compared to the execution in isolation with unthrot-

tled bandwidth.

3.2 Sensitivity to bandwidth in applications

To assess the impact of network bandwidth on application performance, we profile a set

of workloads in isolation and compute the completion time for different percentages of

network bandwidth (75% and 25%).

Figure 3.1 shows the slowdown of various workloads under different percentages

of available bandwidth. As the figure shows, the degree of slowdown varies across the

workloads. For example, while LR suffers a 1.3× performance penalty when 75% of

the bandwidth is available, the impact on TS’s performance is negligible. With 25% of

bandwidth, the slowdown of applications varies from 1.1× (TS) to 3.4× (LR), with an

average of 2.1×. This analysis indicates that applications are not equally sensitive to

bandwidth degradation.

34 Chapter 3. Characterizing the Impact of Bandwidth on Applications

 LR TS

1.0

1.5

2.0

2.5

S
lo

w
do

w
n

Max-min
Skewed

Figure 3.2: Impact of bandwidth allocation scheme on the performance of two co-running

workloads.

3.3 Does flow-level fairness offer optimal performance?

The analysis in the previous section indicates that applications are not equally sensitive

to bandwidth degradation. This presents an opportunity to rethink the use of max-min

fairness and, instead, allocate network bandwidth based on each application’s sensitivity

to it. The intuition is that by providing more bandwidth to the applications that are most

sensitive, their completion time can be reduced. To validate this, we run an experiment

comparing the slowdown experienced by two workloads, LR and TS, when running

together compared to the stand-alone execution. We run one instance of each workload

on every server with a core assigned to each workload and memory equally partitioned

among all workloads.

We consider two different bandwidth allocation schemes:

1. Max-min: According to the first scheme, every network component (such as NICs

and switches) insures that max-min fairness is employed per flow. Therefore,

each workload gets 50% of the bandwidth of shared links when both workloads

use the network simultaneously.

2. Skewed: As illustrated in Figure 3.1, LR and TS exhibit different degrees of

sensitivity to bandwidth. The second allocation scheme leverages this information

and provides more bandwidth to LR and less to TS. In this experiment, the skewed

scheme allocates 75% of bandwidth to LR and 25% to TS, i.e., the ratios shown

in Figure 3.1.

Figure 3.2 illustrates the slowdown of the two co-running workloads under the differ-

ent allocation regimes. In the first configuration, where per-flow max-min fairness is

3.4. Why does the bandwidth sensitivity arise? 35

0 100 200 300 400
0

25
50
75

100

0 100 200 300 400
0

25
50
75

100

Time (s)

N
or

m
al

iz
ed

 U
til

iz
at

io
n

(%
) 75% BW

25% BW

CPU Network

(a) LR

0 50 100 150
0

25
50
75

100

0 50 100 150
0

25
50
75

100

Time (s)

N
or

m
al

iz
ed

 U
til

iz
at

io
n

(%
) 75% BW

25% BW

CPU Network

(b) TS

Figure 3.3: Impact of available bandwidth on resource utilization and completion time.

enforced across the cluster, LR and TS face 2.03× and 1.13× slowdown, respectively,

compared to stand-alone execution. In the second configuration, in which more band-

width is allocated to LR, the slowdown of LR decreases from 2.03× to 1.41× (62%

improvement) while the slowdown of TS only slightly increases from 1.13× to 1.16×
(<3% degradation). Overall, this amounts to an average slowdown decreased from

1.58× to 1.28×.

3.4 Why does the bandwidth sensitivity arise?

As a first step in addressing this question, we examine how bandwidth impacts the

resource utilization of LR and TS. In this experiment, we run each application separately.

36 Chapter 3. Characterizing the Impact of Bandwidth on Applications

Figure 3.3 shows the timeline of normalized resource utilization for both CPUs and

network with 75% and 25% of total network bandwidth available to the application. In

the figure, a low network utilization with high CPU utilization implies a computation

phase. Likewise, a high network utilization with low CPU utilization shows that the

workload is in a communication phase.

As the figure shows, the duration of the computation phases in LR remains relatively

constant when the available bandwidth is decreased from 75% to 25%. Meanwhile, the

duration of the communication phases increases as bandwidth is decreased from 75%

to 25%. As a result, the completion time of LR increases by 2.59× (from 172s to 447s).

In contrast, TS has fewer communication phases and the workload is dominated by

computation. Moreover, as Figure 3.3b shows, unlike LR, in TS, some of the data trans-

mission is overlapped with computation (i.e., high network and CPU utilization). Thus,

decreasing bandwidth has less impact on TS than LR because of higher overlapping.

We observe that by decreasing the bandwidth from 75% to 25%, the completion time of

TS increases by only 19% (from 138s to 165s).

Our analysis implies that it is not the duration of the communication phases, but, in

fact, the fraction of communication to completion time that dictates the sensitivity of an

application to network bandwidth. In other words, an application that spends a small

fraction of its runtime on communication is less sensitive to bandwidth compared to

another application that has a higher fraction of communication to completion time.

3.5 Implications for future application design

As we delve into the insights gained from the overlap of computation and communica-

tion phases in application performance, we find three critical lessons that can profoundly

impact the design of future applications:

1. Asynchronous processing for network resilience: The first lesson centers around

the importance of asynchronous processing. Applications that allow computation

and communication to occur concurrently are more resilient to fluctuations in

network bandwidth, as decreasing the fraction of exposed communication to

completion time reduces the sensitivity to bandwidth. Future application designs

should prioritize asynchronous approaches to maximize resource utilization and

maintain consistent performance, even under network bandwidth availability.

2. Data localization strategies for reduced dependency on bandwidth: The second

3.6. Discussion 37

lesson emphasizes the significance of data localization strategies. By efficiently

managing data placement and movement within an application, we can signif-

icantly reduce the amount of communication, and hence, reliance on high net-

work bandwidth. Future applications should incorporate intelligent data caching,

prefetching, and local processing mechanisms to minimize the need for frequent,

bandwidth-intensive data transfers.

3. Network-aware application design: A third crucial lesson is the value of network-

aware application design. Applications should be equipped with the capability to

adapt dynamically to changing network conditions. This adaptability includes real-

time monitoring of network performance, enabling applications to make informed

decisions and optimize data transfer and communication patterns accordingly. By

being aware of the network’s state, applications can better manage bandwidth

constraints and maintain optimal performance.

These lessons underscore the importance of blending asynchronous processing, data

localization strategies, and network awareness into the fabric of future application

designs. Implementing these principles will enhance an application’s ability to thrive in

varying network environments.

3.6 Discussion

The results above are important because they demonstrate that, for these kind of work-

loads, i) equally distributing the bandwidth like in traditional max-min fairness protocols

(e.g., TCP), or ii) focusing on reducing average flow completion time for individual

flows (e.g., Homa [94]) or for coflows1 (e.g., Sincronia [2]), does not necessarily result

in shorter average application completion times. In fact, our experiments in Figure 3.2

show that by unequally distributing the bandwidth between LR and TS, and by in-

creasing the flow completion time for the less sensitive application (TS), the average

completion time of the applications is significantly reduced. Instead of improving the

completion time for indirect metrics, sensitivity information of applications can be used

to distribute bandwidth more effectively under congestion. Thus, in this chapter, we con-

clude that the sensitivity of applications should be the primary determinant of network

bandwidth allocation rather than traditional network-level and application-agnostic

metrics that are used at the network level.
1collection of related flows

38 Chapter 3. Characterizing the Impact of Bandwidth on Applications

Building a sensitivity-aware allocation scheme as described in Section 3.3, however,

requires solving the following challenges, which we address in the following chapter:

• Sensitivity Differentiation: A sensitivity-aware solution requires a robust ap-

proach to accurately identify and capture the extent to which applications are

sensitive to network bandwidth. This information is crucial in order to effectively

allocate bandwidth and provide an appropriate level of service to each application.

• Dynamism: At the datacenter scale, a multitude of applications will share the

network, and there will be constant changes as new applications arrive, while

others terminate or migrate. In order to effectively allocate bandwidth and handle

this dynamic environment, the mechanism must be able to respond quickly and

efficiently to these changes.

• Practicality: In order to facilitate widespread adoption and maximize its gen-

eral applicability, a bandwidth allocation scheme should not require changes to

existing hardware or network protocols. This would enable the scheme to be

implemented without incurring the cost and disruption of upgrading or replacing

existing infrastructure.

3.7 Summary

In this chapter, we demonstrate the shortcomings in bandwidth allocation disciplines that

are based on max-min fairness or shortest-flow first on a per-flow basis. We show that

such allocation schemes do not effectively utilize the network in shared environments

like datacenters, as they are unable to identify the bandwidth demands of applications.

These approaches try to minimize the flow-level completion time, which can be in

conflict with the application-level performance in shared environments; thus, they can

be sub-optimal for maximizing the applications’ performance. Our analysis validates

that optimizing individual flows in a shared environment with bandwidth contention is

inadequate to allocate bandwidth most effectively, as it is unclear how such allocation

affects the performance of the associated applications. To provide the most effective

allocation out of the available bandwidth, the allocation scheme should distinguish

between applications that need more bandwidth for performance and those that can get

away with less without drastically slowing down their completion time.

Our findings discussed in the previous paragraph show opportunities to reduce the

average completion time of the applications by deploying a sensitivity-aware bandwidth

3.7. Summary 39

allocation scheme in datacenters. In the following chapter, we present such a bandwidth

allocation scheme based on our characterization findings.

Chapter 4

Saba: Application-Aware Bandwidth

Allocation Scheme

Today’s private datacenters host thousands of applications, many of which are dis-

tributed and rely on a high-bandwidth communication fabric to meet their performance

goals. In response, datacenter operators have deployed network protocols optimized to

datacenter needs [7] and introduced fully offloaded network stacks through the use of

FPGA-enabled NICs [20, 150, 34] or natively-offloaded fabrics such as InfiniBand [14].

While these improvements have brought down the inter-node communication latency

to microseconds, addressing the intra-datacenter bandwidth problem has proved more

challenging [64].

As explained in Chapter 3, mainstream bandwidth allocation schemes adopted in

datacenters typically follow one of the two flow-level approaches: 1) either they strive

to achieve max-min fairness by equally partitioning network bandwidth across flows, or

2) they opt for an approximation of the Shortest Remaining Processing Time (SRPT)

algorithm, aiming to minimize the completion time of applications by prioritizing those

with the shortest remaining flows. Instead, we propose a new metric called bandwidth

sensitivity, which captures the impact of the network bandwidth on the completion time

for a specific application. Our analysis in the previous chapter shows that different

bandwidth-intensive applications exhibit various degrees of bandwidth sensitivity. For

example, given a 56Gbps network link, reducing the link capacity to 25% leads to a

3.4× increase in the completion time of a Logistic Regression (LR) workload, while

the completion time of a PageRank (PR) workload increases by a factor of 1.4×.

This observation is at the core of Saba, a novel application-aware allocation scheme

that distributes network bandwidth to applications proportionally to their bandwidth

41

42 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

sensitivity. Saba computes the bandwidth sensitivity of applications in advance and

leverages this information at runtime to derive the weights used in switches’ priority

queues to enforce the desired bandwidth allocations in a work-conserving fashion.

We put particular effort into the design of Saba to make it not only effective but also

practical for use in real-world datacenter environments. With this in mind, we make a

conscious effort to minimize the resources required during the profiling process and

the number of queues used in switches. By optimizing these elements, we aim to make

Saba as seamless and efficient as possible for existing datacenter deployments. Saba

does not mandate any changes to deployed congestion-control protocols and it is fully

compatible with existing switches and NICs while requiring only a lightweight shim

layer (∼350 LOCs) installed at the end hosts.

We evaluate Saba in a 32-server InfiniBand cluster across a broad set of workloads.

We also simulate a Saba deployment with 1,944 servers to assess its performance at

scale. Our experimental and simulation results show that Saba effectively improves

the average performance of the co-running applications sharing the network, compared

to both existing and ideal implementations of per-flow max-min fairness, as well as

state-of-the-art SRPT-based approaches that work at the flow or coflow level.

The main contributions of this chapter are the following:

• We introduce the notion of bandwidth sensitivity as a guiding principle to allo-

cate bandwidth among applications and show how this can be learned through

profiling.

• We present Saba, our application-aware bandwidth allocation framework, which

relies on bandwidth sensitivity for bandwidth allocation. We compare Saba

against a baseline using InfiniBand congestion control and demonstrate that Saba

can reduce the completion time for bandwidth-sensitive jobs by up to 3.94×
while only marginally impacting a few of the bandwidth-insensitive jobs (1-5%

slowdown), improving the average completion time by 1.88×.

• We show in simulations that similar benefits also hold at scale and against an

ideal implementation of max-min fairness, obtaining up to 1.79× speedup (3%

slowdown in the worst case) with an average improvement in completion time by

1.27×.

4.1. Saba overview 43

...

App App AppProfiler
...

(a) The offline profiler deploys applications and profiles them.

ControllerApplication

Sa
ba

 L
ib Software Interface

Transport

Connection Manager

NIC Network

Switch
Control Plane
Data Plane
Switch Config

(b) The controller and Saba library.

Figure 4.1: An overview of the main components of Saba.

4.1 Saba overview

We introduce Saba, an application-aware bandwidth allocation scheme that aims to

maximize performance across non-interactive applications that share the network in a

datacenter. At the heart of Saba is a metric called bandwidth sensitivity, which reflects

the effect of network bandwidth on application performance. We define bandwidth

sensitivity for a given application as the degree of performance degradation caused

by a reduction in the availability of bandwidth. Saba’s key idea is that providing

more bandwidth to applications that are more sensitive to bandwidth can reduce their

completion time, without compromising the performance of bandwidth-insensitive

applications.

Saba consists of three main components: an offline profiler, a controller, and a

library (Figure 4.1). The profiler determines the bandwidth sensitivity of applications by

profiling them in advance (Figure 4.1a). The controller uses the bandwidth sensitivity

44 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

App1

App1

Sensitivity Table
Name Coefficients

App1 c0, c1, ... , ck
... ...

1

2

3

...

b1
b2

bn

...

App1 App1 App1 App1

d1
d2

dn

Available BW% Performance Degradation

Figure 4.2: Details of the offline profiler.

information provided by the profiler to calculate the bandwidth share of applications

in a way that minimizes the average slowdown across applications and orchestrates

the network switches to enforce bandwidth. Saba expects compliant applications to be

registered at launch. The Saba library provides a software interface for applications to

communicate with the controller and conduct the registration (Figure 4.1b).

While Saba dynamically partitions network bandwidth for Saba-compliant applica-

tions, non-Saba-compliant applications (e.g., control or latency-critical services) can

co-exist on the same network. To support this co-existence, datacenter operators can

statically allocate a queue for non-Saba-compliant applications on switches and reserve

a portion of the network bandwidth for them. Such a queue-based separation effectively

isolates flows of non-Saba-compliant applications, preventing interference between

them and Saba-compliant applications. Thus, it allows Saba-compliant applications to

benefit from the dynamic bandwidth allocation without negatively impacting the perfor-

mance of other applications running on the same network. While we have implemented

Saba on top of an InfiniBand architecture, our design does not make any assumptions

about the underlying network layers; e.g., our implementation can be easily ported to

Ethernet networks. The following sections provide details of the aforementioned com-

ponents of Saba (profiler, controller and library), as well as details of our InfiniBand

implementation.

4.2 Profiler

Saba borrows the idea of using a-priori profiling of applications to make resource

allocation decisions [137, 5, 132, 109]. Saba’s offline profiler performs ahead-of-time

profiling on applications to measure their bandwidth sensitivity based on the perfor-

4.2. Profiler 45

mance degradation caused by limited network bandwidth. The profiler uses application

completion time as the metric of performance. Completion time is commonly used to

evaluate the performance of data-intensive applications [73] and can easily be deter-

mined at the system level by recording the start time and end time of an application.

4.2.1 Profiling process

Figure 4.2 depicts the profiling process managed by the profiler. To profile a given

application App1, the profiler first deploys the application multiple nodes 1 . In

order to measure the performance degradation of the application caused by changes

in available bandwidth, the profiler runs the application n times. In each run, the

profiler limits the bandwidth of all NICs to a certain percentage of link capacity from

BW = {b1,b2, . . . ,bn} and measures the completion time of the application 2 . Next,

for each measured completion time, the profiler determines the performance degradation

by calculating the slowdown, i.e., the ratio of completion time under a given percentage

of bandwidth to the completion time with unthrottled bandwidth. The output is D =

{d1,d2, . . . ,dn}, a set of performance degradation values, each of which represents

the impact of the corresponding percentage of bandwidth on the performance of the

application. The profiler uses Samples = {(b1,d1),(b2,d2), . . . ,(bn,dn)} to generate a

polynomial regression model and establish the relationship between the bandwidth and

the slowdown of the application 3 . We refer to this regression model as the sensitivity

model. The sensitivity model of App1 can be represented as follows:

DApp1(b) = c0 + c1b+ c2b2 + · · ·+ ckbk =
k

∑
i=0

cibi (4.1)

where k is the degree of polynomial. The profiler determines the value of the coefficients,

Ĉ = {c0, · · · ,ck}, by fitting the polynomial to the samples, and records the coefficients

in the sensitivity table. Saba uses this table in its controller for bandwidth allocation

(Section 4.3).

4.2.2 Accuracy of sensitivity models

In order to evaluate the goodness-of-fit and accuracy of a model, we use R2 (coefficient

of determination) [79]. R2 quantifies the fraction of the slowdown trend that the model

is able to explain. R2 = 1 implies that the model explains all the observed slowdowns

in response to bandwidth. A model with R2 = 0 does not explain any of the observed

46 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

25 50 75
BW%

1

2

3
S

lo
w

do
w

n

SQL

25 50 75
BW%

1

3

5

7
LR

Sample
k = 1
k = 2
k = 3

Figure 4.3: Sensitivity models of SQL and LR workloads with various degrees of polyno-

mial (k).

LR RF GBT SVM NI NW PR SQL WC TS
0.00

0.25

0.50

0.75

1.00

R
2

Degree of polynomial
1 2 3

Figure 4.4: Impact of degree of the polynomial on the accuracy of sensitivity models.

slowdown trend. The accuracy of the sensitivity model generated by the profiler depends

on the degree of the polynomial, and on the differences between settings at runtime as

compared to profile time. These settings include the size of the dataset and the number

of nodes. We next discuss the effect of each of these parameters on R2 while we show

their impact on completion time in Section 4.6.2.

Degree of polynomial: The degree of polynomial determines the ability of the

model to capture any non-linearity in the relationship between bandwidth and per-

formance degradation of an application. Non-linearity within the sensitivity curve

relating bandwidth to the degradation of performance in a given application indicates

that changes in bandwidth do not consistently and proportionally influence performance

outcomes. This non-linear behavior is rooted in the intricate interplay between the

computation and communication phases of the application. As explained in Section 3.4,

the architecture of the application may allow for concurrent computation and communi-

cation, effectively concealing some of the communication overheads. Consequently,

restricting the bandwidth might not always lead to a proportional increase in completion

time, up to a certain threshold. This is due to the ability of the application to efficiently

4.2. Profiler 47

overlap these phases, mitigating the direct impact of bandwidth reduction on overall

execution time within a certain range. Thus, it is essential to accurately capture this

non-linearity to predict how changes in bandwidth impact application performance.

We assess the degree of non-linearity for the studied workloads by profiling them as

discussed in Section 4.2.1 (see the complete methodology in Section 4.6.1). Figure 4.3

plots the profiling samples for two studied workloads, SQL and LR, along with the

sensitivity models for three different degrees of polynomial.

As Figure 4.3 shows, the non-linearity of the samples varies across the two work-

loads. For SQL, the non-linearity is high – as bandwidth is decreased from 100% to

25%, performance degrades by a mere 1.2×; however, as the bandwidth is further

reduced to 10%, performance drops by 2.2×. In contrast, LR experiences a higher

performance degradation throughout the bandwidth range but exhibits a more linear

correlation between performance and bandwidth. Performance of LR degrades by 1.3×,

3.4×, and 4.5× as bandwidth is decreased to 75%, 25%, and 10%, respectively. The

figure clearly shows that a model with a first-degree polynomial is unable to accommo-

date the data for SQL, and while a second-degree polynomial perfectly fits the data for

LR, a third-degree polynomial is needed for a good fit of SQL’s data.

We next study the accuracy of the sensitivity models based on different degrees of

the polynomial. Figure 4.4 shows that as the degree of polynomials increases, R2 of

the sensitivity models also increases. The sensitivity models of all workloads show

accuracy above 0.60 using the first-degree polynomial (k = 1). We observe that some

workloads enjoy a big jump in their accuracy by using higher degrees of polynomial

in their sensitivity model; e.g., R2 for the sensitivity model of SQL increases from

0.63 to 0.96 as we increase the degree of polynomial of the model from 1 to 3. For

other workloads, lower degrees of polynomial provide models with high accuracy; e.g.,

the sensitivity model of LR generated with k = 1 attains an accuracy of 0.84. Using

k = 2 increases the accuracy of the model to 0.94, while k = 3 provides only a small

additional improvement to LR and R2 increases to 0.95. We conclude that the degree of

polynomial directly affects the accuracy of sensitivity models.

Application dataset size: In practice, it may be challenging to estimate dataset

size accurately in the profiling phase. It may also be desirable to run profiling with a

smaller dataset size than in deployment to reduce profiling time and cost. Thus, the size

of the dataset at runtime may differ from that used by the profiler. To analyze how the

accuracy of each model depends on the dataset size, we conduct a study to estimate the

accuracy of the sensitivity model of each workload when the size of datasets used at

48 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

LR RF GBT SVM NI NW PR SQL WC TS
0.00

0.25

0.50

0.75

1.00
R

2

Dataset size at runtime
0.1x 1x 10x

Figure 4.5: Impact of dataset size at runtime on the accuracy of sensitivity models.

LR RF GBT SVM NI NW PR SQL WC TS
0.00

0.25

0.50

0.75

1.00

R
2

Number of nodes at runtime
0.5x 1x 2x 3x 4x

Figure 4.6: Impact of the number of nodes at runtime on the accuracy of sensitivity

models.

runtime differs from the profiling datasets. In this study, all models are generated with

the polynomial of degree three (k = 3).

Figure 4.5 shows the impact of the runtime dataset size on the accuracy of sensitivity

models of the studied workloads in extreme cases in which the dataset size at runtime is

ten times smaller (0.1x) or larger (10x) than the dataset used by the profiler (1x). We

observe that while using datasets with sizes of 0.1x and 10x reduces the accuracy of the

models, all models obtain R2 above 0.55. SVM experiences the most negligible impact

as the accuracy of its model reduces from 0.92 to 0.83 (dataset size 0.1x) and 0.81

(dataset size 10x). Nutch Indexing (NI) experiences the highest impact as the accuracy

of its sensitivity model decreases from 0.95 to 0.57 (dataset size 0.1x) and 0.59 (dataset

size 10x). We conclude that for the studied workloads, an order of magnitude difference

in dataset size between profiling and runtime attains R2 above 0.55, indicating that the

sensitivity model retains good predictive power despite the change in dataset size.

Number of nodes: Similar to the dataset size, the number of nodes running a

distributed application may not be the same as the number of nodes used by the profiler.

For instance, limiting the number of nodes used in the profiling phase may be desirable

4.3. Controller 49

to contain the costs of profiling. To study the impact of the number of nodes at runtime

on the accuracy of sensitivity models, we compare the R2 of models of the workloads

across various numbers of nodes at runtime, ranging from 0.5x to 4x of the number of

nodes used by the profiler (8 nodes). All models use k = 3.

As Figure 4.6 shows, the sensitivity models of all workloads maintain an accuracy

above 0.50 when the number of nodes at runtime ranges from 0.5x to 3x. The sensitivity

model of NWeight (NW), delivers the lowest observed accuracy R2 = 0.51 when the

number of nodes is 3x. When increasing the number of nodes at runtime to 4x compared

to profiling, we observe that R2 drops for most models to below 0.50; the exceptions are

LR, Random Forest (RF), and TS. We conclude that the number of nodes is a crucial

factor governing the accuracy of the sensitivity models.

While evaluating the accuracy of models in terms of R2 is helpful in understanding

the predictive power of models, our end goal is to assess the impact of errors on the

performance of Saba. We quantify the performance of Saba with varying degrees of

polynomial, dataset size, and the number of nodes in Section 4.6.2.

4.3 Controller

Saba relies on a controller to perform bandwidth allocation and orchestrate switches

for bandwidth enforcement. To conduct the allocation and enforcement, the controller

requires the following information: 1) which applications are Saba-compliant, and 2)

the source and destination of each connection for each Saba-compliant application. The

controller needs information about the source and destination of a given connection

to determine the switches along their path1. Applications explicitly or transparently

send the above information to the controller via a software interface provided by the

Saba library (details are in Section 4.4). The controller collects the above information

from applications and determines the bandwidth share of each application at runtime.

To calculate the bandwidth share of applications, Saba uses the bandwidth sensitivity

information in the sensitivity table provided by the profiler. The controller assigns

the allocated bandwidth to applications and configures the switches to enforce the

bandwidth shares.

1If the underlying network layer supports multipathing, the controller determines switches along all
paths between the source and destination.

50 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

4.3.1 Bandwidth calculation and assignment

Saba allocates bandwidth for applications that have registered themselves via the

Saba library and are actively using the network. By tracking the active applications

through the Saba library, the controller has global information about the paths of Saba-

compliant flows passing through switches in the network (see Section 4.3.4 for details

on scalability). The controller uses this information combined with the profiling result

in the sensitivity table and determines the percentage of bandwidth to be allocated to

the flows from each application at each switch output port in a way that minimizes the

total slowdown across applications.

For a given set of applications Â = {a1,a2, . . . ,an} sending flows to a given switch

output port, weight wi represents the percentage of bandwidth allocated to application

ai at that port. The goal is to find a set of weights to minimize the total slowdown

across applications. To do so, the controller uses the sensitivity models generated by

the profiler to predict the slowdown of each application. D̂ = {D1,D2, . . . ,Dn} is the

set of sensitivity models corresponding to Â, each of which generated via Eq 4.1. The

controller calculates the weights Ŵ = {w1, . . . ,wn} for applications at the given switch

output port as follows:

Ŵ = argmin
W⃗

n

∑
i=1

Di(wi)

subject to
n

∑
i=1

wi =CSaba

(4.2)

where CSaba is the percentage of link capacity that the operator has reserved for Saba-

compliant applications. The controller uses these weights to configure the given output

port of the switch and enforce bandwidth.

4.3.2 Bandwidth enforcement

Saba enforces the allocated bandwidth at network switches, utilizing the available

rate-limiting mechanisms at the transport layer. This approach decouples the bandwidth

allocation and enforcement from congestion management, leading to a cleaner design.

Thus, Saba does not need to calculate and limit transmission rates at the endpoints and

leaves the rate-limiting to the congestion-control protocol.

Bandwidth enforcement at switches works in Saba without any modification to

existing switches, as long as the network layer supports the following requirements:

4.3. Controller 51

1) service differentiation through Priority Levels (PLs), and 2) per-port queues in

switches. Service differentiation is required to differentiate flows coming from different

applications. Per-port queues in switches are needed to enforce bandwidth by assigning

flows with weights to queues. Moreover, Saba assumes that switches implement the

Weighted Fair Queuing (WFQ) scheduling algorithm to schedule the packets inside

the per-port queues in proportion to the weights of queues. WFQ is work-conserving,

meaning that other applications may utilize the remaining bandwidth quota if one

application does not use some or all of its share. Furthermore, WFQ is not subject to

starvation, meaning that all flows progress and are eventually transmitted, which is an

advantage for a bandwidth allocation scheme. Fortunately, modern switches used in

datacenters support both service differentiation and per-port queues and implement

variations of WFQ [14, 94].

In Saba, the controller assigns a PL to flows coming from each application with

the help of the Saba library (Section 4.4), and maps each PL to a queue in the switch

port. The controller configures each switch output port with a set of calculated weights

Ŵ = {w1, . . . ,wn} determined via Eq (4.2) and assigns each weight to the correspond-

ing queue, and each switch services flows inside queues using the WFQ scheduling

algorithm. Note that this approach assumes that switches have an unlimited number of

queues, thus using an idealized one-to-one mapping of applications to queues. However,

existing switches have a limited number of queues [14, 94]. We next discuss how Saba

addresses this issue.

4.3.3 Mapping applications to queues

While an ideal implementation of Saba should support a one-to-one mapping between

applications and queues, modern network architectures support only a limited number

of PLs and queues. The number of PLs is determined by the Quality of Service

specification of network technology, whereas the number of queues in NICs and switches

varies across different hardware implementations. For instance, InfiniBand and Ethernet

support 16 and 8 PLs, respectively [14, 94], and a typical datacenter-grade (InfiniBand

or Ethernet) switch supports 4-8 queues [14, 94, 9]. To overcome this limitation,

Saba performs two layers of mapping to translate applications to queues by mapping

applications to PLs and mapping PLs to queues.

52 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

0 2 4 6
c0

6

4

2

0

c 1

PL1

PL2

PL3

RF
LR
GBT
SVM
NW
NI
SQL
PR
WC
TS

Figure 4.7: Application-to-PL mapping for the studied Spark workloads (S = 3). Groups

of workloads are circled.

4.3.3.1 Application-to-PL mapping

At the datacenter scale with hundreds to thousands of running applications, a one-to-

one mapping between applications and PLs is infeasible due to the limited number of

PLs. To address this limitation, Saba groups applications according to their bandwidth

sensitivity using the K-means clustering algorithm [85]. The controller takes a set of

registered applications and the coefficients of their sensitivity models as input, creating S

groups from them, where S is the number of PLs. The centroid of each group represents

the sensitivity of that group. Saba assigns each group a PL and uses the sensitivity of

the groups in the PL-to-queue mapping.

Figure 4.7 shows an example of application-to-PL mapping for the studied work-

loads with 3 PLs. In this example, the sensitivity of workloads is modeled with the

first-degree polynomial (i.e., k = 1) and represented by two coefficients, c0 and c1

(as described in Eq 4.1). The controller groups the applications using the K-means

algorithm and assigns PL1 to TS, WordCount (WC), PR, and SQL, as the coefficients

of their models are close together; meanwhile, the controller assigns SVM, NI, and NW

to PL2 and PL3 to LR, RF, and GBT.

4.3.3.2 PL-to-queue mapping

The controller needs to map PLs to queues to complete the application-to-queue transla-

tion. This task, however, is complicated by the fact that flows in a given PL may share

different links along their paths, thus resulting in a different set of flows mapping to

the PL in different switches. Consequently, the weight of a PL may vary across the

switches. Additionally, the number of queues in different switches varies as the capa-

4.3. Controller 53

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Priority Level Cluster

New Cluster

New Cluster

Level 1

Level 2

Level 3

Last Level
......

Figure 4.8: An example of clustering 8 PLs, assuming that the minimum number of

queues supported in the switches is 2. Circles and boxes represent PLs and clusters,

respectively. The controller clusters PLs based on the closeness of bandwidth sensitivity

of associated applications in a hierarchical manner.

bility of switches is not necessarily the same. Thus, PL clustering must be performed

individually at each switch output port to map PLs to queues.

To address this problem, Saba must maintain multiple PL clusters and PL-to-queue

mappings and choose the appropriate mapping for each switch port at runtime. To

this end, Saba introduces a hierarchical approach: (1) to cluster PLs, Saba uses a

hierarchical clustering scheme to preserve the information of all possible combinations

of PL clustering hierarchically; (2) at runtime, Saba finds the best clustering from the

hierarchy for each switch output port and uses it for bandwidth allocation. We next

detail each of these tasks.

PL clustering: To efficiently cluster PLs hierarchically, we employ the fast hierarchical

clustering algorithm [95]. This algorithm, commonly utilized in data analysis and ma-

chine learning, excels at swiftly grouping similar data points into clusters, emphasizing

its time-effective performance. Saba performs the PL clustering offline as follows:

(a) Initialization: In the first level, the controller starts by treating each PL as its own

cluster, thus assigning each PL to a separate cluster.

(b) Calculate pairwise distances: In the next step, the controller computes the pairwise

54 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

distances (i.e., similarities) between all clusters. To do so, the controller uses the

coefficients of the models as their coordinates, and Euclidean distance as the

similarity metric in the distance computation.

(c) Merge closest clusters: In subsequent iterations, the controller merges the two

closest clusters from the previous level to create a new cluster. The coefficients of

the model for the new cluster are determined by the coordinates of the Euclidean

midpoint (i.e., average linkage) of the corresponding coefficients of the two merged

clusters. Each iteration reduces the total number of clusters by one. This merging

process continues until the number of remaining clusters equals the minimum

number of queues in switches (the last level).

Figure 4.8 depicts the PL clustering performed by the controller. The figure assumes 8

PLs are available, and the number of queues is 2.

Finding the best clustering: At runtime, the controller finds the appropriate PL

clustering as follows: Assuming that a switch supports Q per-port queues, given a set

of PLs whose flows pass through a switch output port, the controller determines the

optimal cluster at that port by following these steps:

(a) Start from level 1 of the hierarchy.

(b) In the current level, if all PLs are grouped into at most Q clusters, go to (c);

otherwise, go to the next level and repeat (b).

(c) Map each cluster of PLs to a queue.

Once PLs are mapped to queues, the controller assigns the sum of the bandwidth

allocated to applications (Eq 4.2) associated with each queue as the weight of that

queue.

Figure 4.9 illustrates an example of PL-to-queue mapping for two switches. In

this example, we assume that each switch supports two queues per port. Flows from

application App1 pass through link 1 and link 2, and share each of the two links with

flows from different sets of applications; consequently, flow from an application App1

receives different weights at two switches. The controller maps PLs to queues at each

switch port using the information from the PL clustering in Figure 4.8. At port P1, there

are two PLs; and according to level 1 in Figure 4.8, PLs are in two separate clusters.

The controller maps PL 1 to queue 1 and PL 4 to queue 2. At port P1, there are three

PLs. The controller finds that in level 2, PL1 and PL2 form one cluster, and PL3 is in

another cluster. The controller maps PL1 and PL2 to queue 1, and PL3 to queue 2.

4.3. Controller 55

App1

App2
App3App4

Link 1 Link 2

PL-to-eue (P1)

PL eue Weight

1 1 WA1

4 2 WA2

PL-to-eue (P2)

PL eue Weight
1 1 40%
2 1
3 2 WB2

WB1

App-to-PL

App PL
App1 1
App2 2

App3 3

App4 4Switch Link Flow

P1 P2

Figure 4.9: Example of PL-to-queue mapping for two switches at runtime.

DB

Controller Controller Controller Controller

Offline Profiler

Figure 4.10: High-level overview of a distributed deployment of Saba.

4.3.4 Centralized vs distributed controller

So far, the discussion has implicitly assumed a centralized controller that maintains the

global state of application-to-PL and PL clustering operations, as well as the state of each

switch, including flows passing through the switch and the current switch configuration.

Such a centralized controller updates the application-to-PL mapping and performs PL

clustering when a new application is registered or a running application is deregistered.

Furthermore, every time a connection is created or destroyed, the centralized controller

performs a new PL-to-queue mapping and updates the configuration of switches on the

path of that connection. Naturally, a centralized controller represents a single point

of failure. In addition, calculating the bandwidth for every application at the scale of

a large cluster or a datacenter may result in the centralized controller bottlenecking

performance.

An alternative to the centralized controller is a distributed one (Figure 4.10). Eq 4.2

indicates that the bandwidth calculation for applications on a given output port is

56 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

DB

Calculation

Switch

Priority-to-Queue
Mapping

Model
Model
Model

Offline Profiler
Slowdown Samples Sensitivity Models Priority ClusteringApplication Clustering

BW Allocator BW Enforcer

Controller

Figure 4.11: High-level overview of the workflow between the profiler and a distributed

controller.

independent of other switches, presenting an opportunity to distribute the controller’s

logic. In such a distributed design, each controller is responsible for a group of switches

and maintains the record of applications sending flows to the associated switches. In

order to enforce the bandwidth, the controllers fetch the application-to-PL mapping

and the PL clusters from a database. The Saba library informs the closest controller

when an application requests a new connection. This controller performs bandwidth

allocation and enforcement while communicating with the following controller on the

path of the connection to inform it about the added connection. Each controller does the

same until all switches on the path of the new connection are configured. Figure 4.11

illustrates the workflow of Saba in a such distributed deployment.

As noted above, the distributed controller design requires a database containing

the outcomes of application-to-PL mapping and PL clustering operations. The profiler

updates the database after performing the application-to-PL and PL clustering operations

whenever a new application is profiled. Existing replication techniques can be used to

replicate the database to increase reliability, availability, and scalability. To maximize

performance, database instances can be co-located with the controller nodes.

4.4. Saba library 57

Table 4.1: Saba software interface description.

Function Description

saba_app_register Register and receive a tag

saba_conn_create Create a connection with the tag

saba_conn_destroy Destroy the connection

saba_app_deregister De-register the app

4.4 Saba library

Applications that wish to be Saba-compliant must register themselves at runtime via

the Saba library and provide the controller with information about their networking

connections. This library consists of two components: the connection manager and the

software interface.

4.4.1 Connection manager

The connection manager performs two tasks: communicating with the controller and

creating connections. For a given application, the connection manager communicates

with the controller to register the application and receives a PL from the controller.

When the application requests the creation of a connection, the connection manager

creates a new connection and assigns the PL to the connection. During data exchange

(send or receive), packets from all connections associated with the application carry

the assigned PL. When the application creates or destroys a connection, the connection

manager informs the controller about the creation or destruction of connections, leading

to new bandwidth allocations in the controller.

4.4.2 Software interface

Saba features a simple software interface to communicate with the controller (Table 4.1).

Figure 4.12 illustrates the interactions between the interface, the controller, and a given

switch when each function from the interface is called. An application request registra-

tion at start time 1 . Saba library informs the controller via the connection manager 2 .

In response to the registration request, the controller returns a PL (generated by the

application-to-PL clustering) to the connection manager to be used for future connec-

tions 3 . In order to create a connection, the application sends a request 4 . In the

58 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

Interface Connection Manager Controller Switch
saba_app_register

saba_conn_create
connection

saba_conn_destroy

saba_app_deregister

app_register
PL

conn_create

conn_destroy
app_deregister

enforcement

enforcement

allocation

allocation

1 2

4 6

8 10

12

3

5

9
13 11

7

Figure 4.12: High-level overview of interactions between the software interface, the

connection manager, the controller, and a network switch.

Saba library, the connection manager uses the acquired PL to create the connection

and returns the connection to the application. Meanwhile, the connection manager

informs the controller about the new connection 5 . The controller considers the new

connection and its associated PL for a new allocation 6 and enforces the allocation by

updating the weights of the queues in the switches 7 . Once the application no longer

needs the connection, it destroys the connection 8 . The connection manager informs

the controller about the finished connection 9 . This leads to a new allocation 10 , and

the controller updates the weights of queues in the switches 11 . Before quitting, the

application requests for deregistration 12 , and the connection manager informs the

controller to deregister the application 13 .

4.5 Implementation

This section provides the details of the implementation of the three components of Saba,

offline profiler, controller and Saba library for InfiniBand networks.

4.5.1 Profiler

The profiler executes the application multiple times on a set of dedicated nodes; in

each run, it adjusts the amount of network bandwidth available to the application and

measures the application’s completion time. Our current implementation considers

the following percentages of link bandwidth: 5%,10%,25%,50%,75%90% and 100%,

which are enforced by a token bucket [77] rate limiter in the InfiniBand driver [98].

4.5. Implementation 59

4.5.2 Controller

Path Detection: As explained in Section 4.3, the controller receives information about

the sources and destinations of each connection from the Saba library. Saba leverages

the infiniband-diags package provided by OpenFabric [98] and gets the forwarding

tables of switches in the network to detect the path of each connection.

Weight Calculation: Saba uses Sequential Least Squares Programming (SLSQP)

algorithm from NLopt library[60] to solve the optimization problem in Eq 4.2 and

calculate the weights for the flows passing through a given port.

Bandwidth Enforcement: As explained in Section 4.3.2, the controller requires the

following from the network to enforce bandwidth: i) service differentiation and ii) per-

port queues in switches with the WFQ scheduling policy. InfiniBand supports service

differentiation in its transport protocol and features per-port queues. Further, InfiniBand

switches implement a Weighted Round Robin scheduling discipline to approximate

WFQ. InfiniBand offers service differentiation by introducing two concepts: Service

Levels and Virtual Lanes [14].

1) Service Levels (SLs): InfiniBand supports 16 priority levels, called Service Levels

(SLs). SLs are exposed to the developer and can be used to create connections. Once a

connection has been created using an SL, the header of packets from the connection

will carry the SL through the network.

2) Virtual Lanes (VLs): InfiniBand divides a physical link into different logical

communication links, called Virtual Lanes (VLs), and allocates a queue for each VL

at the output ports of switches and NICs. For each VL, InfiniBand provides buffering,

flow-control, and congestion management. Switches and NICs handle packets inside

VLs in each scheduling turn according to a table that maps SLs with their associated

weights to VLs. This table is configurable at every switch and NIC by the datacenter

operator. With the current InfiniBand specification, each switch or NIC must support

between 2 and 16 VLs [14].

Saba uses SLs to differentiate applications and enforces bandwidth by dynamically

setting the VLs’ weights at switches.

4.5.3 Saba library

The connection manager, implemented with just 350 LOC, uses RPC operations for

all control-plane activities. The connection manager creates the low-level InfiniBand

connections using ibverbs library and assigns SLs to them. In order to register workloads

60 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

and communicate with the controller, we modified the existing job submission and

shuffle manager in Spark and Flink to invoke Saba’s interface functions. However, the

individual workloads required no modification to support Saba.

4.6 Evaluation

We evaluate Saba using experiments on (1) a 32-server InfiniBand testbed with a suite

of workloads and (2) a simulated 1,944-server cluster with a set of synthetic workloads.

4.6.1 Methodology

The main goal of the experiments is to evaluate the impact of Saba on the performance

of workloads as compared to a baseline implementing max-min fairness.

Baseline: We use InfiniBand as our baseline, which approximates max-min fairness for

each queue in its end-to-end congestion management via Forward Explicit Congestion

Notification [126, 4]. In the simulation experiments, we also implemented an idealized

version of max-min fairness, which provides an upper bound on the performance

achievable by any congestion-control protocol targeting max-min fairness.

Metric: Our metric of interest is speedup, defined as the ratio of the performance of a

given workload on the Saba-enabled network to the performance of the workload on

the baseline system. Throughout this section, the average speedup reports the geometric

mean of the result.

Testbed: We conduct our experiments on a cluster of 32 servers. Each server runs

Ubuntu 18.04 and is equipped with two 8-core Intel Xeon E5-2650v2 (Ivy Bridge) CPUs

at 2.60GHz. Each CPU has 20 MB of L3 cache and two hardware threads per core,

though we disable SMT in our experiments. Each server has 64 GB of system memory

and a single-port 56Gb InfiniBand NIC (ConnectX-3) connected on socket 0. NICs

are interconnected via a Mellanox SX6036G InfiniBand switch, which supports 9 VLs

(only 8 VLs are configurable). We also use an additional server to run the centralized

controller. At profiling time, the same server runs the profiler. In all experiments, we

reserve 100% of the link capacity to be managed by Saba (i.e., CSaba = 100%).

On the application side, we use the Spark and Flink frameworks. We use ten

workloads from Intel’s industry benchmarks [55] running on top of Spark and Flink.

The workloads and the evaluated dataset sizes are summarized in Table 3.1.

Simulation: To assess Saba at a larger scale, we implement it in Mellanox’s InfiniBand

4.6. Evaluation 61

LR RF GBT SVM NI NW PR SQL WC TS Avg
0

1

2

3

4

5

S
pe

ed
up

Figure 4.13: Speedup of workloads with Saba over the baseline.

1.0 1.5 2.0 2.5 3.0
Average Speedup

0.00

0.25

0.50

0.75

1.00
C

D
F

Figure 4.14: CDF of the average speedup of 500 cluster setups.

simulator based on OMNeT++ [89]. We configure the simulator to support 56Gbps

link capacity per port to match our hardware testbed. Each port supports 16 VLs, each

with a dedicated queue. We simulate a representative network configuration with a

Spine-Leaf topology and three levels of switches [112]: 54 spine, 102 leaf, and 108

top-of-rack switches. Each top-of-rack switch connects 18 servers, for a total of 1,944

servers in the network. Similar to our testbed setup, we set CSaba to 100%.

We generate 20 distinct synthetic workloads in the simulator. Each workload emu-

lates the computation and communication stages, which is a common pattern in parallel

frameworks such as Spark and Flink. The amount of computation, communication,

and the number of stages varies across the workloads to emulate varying degrees of

bandwidth sensitivity. In the simulation, each server runs one workload. In a topology

with 1,944 servers, each of the 20 workloads has 97 instances, which are randomly

distributed across the network.

4.6.2 Main results

In this section, we evaluate the performance of Saba in an environment with uneven dis-

tribution of traffic on each node, which mimics realistic scenarios in private datacenters.

62 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

To create such an environment, we generate 500 cluster setups. In each cluster setup,

16 jobs are randomly selected by drawing, with replacement, from the set of workloads

listed in Table 3.1. All workloads are profiled in advance with the degree of polynomial

of 3 as described in Section 4.2.1. The dataset size of each job is randomly selected

from 0.1x, 1x, and 10x of the dataset used by the profiler. The number of instances of

a job is also randomly selected from 0.5x to 4x of the number of nodes used by the

profiler (8 nodes). On each server, one core is assigned to each job, and memory is

equally partitioned among all workloads. Instances of jobs are randomly distributed

among servers with two constraints: 1) at most one instance of a given job is assigned

to a server, and 2) each server accommodates at most 16 jobs. For each cluster setup,

we run all jobs together two times, once with Saba managing the bandwidth of jobs,

and once with the baseline; and we measure the completion time for each job.

Figure 4.13 displays the average speedup over the baseline for each workload.

As the figure shows, Saba improves the average performance across workloads by

1.88× compared to the baseline. The largest performance improvement is observed on

workloads with high bandwidth sensitivity. E.g., the performance of RF is increased by

3.9×, and LR by 3.6×. For 2 (out of 10) workloads that have low sensitivity to network

bandwidth (TS and PR), their performance is slightly reduced by 5% and 1% over the

baseline, respectively. The reason for the performance drop is that Saba distributes

the bandwidth in favor of bandwidth-sensitive workloads. Thus, while workloads that

are highly sensitive to bandwidth get larger shares of network bandwidth, workloads

with low sensitivity receive smaller shares. This re-distribution may result in mild

performance degradation for some of the workloads, as our results show.

Figure 4.14 shows the CDF of the average speedup of 500 cluster setups. As the

figure shows, the average speedup of cluster setups ranges from 0.94× to 2.99×. In

only 2 (out of 500) cluster setups, Saba results in a performance slowdown compared to

the baseline.

4.6.3 Sensitivity studies

In Section 4.2.2, we observed that the degree of polynomial, dataset size, and the number

of nodes impact the accuracy of sensitivity models. In this section, we evaluate the

impact of these parameters on the performance of Saba. In all scenarios, all workloads

are profiled in advanced (Section 4.2.1). In studies 1 and 2, the degree of polynomial

(k) used by the profiler is 3. We vary the degree of polynomial in study 3.

4.6. Evaluation 63

LR RF GBT SVM NI NW PR SQL WC TS Avg

1.0

1.5

2.0

2.5

S
pe

ed
up

Dataset size
0.1x 1x 10x

Figure 4.15: Impact of dataset size at runtime on the performance of Saba.

LR RF GBT SVM NI NW PR SQL WC TS Avg

1.0

1.5

2.0

2.5

S
pe

ed
up

Number of nodes
0.5x 1x 2x 3x 4x

Figure 4.16: Impact of the number of nodes at runtime on the performance of Saba.

1) Impact of dataset size: As described in Section 4.2.2, the accuracy of the sensitivity

models declines as the difference in dataset size at profiling and runtime increases.

We compare the performance of Saba across various dataset sizes, ranging from 0.1x

to 10x the size of the datasets used in the profiling phase. To this end, we create a

homogeneous setup in which the number of nodes is the same number of nodes used

in the profiling phase (8 nodes) and all nodes run all workloads together. We run one

instance of each workload on every server with a core assigned to each workload and

memory equally partitioned among all workloads.

Results are shown in Figure 4.15. As the figure shows, the applications benefit

the most (54% speedup) when the runtime dataset size matches the dataset size in the

profiling (1x). However, even when datasets are ten times smaller (0.1x) or larger (10x),

Saba is still able to obtain performance improvement across workloads. When the

workloads use the 0.1x and 10x datasets, Saba improves the average performance by

33% and 40%, respectively, compared to the baseline.

2) Impact of number of nodes: Similar to dataset size, the accuracy of a sensitivity

model decreases as the number of nodes running a distributed application at runtime

drifts from the number of nodes in the profiling phase (explained in Section 4.2.2). We

64 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

LR RF GBT SVM NI NW PR SQL WC TS Avg

1.0

1.5

2.0

2.5
S

pe
ed

up

Degree of Polynomial
1 2 3

Figure 4.17: Impact of degree of polynomial on the performance of Saba.

compare the performance of Saba across a number of nodes, ranging from 0.5x to 4x

of the number of nodes used by the profiler (8 nodes). Similar to study 1, we run one

instance of each workload on every server. In this study, workloads use datasets of the

same size as in the profiling.

As Figure 4.16 shows, Saba achieves 42% average speedup over baseline when

the number of nodes is reduced to half. Increasing the number of nodes to 2x and 3x

compared to the profiling results in 34% and 26% average speedup, respectively. When

increasing the number of nodes to 4x compared to profiling, we observe that Saba gains

only 9% average speedup; however, workloads such as SQL, NW, and NI experience

8%, 6%, and 3% drop in their respective performance. This observation was expected

as Section 4.2.2 explained that when the number of nodes at runtime is 4x, the accuracy

of sensitivity models significantly drops. We conclude that when the number of nodes

used in deployment exceeds the number in the profiling configuration by over 3x, the

benefits of Saba significantly diminish.

3) Impact of degree of polynomial: As explained in Section 4.2.2, the degree of

polynomial plays an important role in the accuracy of the sensitivity models. We

compare the performance of Saba while varying the degree of polynomial used by the

profiler from 1 to 3. Similar to study 2, we run one instance of each workload on every

server. In this study, workloads use datasets of the same size as in the profiling phase

and the number of nodes is the same number of nodes used in the profiling phase (8

nodes).

Figure 4.17 displays the impact of the degree of polynomial on the performance

of Saba. As expected, Saba benefits from more accurate sensitivity models. Some

workloads benefit from the higher degrees of polynomial. For instance, when the

sensitivity model of the SQL workload is generated using second- and third-degree

polynomial, SQL experiences 3% and 22% improvement, respectively, over the baseline.

4.6. Evaluation 65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Workload

1.00

1.25

1.50

1.75

2.00

S
pe

ed
up

Saba Ideal Max-Min Homa Sincronia

(a)

Cent. Dist.
Controller

1.00
1.25
1.50
1.75
2.00

Av
g

S
pe

ed
up

(b)

2 4 8 16
Number of Queues

1.00
1.25
1.50
1.75
2.00

Av
g

S
pe

ed
up

(c)

Figure 4.18: Simulation results. (a) speedup of Saba, ideal max-min, Homa, and

Sincronia, all over the baseline. (b) the average speedup with centralized versus

distributed controllers. (c) impact of the number of queues on the performance of Saba.

This represents 7% performance degradation for SQL with a sensitivity model based on

a first-degree polynomial. Overall, with the first- and second-degree polynomial, Saba

achieves 1.27× and 1.42× average speedup, respectively.

4.6.4 Simulation results

To study the performance at a larger scale, we expand the deployment size by using the

simulator and running the set of synthetic workloads as explained in Section 4.6.1.

Profiling: We calculate the bandwidth sensitivity of workloads by profiling them.

For each of the simulated workloads, the profiler deploys instances of the workload

on a rack-scale simulated system with 18 nodes (thus mimicking a real deployment).

The profiler uses the third-degree polynomial in the following studies to generate a

sensitivity model for each workload. In all studies, Saba uses a centralized controller,

except for study 7.

4) Saba vs. ideal max-min fairness:

66 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

Ideal max-min fairness: In the ideal implementation of max-min fairness, each

workload is assigned to a dedicated queue, and packets from queues are serviced

using the Round-Robin algorithm. In this scheme, in each turn, the scheduler in the

switch selects a queue and chooses the packet at the head of the queue. Assuming that

all packets have the same size if such a scheme transmits one packet in each turn, it

achieves the upper bound of max-min fairness [52].

We evaluate the performance of synthetic workloads at a large scale with ideal

max-min fairness and compare that with Saba. We run all workloads together in the

simulation. Similar to Section 4.6.2, Saba uses 8 per-port queues in the switches.

Figure 4.18a presents the results. As the figure shows, almost all workloads achieve

higher performance using Saba compared to using ideal max-min fairness. The maxi-

mum speedup achieved by a workload is 79%; while the performance of two workloads

is penalized by 3%. The average speedup across workloads for Saba and ideal max-min

fairness is 27% and 14%, respectively. This shows that per-flow max-min fairness

is inherently unable to directly target the application-level performance, as it tries to

achieve bandwidth fairness at the flow level, but ignores the fact that some workloads

are more sensitive than others. In contrast, Saba allocates the bandwidth of each network

link based on the bandwidth sensitivity of the workloads using it. Thus, workloads

with higher sensitivity get more bandwidth and see a performance improvement over

max-min fair allocation.

5) Saba vs. Homa: In this study, we compare Saba against the recently-proposed

Homa [94], which is considered the state-of-the-art networking protocol designed for

datacenters. Similar to Saba, Homa leverages the priority queues available in network

switches. Homa prioritizes short flows to achieve optimal flow-level completion time.

We use Homa’s OMNet++ simulator with the same topology and set of synthetic

workloads described in Section 4.6.1.

As Figure 4.18a shows, Homa achieves 12% speedup over the baseline. Saba out-

performs Homa by an additional 13%. The reason that bandwidth-sensitive workloads

benefit from Saba more than Homa is the fact that Homa differentiates flows based on

their size. E.g., in this setup, Homa assigns all flows longer than a certain size (10KB)

to the same priority queue, without differentiating their associated workloads; thus,

Homa does not allocate bandwidth in favor of bandwidth-sensitive workloads and the

application-level performance of workloads is ignored. Saba, however, differentiates

workloads at runtime based on their application-level sensitivity to bandwidth, resulting

in improved performance.

4.6. Evaluation 67

6) Saba vs. Sincronia: To bridge the gap between flow-based bandwidth allocation

schemes and application-level bandwidth requirements, a networking abstraction, called

coflow, has been proposed recently [23]. Coflow represents a collection of related

flows to convey application-specific communication requirements. In this study, we

compare Saba against Sincronia[2], which is the state-of-the-art clairvoyant coflow

scheduler. Sincronia tries to minimize the coflow completion time by ordering all

unfinished coflows and assigning priority levels to the flows according to their coflow

order. Sincronia requires flow sizes to be known a priori. While such a requirement

is not feasible in datacenters [152], it provides Sincronia with near-optimal coflow

completion time. To enforce the allocated rates, Sincronia leverages the underlying

priority-enabled transport layer.

As Figure 4.18a shows, Sincronia achieves 19% speedup over the baseline. Indeed,

the coflow abstraction allows workloads to more accurately express their bandwidth

requirements to the network fabric; however, it does not take the sensitivity of workloads

into account and the overall application-level performance of workloads is ignored.

In addition, Sincronia, like other coflow-based approaches, needs applications to be

modified and invoke coflow API [23]; Saba, however, requires no modification to

applications.

7) Centralized vs. distributed: In this study, we evaluate the impact of the centralized

versus distributed controller on Saba’s performance. We repeat Study 4 with the

distributed controller. As explained in Section 4.3.4, in Saba, with the distributed

controller, the profiler performs the application-to-PLs and hierarchical clustering

operations offline. Thus, the controller may not have the most accurate mappings,

leading to a trade-off between performance and scalability.

As Figure 4.18b demonstrates, Saba with the distributed controller is able to achieve

a 1.23× speedup over the baseline, falling just 4% short of Saba with the central-

ized controller. We conclude that using the distributed controller slightly reduces the

effectiveness of Saba while improving scalability.

8) The impact of the number of queues: The number of queues per output port

varies among switches used in today’s datacenters. 8 queues are common, though more

capable switches may support 16 queues per port [94]. We study the impact of the

number of queues in network switches on the performance of Saba. To do so, we repeat

study 4 and use switch configurations with 2, 4, 8, and 16 queues per port. We also

study a configuration with unlimited queues, where each workload is assigned to a

dedicated queue; this configuration provides an upper bound on Saba’s performance.

68 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

0.00 0.15 0.30 0.45
0.00
0.25
0.50
0.75
1.00

C
D

F

|A| 250

0.0 0.5 1.0 1.5

250 < |A| 1000

Time (s)

k = 1
k = 2
k = 3

Figure 4.19: Overhead of a centralized controller.

Figure 4.18c plots the results of the study. Compared to the baseline, Saba delivers

a 1.12× average performance improvement with just 2 queues at each output port. With

8 queues, Saba achieves a speedup of 1.27×, approaching the ideal speedup of 1.33×
with an unlimited number of queues. This result shows that 8 queues, which is common

in today’s datacenter switches, is sufficient for Saba to achieve close to its optimal

performance.

4.6.5 Overhead of the controller

In study 3, we observe that modeling the bandwidth sensitivity of workloads with higher

degrees of polynomial results in higher performance. In this study, we investigate

the added overhead by higher degrees of polynomial in bandwidth calculation on

a large scale in the simulator. To this end, we evaluate the calculation time of a

centralized controller, i.e., the time the controller takes to compute the bandwidth share

of applications for all switches. We generate 30,000 scenarios, in which the size of the

active application set varies from 1 to 1,000. In each scenario, 32 instances of each

application are randomly distributed among nodes.

Figure 4.19 displays the CDF of measured calculation time with various sizes of

active application sets (|Â|). The result shows that for sets of applications with sizes up

to 250, the calculation time of the controller at 99th percentile is 0.09s, 0.16s, and 0.31s

for k = 1, k = 2 and k = 3, respectively. By increasing the size of applications set up to

1,000, the calculation time of the controller at 99th is 0.43s, 0.72s and 1.13s for k = 1,

k = 2 and k = 3, respectively. Despite the higher accuracy achieved by sensitivity models

with higher degrees of polynomial, the increased overhead in bandwidth calculation

reduces the responsiveness of the controller. While the degree of the polynomial must

be carefully tuned according to the number of applications in the deployment of Saba,

4.6. Evaluation 69

the calculation time of the controller even with k = 3 is negligible as compared to the

runtime of workloads. To put the calculation time in perspective, the studied workloads

take from several minutes to hours to finish their job, while in an extreme case, the

calculation time of a centralized controller for 1,000 applications takes 1.13 seconds.

More than that, the datacenter operator can distribute the controller, or use a multi-

threaded implementation of the controller and run it on multiple cores or accelerators

such as FPGAs to reduce the calculation time.

4.6.6 Discussion

How does the input dataset size during profiling affect Saba’s performance, and
can Saba overfit in this scenario? Our result shows that the impact of the input dataset

during the profiling phase is a crucial consideration in the performance improvement

provided by Saba. In practice, accurately estimating the dataset size during profiling

can be challenging, and there may be a desire to use a smaller dataset for profiling to

reduce time and cost. This introduces a potential discrepancy between the dataset size

used for profiling and the one encountered at runtime.

Regarding the possibility of overfitting, it is worth noting that Saba primarily profiles

a given application using a single dataset size during its design phase. Consequently,

there is a potential risk of the sensitivity model becoming overly tailored to that specific

dataset size. However, the results of the study in Section 4.6.3 indicate that even when

the runtime dataset size varies significantly—ranging from ten times smaller (0.1x)

to ten times larger (10x) than the dataset used for profiling (1x)—Saba consistently

achieves performance improvements across different workloads. This observation

suggests that while overfitting to a particular dataset size is a possibility, the sensitivity

models retain their predictive power effectively, demonstrating Saba’s robustness.

Exploring alternative approaches, one option is to profile the application with multi-

ple dataset sizes during the design phase. This approach could help mitigate the risk of

overfitting by exposing the sensitivity model to a broader range of dataset sizes. We

can take a further step by adding dataset size as an additional dimension within the

model. While this could potentially enhance accuracy by accounting for various dataset

sizes, it might also introduce greater complexity into the allocation algorithm. Such

complexity may require advanced statistical techniques like ANCOVA (Analysis of

Covariance) [35] to manage effectively. ANCOVA is particularly useful in analyzing

how a continuous independent variable, in this case, bandwidth, impacts a dependent

70 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

variable like application performance while controlling for the influence of other covari-

ates or factors such as dataset size. ANCOVA helps disentangle the specific impact of

bandwidth from the noise introduced by dataset size. The implementation of ANCOVA

adds a layer of complexity to the allocation algorithm (specifically eq. (4.2)) and neces-

sitates careful consideration of the computational resources required by the controller,

as datacenter operators desire to keep the overhead of allocation (Section 4.6.5) as low

as possible. Decisions regarding these trade-offs would depend on specific application

requirements and performance objectives.

How does Saba adapt to applications that evolve or change over time? Saba operates

based on the profiling phase without real-time awareness of dataset size changes during

runtime. Saba considers the characteristics of the dataset size observed during the

profiling phase and optimizes resource allocation accordingly for the entire application’s

lifetime. It does not adapt to variations in dataset size as they occur during runtime.

However, the findings in this study indicate that the optimization strategies of Saba

remain effective even when the dataset size during runtime differs significantly from

the profiling phase. This underscores Saba’s robustness in scenarios where applications

may experience changes in their resource requirements over time, demonstrating its

ability to maintain effective bandwidth allocation despite variations in the dataset size

of applications.

Does Saba achieve global optimality in bandwidth allocation? If not, how could
it be extended to do so? Saba’s approach to bandwidth allocation revolves around

finding locally optimal solutions based on its available profiling information. However,

achieving global optimality in bandwidth allocation is fraught with challenges:

The effectiveness of Saba can be affected by disparities in the profiling setup,

such as differences in dataset size and the number of nodes, compared to the runtime

configuration. These variations can influence allocations, potentially causing deviations

from globally optimal solutions. Furthermore, Saba operates without a comprehensive

understanding of the application’s internal structures and dependencies. This lack of

awareness can result in allocations that do not align with globally optimal solutions. An

extension to Saba could involve incorporating insights from application behaviors to

enhance the overlap of communication and computation phases across applications and

improve network resource utilization. Additionally, Saba currently makes bandwidth

allocation decisions at the application’s lifetime granularity. To move closer to global

optimality, an extension could involve continuous real-time monitoring of application

behaviors and resource usage. This approach would enable more adaptive and optimized

4.6. Evaluation 71

decisions, considering changing conditions over time.

It is important to note that achieving a globally optimized scheduling allocation

poses significant computational challenges, as it falls into the category of NP-complete

problems [140]. Particularly in the context of large datacenters, attaining true global op-

timality may be infeasible. Consequently, Saba’s existing approach centers on seeking

locally optimal solutions within the given constraints and available information. Poten-

tial extensions aim to further improve Saba’s adaptability and efficiency in addressing

varying runtime conditions.

What limitations must be considered in the adoption of Saba, and which compo-
nents of the stack require porting? To facilitate the adoption of Saba, it is crucial to

consider the limitations and determine which parts of the stack need to be ported. Saba

can be integrated into the existing infrastructure by adding its software interface at one

of the following levels within the stack:

1) Application: In order to access the full range of features offered by the Saba

library, applications can directly call the interface functions. This approach is the

easiest to implement from a technical standpoint, as it simply requires calling the

relevant functions within the application code. However, it does require modification

to the application itself in order to integrate with the Saba library. While this may

require some additional work upfront, it ultimately allows applications to fully leverage

the application-aware bandwidth allocation provided by Saba, leading to improved

performance and efficiency.

2) Framework: An alternative approach to integrating with the Saba library that does

not require modification to individual applications is to integrate Saba with frameworks,

such as Spark and Flink. These frameworks are able to call the interface functions

from within the framework itself, making Saba transparent to the applications. This

means that only the framework needs to be modified in order to take advantage of

Saba’s bandwidth allocation, rather than each individual application. This can be a

more efficient and convenient approach as it reduces the amount of work required to

integrate with the library. However, it does require the use of a supporting framework,

which may not be suitable for all use cases.

3) Transport: There is a third approach to integrating with the Saba library that provides

even greater transparency compared to the previous two options. This approach involves

coupling the transport layer with the connection manager, which allows all applications

to be Saba-compliant without any modification. However, implementing this approach

does present some technical difficulties. Specifically, the transport layer must be

72 Chapter 4. Saba: Application-Aware Bandwidth Allocation Scheme

configured to register all applications, as existing transport protocols do not provide any

support for Saba.

4.7 Summary

Saba uses bandwidth sensitivity of workloads to drive bandwidth allocation, resulting

in a bandwidth assignment that is well-correlated with workloads’ actual bandwidth

needs. Our evaluation reveals that in our real-world setup, Saba improves the average

performance across a wide range of workloads by 1.88× compared to InfiniBand.

While bandwidth-sensitive workloads benefit the most from Saba, workloads with low

sensitivity face little or no performance degradation with Saba.

Furthermore, we evaluate Saba at scale in simulation using synthetic workloads

and compare it against InfiniBand, an ideal implementation of max-min fairness and

Homa. Our evaluation shows that Saba improves the average performance across studied

workloads by 1.27×, 1.11× and 1.13× compared to InfiniBand, ideal implementation

of max-min fairness and Homa, respectively.

Finally, we evaluate the impact of the number of queues per port at switches on

the performance of Saba. We observe that with just two queues, Saba effectively

outperforms InfiniBand in terms of the performance of workloads running on them.

Moreover, existing switches that support eight per-port queues are capable to get close

to the performance of the ideal implementation of Saba.

Chapter 5

Characterization of an InfiniBand

Switch

Datacenters feature an ever-growing mix of traditional and emerging applications

that place high-performance demands on the datacenter network. As explained in

Chapter 3, some of these applications, such as big-data analytics using Hadoop or

Spark [123, 142, 29], distributed machine-learning training [139, 46, 113, 80, 147, 10],

data backup and VM migrations, require exchanging large amounts of data among

nodes, necessitating high bandwidth. These types of applications may require different

strategies for bandwidth allocation in order to meet their specific performance needs.

Other applications, such as those relying on disaggregated memory [37, 120, 67, 49,

3, 121] and distributed in-memory storage [36, 83, 82, 87, 19, 32, 63, 92, 39], require

ultra-low network latency to provide the illusion of a scale-up system. In many cases

achieving the lowest possible per-packet latency (on the order of a few microseconds)

is critical to the success of the service, making tail latency (e.g., 99.9th percentile) an

important metric to consider [37, 27].

To meet the network latency and bandwidth needs, datacenter operators [15] have

begun deploying high-end networking solutions in the form of InfiniBand [14]. Initially

developed for the HPC domain, these networks tend to combine custom fully offloaded

network stacks, RDMA capability, and lossless links to provide high end-to-end perfor-

mance. A number of recent works have demonstrated that, indeed, InfiniBand-based

deployments can offer low latency (order of microseconds) and high bandwidth for a

given application, such as a distributed in-memory KVS [32, 40, 61, 68]. In most of

these cases, network parameters are tuned for an individual application to harness the

maximum potential of an InfiniBand fabric [144]. In practice, however, in public and

73

74 Chapter 5. Characterization of an InfiniBand Switch

private datacenters, multiple applications with different latency and bandwidth demands

might coexist in a cluster and share the network [149].

In this chapter, by focusing on latency-sensitive applications, we aim to answer the

following question:

How well do the existing InfiniBand switches support the resulting mix of

latency-sensitive and bandwidth-intensive traffic?

To answer this question, we study a rack-scale InfiniBand deployment with a

single ToR switch, representing the simplest fieldable cluster setup. For the purpose of

evaluating a switch in such a rack configuration, it is imperative that the measurement

methodology be accurate, particularly one that is capable of measuring the latency of

a switch under stress in isolation (that is, without endpoint processing overhead). We

observe that existing performance measurement tools for RDMA-based networks suffer

from endpoint processing overheads (local and remote) which affects the accuracy of

latency measurements.

As a solution to this problem, we developed RPerf, a tool for measuring RDMA

performance at a high level of precision. RPerf overcomes deficiencies of existing

tools to precisely measure latency and avoids the need for expensive hardware-based

solutions or support for hardware timestamping on the NICs.

Using RPerf, we observe that our InfiniBand setup achieves very low latency in

an unloaded network, corroborating prior work. Further, we are able to consistently

utilize high bandwidth as the number of bandwidth-intensive flows is varied. Our

InfiniBand switch, however, cannot provide low latency for a latency-sensitive flow

in the presence of bandwidth-intensive flows. In order to achieve low latency without

compromising throughput, we examine several strategies, such as varying packet sizes

or using priority levels, but all of the evaluated approaches are found to be insufficient.

Using an InfiniBand switch simulator, we also examine different packet scheduling

policies within the switch and observe that readily available packet scheduling policies,

such as First Come First Serve and Round-Robin, are unable to guarantee performance

isolation for both latency-sensitive and bandwidth-intensive flows.

Based on our findings, we conclude that the contemporary InfiniBand gear (NICs and

the switch) used in our evaluation may be effective for applications with homogeneous

traffic, but is unable to accommodate the heterogeneous demands of modern datacenters.

In short, the main contributions of this chapter are as follows:

5.1. InfiniBand latency measurement 75

Host HostRNIC RNIC

Local Remote

Local-side delays Remote-side delays
IB Switch

Figure 5.1: Ping-pong style RTT calculation.

• We introduce RPerf (Section 5.2), an accurate micro-benchmarking tool, which

provides sub-microsecond precision measurement. We compare RPerf against

existing measurement tools (Section 5.3).

• To improve the performance of co-existing applications, we examine several

strategies, including the use of different packet sizes and priority levels (as

described in Section 5.4). We show each of these strategies has its own limitations

and may not be sufficient on its own and discuss the trade-offs and shortcomings

of each approach in order to better understand the challenges and limitations of

optimizing the network for co-existing applications.

5.1 InfiniBand latency measurement

Thanks to fully offloaded network stack processing and other high-performance features

summarized in Section 2.3, InfiniBand achieves sub-10 microsecond latency in an

unloaded network. Such low latency presents several challenges for accurate NIC-to-

NIC latency measurement.

The main challenge is isolating the latency of the switch from other components,

particularly the software and PCIe. An ideal solution is to directly measure one-way

port-to-port latency through the switch; doing so, however, requires the use of expensive

data acquisition devices [151]. Another option is to use precise sub-microsecond clock

synchronization at the endpoints [108]; however, this approach assumes that one-way

latencies in both directions are the same, which is not the case when traffic is congested,

particularly with a converged traffic pattern.

An alternative approach for latency measurement is a ping-pong style test to find

76 Chapter 5. Characterization of an InfiniBand Switch

the round-trip time (RTT) in software (Figure 5.1). Problematically, RTT calculation

can be biased by remote-side processing, which is required to generate and transmit

the response packet at the remote end. Such remote-side processing includes the

software overhead for generating the response and the PCIe transactions necessary

for transferring data to/from the RNIC. This remote-side processing delay does not

reflect true network latency and, as such, should be excluded from the measurement.

In addition, RTT calculation suffers from local-side processing delays. Local-side

processing includes multiple PCIe transactions that the local RNIC performs to fetch

data from the host memory, putting the data into packets and enqueuing packets. As

software captures the posting time of a request, not transmitting time, the calculated

RTT includes PCIe transactions, RNIC processing, and queuing delays, and results in

biased measurement.

Existing latency measurement tools

Several methodologies and tools are available for measuring the performance of datacen-

ter networks [145, 108, 51, 41]. Some of these tools leverage hardware timestamping,

a feature now becoming more prevalent in commodity NICs. One such tool is Moon-

Gen [33], a highly adaptable and high-speed packet generator built upon the Intel Data

Plane Development Kit (DPDK) [31]. MoonGen stands out by offering the capability

to execute user-provided Lua scripts on a per-packet basis, enabling it to deliver precise

and granular latency measurements. Another example is Lancet [69], a tool for precise

latency measurement. Lancet is designed to measure the open-loop tail latency of

microsecond-scale datacenter applications with high fan-in connection patterns. The

unique design of Lancet is that it can identify situations where tail latency measurements

may be inaccurate due to factors like workload configuration, client infrastructure, or

application intricacies. Similar to MoonGen, Lancet leverages NIC-based hardware

timestamping for robust end-to-end RPC latency measurements when available. In

cases where hardware capabilities are lacking, Lancet uses an asymmetric setup with

a latency agent to reduce client bias, making it a versatile tool for accurate latency

assessment. Unfortunately, none of the above tools are designed to precisely measure

the latency of an InfiniBand switch, particularly under load.

There are only a few RDMA-based tools available for measuring the latency over

an InfiniBand fabric. RDMA Bench [62] benchmarks an RDMA-based fabric from the

application layer and does not isolate the NIC-to-NIC latency. Perftest [99] consists of

5.2. RPerf 77

a collection of micro-benchmarks that use a ping-pong latency measurement approach.

In Perftest, the remote side responds to a ping with a pong generated in software;

consequently, it suffers from the remote-side processing problem. QPerf [100], another

micro-benchmarking tool, calculates the RTT at a high load using a post-poll measure-

ment approach. In the post-poll approach, a QPerf client posts a write request and then

polls for the completion of the request; therefore, the QPerf server does not respond to

the request in software. Such an approach removes the remote-side software overhead;

however, it still includes the PCIe delays for DMA-ing the data into remote memory,

which is required for a write request (Figure 2.2b). QPerf also fails to perform precise

tail latency measurement (it does not track per packet latency) and only reports the

average latency. The accuracy of both Perftest and QPerf is further diminished because

both tools include local-side processing delays in their measurements. To conclude,

existing measurement tools fail to factor out local-side and/or remote-side processing

overheads, which impedes their ability to accurately measure the latency through the

switch.

5.2 RPerf

Existing methodologies for estimating latency in InfiniBand switches are unreliable

or produce inaccurate results. This is a significant issue as latency is an important

factor in the performance of a network and any errors in measurement can lead to

flawed optimization or design decisions. To address this problem, we introduce RPerf,

a micro-benchmarking tool specifically designed to accurately measure the latency of

InfiniBand switches under various load conditions. RPerf uses a novel approach that

allows it to provide precise and reliable latency estimates, making it a valuable tool for

network engineers and researchers.

RPerf is designed to measure the RTT between local and remote hosts. It leverages

RDMA verbs to accurately measure the latency of InfiniBand switches without including

the delays at the endpoints. In the following sections, we will describe key aspects of

the design of RPerf.

5.2.1 Excluding remote-side processing

In order to exclude all software overheads at the remote end, RPerf adopts the post-poll

approach, in which only the local host posts a request and polls for completion. By

78 Chapter 5. Characterization of an InfiniBand Switch

leveraging the RC transport, in which the remote RNIC generates a response without

involving the destination host, RPerf avoids software processing overheads at the remote

end. To exclude the PCIe latency on the remote end, RPerf uses the RDMA send verb.

RDMA send causes the remote RNIC to generate a response to the source RNIC

immediately upon the receipt of the request and without waiting for the PCIe transaction

to complete at the remote end (see Figure 2.2d). The combination of using post-poll and

RDMA send avoids biasing latency measurements with remote-side software overheads

and PCIe delays.

5.2.2 Excluding local-side processing

When the application posts a request using one of the InfiniBand verbs, the RNIC

handles the request asynchronously and the control returns to the application. Mean-

while, the host sends the request to the local RNIC through PCIe and the local RNIC

performs a DMA read to fetch the data for the RDMA send operation (Figure 2.2d).

After fetching data, the local RNIC processes, enqueues, and eventually transmits the

request. The sum of latencies incurred by these actions at the local host and the RNIC

make up the local-side processing overhead.

In order to avoid including local-side processing delays in RTT, RPerf calculates

local-side processing overhead for every RDMA send request so that it can be excluded

from the measurement of the switch latency. To do so, RPerf leverages loopback

messages, which are messages that are sent from a host to itself via the local RNIC.

Specifically, after sending an RDMA send to the destination host (which we call an

over-the-wire send), RPerf immediately generates a loopback RDMA send request at the

local host and times it. The latency of the loopback request is the local-side processing

overhead, which can then be subtracted from the latency of the over-the-wire send.

5.2.3 RTT calculation

Using the ideas introduced above, we now describe how RPerf precisely measures the

RTT through an InfiniBand switch. The process for RTT measurement is shown in

Figure 5.2. At the outset, the local host posts a pair of RDMA send requests: an over-

the-wire request and a loopback, storing the posting time (TP). While the over-the-wire

request is being sent out, the loopback work request is processed by the local RNIC,

which generates a CQE when it is finished; RPerf captures the completion time for

the loopback request (TL). When the ACK for the over-the-wire request arrives at the

5.3. Evaluation of InfiniBand switches 79

Host HostRNIC RNIC

Local Remote

IB Switch

Time

TP

TCQE

TCQE

TL

TW

RTT

Over-the-wire message

Loopback message

Figure 5.2: RTT calculation by RPerf.

local RNIC, the RNIC issues a CQE. RPerf records this completion time as (TW) and

calculates the RTT as follows:

RT T = (TW −TP)− (TL −TP) = TW −TL (1)

RPerf subtracts the time it takes for a loopback message to be completed in order to

eliminate the time taken for the over-the-wire request to be processed at the local RNIC

and the local PCIe latency. This allows RPerf to effectively identify and remove these

delays, accurately measuring the latency of the InfiniBand switch.

Additional details: In order to minimize software-induced performance variability,

each RPerf thread is pinned to a CPU core and Huge Pages are allocated for all required

buffers. For capturing the timestamps of events accurately, RPerf uses Time Stamp

Counter (TSC) through rdtsc x86 assembly instruction, which offers high-accuracy

timestamping measurement within user space. RPerf follows Intel recommendations for

TSC calibration and access [101]. Multiple instances of RPerf can be run on different

servers, and a user can specify a traffic pattern (e.g., one-to-one or many-to-one) to

measure specific aspects of the system, such as zero-load latency, peak bandwidth, or

latency at load.

5.3 Evaluation of InfiniBand switches

In this section, we study the performance of an InfiniBand switch on (1) a 7-server

InfiniBand testbed with a suite of workloads and (2) a simulated 7-server cluster with a

set of synthetic workloads.

80 Chapter 5. Characterization of an InfiniBand Switch

Table 5.1: Bandwidth-intensive workloads.

Workload Dataset Size

Logistic Regression 10k samples

SVM 150k samples

NWeight Graph size (# of edges): 4250M

PageRank 50M pages

Join (SQL) Two tables (# of records): 5000M and 120M

5.3.1 Methodology

Hardware testbed: In our experiments, we use seven identical hosts with dual-socket

Intel Xeon E5-2630 v4 (Broadwell) CPUs running at 2.20GHz and 64GB of RAM. The

hosts run Ubuntu server 18.04 LTS with kernel version 4.15.0-50 and are equipped with

InfiniBand Mellanox MT27700 ConnectX-4 RNICs [88]. These RNICs are connected

through a Mellanox SX6012 InfiniBand switch with 12 QSFP ports, 16 MB of buffer

capacity per port, and 9 VLs [90]. The switch and RNICs have a peak bandwidth of

56Gbps and Mellanox reports port-to-port latency of up to 200ns through the switch.

Simulator: We use a modified version of the InfiniBand OMNeT++ simulator, devel-

oped by Mellanox. This simulator models a network with seven nodes connected to an

InfiniBand switch and provides two different packet scheduling policies: First Come,

First Served (FCFS) and Round-Robin (RR). The parameters of the modeled switch,

including peak bandwidth, port-to-port latency, and number of VLs, are set to match

those of our actual InfiniBand switch.

Workloads: To study sharing characteristics of the InfiniBand switch under traffic from

applications with different objectives, we consider two major types of applications:

1) Latency-Sensitive (LS) Application: In our study, a latency-sensitive workload is

exemplified by the use of RPerf, our microbenchmark. RPerf operates by sending RC

packets synchronously in a closed-loop fashion between a pair of nodes (source and

destination). The message size varies in different experiments. Within our hardware

testbed, each RPerf instance computes the RTT using the methodology detailed in

Section 5.2.

2) Bandwidth-Intensive (BI) Application: We use five workloads from Intel’s indus-

try benchmarks [55] running on top of Apache Spark [141]. The workloads and the

evaluated dataset sizes are summarized in Table 5.1. We use Mellanox’s SparkRDMA

plugin [91] to enable InfiniBand data transfers in Spark. This plugin transfers data using

5.3. Evaluation of InfiniBand switches 81

Sender Destination

 Flow

Figure 5.3: Back-to-back setup, where two servers are directly connected.

Sender Destination

Switch

Flow

Figure 5.4: One-to-one setup, where two servers are connected through a switch.

RC packets asynchronously (open-loop). The message size and the number of instances

vary in different experiments. RPerf calculates the bandwidth of BI applications during

the tests.

Metrics: We consider the 99.9th latency percentile as the tail. In all experiments, we

run the test three times and the duration of each test is 15 minutes. All graphs plot the

average values of the three runs; we do not plot standard errors, as they are negligible

(below 0.001).

5.3.2 Performance under one-to-one traffic

In this section, we study the performance of the switch in a one-to-one setup, whereby

applications run a pair of servers. First, we evaluate the isolated latency of the switch

using RPerf by measuring the RTT with and without the switch. Then, we measure the

end-to-end RTT using Perftest and Qperf. Finally, we evaluate the peak bandwidth of

applications with and without the switch.

5.3.2.1 Latency of LS traffic

Without switch: We first measure the RTT without the switch by directly connecting

the RNICs of a generator and the destination server (Figure 5.3). A server sends LS

messages to the destination server in the first test to determine RTT at zero-load.

Figure 5.5 shows the RTT distributions of two hosts directly connected for different

payload sizes measured by RPerf. As the figure illustrates, the median RTT for 64B

82 Chapter 5. Characterization of an InfiniBand Switch

64 128 256 512 1024 2048 4096
Payload Size (B)

0

200

400

600

800
R

TT
 (n

s)
50

th
 (w/o switch) 99.9

th
 (w/o switch) 50

th
 (w/ switch) 99.9

th
 (w/ switch)

Figure 5.5: RTT calculated by RPerf for different packet sizes with and without the switch.

is 20ns, and the tail RTT is 47ns. When the message size is increased to 4096B, the

median and tail RTT grow to 76ns and 85ns, respectively. The difference between

the median and tail RTT of a setup without the switch is at most 30ns. These results

demonstrate that the RTT is low and the effect of payload size on RTT is small.

With switch: Next, we study the performance of the InfiniBand switch. We connect two

servers (one sender, one destination) through the switch (Figure 5.4) and run the same

one-to-one traffic pattern as above. We examine the RTT at zero-load for messages sent

by the generator.

As Figure 5.5 shows, the median RTT for 64B messages is 432ns and the tail is

625ns. Moreover, increasing the payload size to 4096B results in the median and tail

RTT of 498ns and 688ns, respectively.

Ground truth: The study demonstrates RPerf’s accuracy by comparing its reported

latencies. Without the switch, RPerf reports median latencies between 20 and 85ns, and

with the switch, latency measurements fall between 432 and 498ns. These measurements

closely align with the reported latency by the switch manufacturer, Mellanox, which

stands at 400ns (200ns one-way port-to-port latency, i.e., 400ns RTT [90]). The

negligible differences observed between RPerf and Mellanox’s reports, ranging from 32

to 98ns, can be attributed to the transmission delay of packets, as they are very close to

the reported latency without a switch (between 20 and 85ns).

The assessment of RPerf’s accuracy through hardware-based solutions is a crucial

aspect of evaluating its performance measurement capabilities. However, as of the

current study, the in-depth examination of RPerf’s accuracy using hardware-based

validation remains a subject for future research, meaning that while the study has

5.3. Evaluation of InfiniBand switches 83

64 128 256 512 1024 2048 4096
Payload Size (B)

0

2

4

6

8

10

R
TT

 (
s)

50
th

 (Perftest) 99.9
th

 (Perftest) 50
th

 (Qperf)

Figure 5.6: End-to-end RTT calculated by Perftest and Qperf for different packet sizes

with the switch.

demonstrated the tool’s accuracy through comparisons and measurements, a more

comprehensive validation using dedicated hardware setups and benchmarks is left as a

direction for future work. We conclude that RPerf serves as a reliable benchmark for

assessing and validating the latency performance of RDMA-based switches, offering a

ground truth measurement that closely aligns with manufacturer specifications.

Tail latency: Figure 5.5 shows that regardless of the size of the payload, the difference

between the median and tail RTT through the switch is ≈ 200ns. By comparing to the

no-switch setup, in which the difference between the median and tail RTT is at most

30ns, we can deduce that the switch introduces at least a 170ns delay to the tail RTT,

which is about 45% of the median RTT; therefore, the switch suffers from tail latency,

even at zero-load.

Using existing tools: Finally, we measure the end-to-end RTT with the switch using

Perftest and Qperf.

Figure 5.6 shows the RTT distributions of two hosts connected through the switch

calculated by Perftest and Qperf for different payload sizes. In Figure 5.6, Perftest

reports 2.20µs median RTT and 4.11µs tail RTT for 64B. Furthermore, by increasing the

message size to 4096B, the median and tail RTT grow to 5.46µs and 9.51µs, respectively.

Figure 5.6 also shows that the median RTT reported by Qperf is 2.82µs for 64B. By

increasing the message size to 4096B, the median grows to 5.85µs. Unfortunately,

Qperf does not report tail RTT.

We find that although Perftest and Qperf are useful for measuring end-to-end latency,

their calculated latency is significantly (an order of magnitude) higher than the reported

84 Chapter 5. Characterization of an InfiniBand Switch

64 128 256 512 1024 2048 4096
Payload Size (B)

0

20

40

60
B

an
dw

id
th

 (G
bp

s)
56Gbps

w/o switch w/ switch

Figure 5.7: Bandwidth for different packet sizes with and without the switch.

latency in the switch specification. This observation suggests that these tools are unable

to isolate the switch latency due to endpoint overheads, especially when the message

size is increased. We conclude that Perftest and Qperf are not suitable for precisely

measuring the latency of the InfiniBand switch.

Take-aways:

1. Without the switch, the latency between a pair of RNICs connected back-to-

back is extremely low, well under 100ns for all evaluated payload sizes.

2. RPerf is able to exclude almost all the endpoint delays, which existing Infini-

Band latency measurement tools fail to do.

3. Using RPerf, the median RTT through the switch is 432-498ns, depending on

the payload size. This latency is close to the expected 400ns round-trip latency

per the switch spec.

4. The switch increases the tail latency to about 45% above the median latency.

5. Existing tools are unable to isolate the switch latency due to endpoint overheads

and flawed methodology.

5.3.2.2 Bandwidth of BI traffic

This section evaluates the maximum achievable bandwidth for a BI workload with

different payload sizes. In this study, one instance of Logistic Regression workload runs

on each server.

5.3. Evaluation of InfiniBand switches 85

Without switch: We first measure the bandwidth without the switch by directly con-

necting the RNICs of two servers (the same setup as Figure 5.3).

As Figure 5.7 shows, the attained bandwidth varies with payload size. Using a

payload size in the range of 1024B to 4096B, the workload can achieve 51.8 to 53Gbps

at the destination port, showing that with large payload sizes, our setup attains over 90%

of the bandwidth of a 56Gbps link. However, the achieved bandwidth is very poor with

small payloads; e.g., with 64B messages, the bandwidth is 4.1Gbps, meaning that less

than 10% of link capacity is utilized. This problem is largely due to two reasons:

1) Header size of an InfiniBand packet can be up to 52B[14]; hence, less than 56%

of the frame is the payload for a 64B message.

2) To achieve line rate bandwidth, here 56Gbps, the RNIC must be capable of

processing ≈ 110 million 64B packet per second, which is beyond the RNIC’s capability;

this problem is well known and [62] discusses the reasons.

With switch: Next, we study the maximum achievable bandwidth of the InfiniBand

switch. We connect two servers through the switch (Figure 5.4) and run the Logistic

Regression workload on them as above.

Figure 5.7 illustrates the bandwidth achieved for different payload sizes over the

switch. With payload sizes of 64B and 4096B, our setup attains 3.9 and 52.2Gbps,

respectively. We can observe that the bandwidth achieved through the switch is slightly

lower (by up to 0.8Gbps) than without the switch.

Take-aways:

1. While over 90% of link capacity can be achieved with large packet sizes,

bandwidth utilization is poor with small packets.

2. The switch has a negligible effect on the bandwidth of the BI application in

the one-to-one setup.

5.3.3 Coexistence of flows with different types

In this section, we evaluate the network performance of the InfiniBand switch in the

presence of mixed-type flows (Figure 5.8). In this setup, a varied number of instances

of Logistic Regression workload (from one to five) send BI flows with 4096B payload

size to one destination server, forming a converged traffic pattern1. Meanwhile, an

1While the Logistic Regression job forms an all-to-all communication model, here we only focus on
the flows that are sent to the ‘destination’ server.

86 Chapter 5. Characterization of an InfiniBand Switch

Destination

BI Server

LS Server

Switch

BI Flows

LS Flow

BI Server

BI Server

BI Server

BI Server

Figure 5.8: Mixed-flow-type setup, where from 1 to 5 servers asynchronously send BI

flows (number of servers varies in different runs) and 1 server sends LS flow, all to the

same destination.

LS workload sends latency-sensitive flows with 64B messages to the same destination

server.

Bandwidth-intensive flows hurt latency-sensitive flows: Figure 5.9 shows the

median and tail RTT of the LS flow as we vary the number of instances of Logistic

Regression workload. With one active BI flow, the median and tail RTT of LS flow

through the switch is 0.6µs and 0.9µs, respectively. Adding a second BI flow increases

the median and tail RTT of LS flow to 5.2µs and 5.7µs, respectively. The third BI flow

further worsens the latency of LS flow by increasing the median and tail RTT to 10.7µs

and 12.6µs, respectively. As the figure shows, adding yet more BI flows further degrades

the median and tail latency of the LS flow. Indeed, with each added BI flow, the median

RTT of the LS flow increases by 4.8µs to 6.1µs, leading us to conclude that the switch

fails to provide latency isolation in the presence of bandwidth-intensive flows, and that

latency-sensitive flows are unprotected.

Bandwidth-intensive flows receive equal share: Figure 5.10 illustrates the total

bandwidth achieved by BI flows as we vary the number of instances of Logistic Regres-

sion workload. As Figure 5.10 shows, the bandwidth attained by one active BI flow

is 52.2Gbps. With two BI flows, each flow achieves 25.5 to 25.6Gbps, resulting in an

overall bandwidth of 51.1Gbps. When five BI flows are active, the bandwidth per BI

flow ranges from 9.3 to 9.9Gbps, with overall attained bandwidth of 48.4Gbps. While

one would not expect the total bandwidth through the switch to vary as a function of

5.3. Evaluation of InfiniBand switches 87

0 1 2 3 4 5
Number of BI flows

0

5

10

15

20

25

R
TT

 o
f L

S
 F

lo
w

 (
s)

50
th

99.9
th

Figure 5.9: RTT of LS flow

1 2 3 4 5
Number of BI flows

0

10

20

30

40

50

60

To
ta

l B
an

dw
id

th
 (G

bp
s) 56Gbps

Figure 5.10: Total bandwidth of all BI flows

the number of active flows, we observe that increasing the number of BI flows from

one to five deteriorates the total achieved bandwidth of all flows by 7% (from 52.2 to

48.4Gbps).

Take-aways:

1. The latency observed by the latency-sensitive source is proportional to the

number of active bandwidth-intensive flows, indicating that the switch fails to

provide latency isolation.

2. Increasing the number of convergent bandwidth-hungry flows diminishes the

total achieved bandwidth through the switch.

88 Chapter 5. Characterization of an InfiniBand Switch

64 128 256 512 1024 2048 4096
Payload Size of BI Flows (B)

0

10

20

30

R
TT

 o
f L

S
 F

lo
w

 (
s)

50
th

99.9
th

Figure 5.11: RTT of the LS flow. Note that BI flows have different message sizes in each

test.

64 128 256 512 1024 2048 4096
Payload Size of BI Flows (B)

0

10

20

30

40

50

60

To
ta

l B
an

dw
id

th
 (G

bp
s) 56Gbps

Figure 5.12: Total bandwidth achieved by BI flows as a function of the message size.

5.4 Attempts to protect latency-sensitive flows

In Section 5.3.3, we observe that the InfiniBand switch fails to isolate latency-sensitive

flows from bandwidth-intensive ones. In this section, we explore different approaches

to help the switch in providing protection for latency-sensitive flows.

5.4.1 Bandwidth-intensive flows with different message sizes

Our observation of high latency for LS flows in the presence of BI flows leads us to

hypothesize that small messages suffer from head-of-line blocking; in other words,

InfiniBand cannot preempt a larger payload from BI flows immediately for a shorter

one from the LS flow and forces LS packets to wait for a long time while the large

5.4. Attempts to protect latency-sensitive flows 89

messages are transmitted. Thus, we attempt to mitigate the head-of-line blocking caused

by bandwidth-intensive flows by reducing the payload size of such flows. To do so,

we conduct an experiment to see whether a smaller payload size for BI flows could

facilitate rapid preemption and improve LS latency without sacrificing bandwidth for

BI flows.

We direct five instances of Logistic Regression workload sending flows to one

destination server. The payload size of BI flows varies in different tests. We also use

batching with small payload sizes to improve bandwidth utilization. At the same time,

one server sends LS flow with 64B messages to the same destination server.

Figure 5.11 shows the RTT of the LS flow in the presence of flows from Logistic

Regression workload (with different payload sizes in different tests), and Figure 5.12

shows the overall bandwidth that the BI flows can achieve with different payload size.

According to Figure 5.11, small payload sizes for BI flows lead to low LS latency.

For instance, when Logistic Regression uses a payload size of 64B, the median and

tail RTT of LS flow are 0.4µs and 0.6µs, and with 128B payload size of BI flows, the

median and tail RTT of LS are 0.6µs and 0.9µs. However, using small payloads for the

BI flows sacrifices their ability to achieve high throughput. With 64B or 128B payload

sizes, the BI flows can barely utilize 35% or 70%, respectively, of link capacity at the

destination port.

Meanwhile, as Figure 5.12 shows, if Logistic Regression generates flows with large

payload sizes, they can achieve high bandwidth utilization. Using a payload size in the

range of 512B to 4096B, BSGs can achieve from 88% to 93% of link capacity at the

destination port. However, choosing a large payload size for BI flows hurts the latency

of the LS flow. With a 512B payload size, the median and tail RTT of the LS flows are

20.0µs and 20.6µs. Larger payloads further worsen the median and tail RTT of the LS

flow (26.3µs and 28.2µs for 4096B).

Take-away: By reducing the payload size of bandwidth-intensive flows, we can

achieve either low-latency for LS flows or high bandwidth for the BI flows, but not both

at the same time.

5.4.2 Packet scheduling policy at the switch

In Section 5.4.1, we observe that reducing the payload size of bandwidth-intensive flows

does not resolve the latency-bandwidth trade-off. In this section, we take another step in

an attempt to prevent latency-sensitive flows from being stalled by bandwidth-intensive

90 Chapter 5. Characterization of an InfiniBand Switch

0 1 2 3 4 5
Number of BI flows

0

5

10

15

20

R
TT

 o
f L

S
 F

lo
w

 (
s)

50
th

 (FCFS) 99.9
th

 (FCFS) 50
th

 (RR) 99.9
th

 (RR)

Figure 5.13: The impact of the number of BI flows on the RTT of LS flow in the simulator.

ones. To this end, we study the impact of different in-switch packet scheduling policies

on per-flow latency and bandwidth.

We consider a policy to be fair if the time each flow spends in the switch is pro-

portional to the size of the flow. Thus, if the switch uses an unfair policy for packet

scheduling, latency-sensitive flows might be stalled by bandwidth-intensive ones. Such

a policy is unfair because it does not take flow size into account and fails to perform

proportionally fair scheduling at each turn.

As the scheduling policy of our switch is not configurable, we use the InfiniBand

simulator (Section 5.3.1) to assess the effect of scheduling policies on fairness. We use

the same setup as in Section 5.3.3, with five servers asynchronously sending 4096B

flows and one server sending LS flow with 64B messages to the same destination server.

The InfiniBand simulator provides two different packet scheduling policies: First Come,

First Served (FCFS), and Round-Robin (RR). We calculate the RTT of LS flow in the

converged setup using different packet scheduling policies and compare them with the

real switch. Note that Mellanox documentation does not specify the scheduling policy

implemented in our switch, so one of our goals is to understand the implemented policy.

FCFS policy: Figure 5.13 shows the median and tail RTT of the LS flow as we vary

the number of the BI flows in the simulator under the FCFS scheduling policy. In the

absence of a BI flow, both the median and tail RTT of LS are 0.4µs. With one active BI

flow, both the median and tail RTT of the LS flow are 0.6µs. Adding the second BI flow

increases the median and tail RTT of the LS flow to 4.5µs and 4.6µs, respectively. With

five active BI flows, the median and tail RTT are 18.2µs and 18.3µs, respectively. We

can observe that the median and tail RTT in the simulator are almost identical (0.1µs

difference). Thus, unlike the real switch, the simulator does not introduce significant

5.4. Attempts to protect latency-sensitive flows 91

tail RTT. The reason is that the switch uArch is not modeled in detail in the simulator;

therefore the median and tail RTT of the simulator are much closer, compared to the

median and tail RTT of the real switch. In the simulator, each additional BI flow adds a

delay of 3.9µs to 4.6µs to the median RTT of the LS flow. This trend closely matches

the behavior observed with the real switch, where each additional BI flow adds 4.6µs to

5.2µs to the LS flow’s latency.

To investigate the additional delay added by each BI flow, we look into the archi-

tecture of the simulated switch. In the modeled switch, each input port has dedicated

buffering used for absorbing bursts. With the FCFS policy, in each turn, the arbiter

examines the packet at the head of each input buffer and chooses the oldest packet.

In our converged traffic experiment, each BI flow fills to capacity its respective input

buffer. Once an LS packet enters the switch, it too is enqueued at its port’s input buffer.

Following the FCFS policy, the arbiter selects the LS packet only after all other packets

present at the switch when the LS packet arrived have been scheduled. Therefore, in

our setup, the minimum amount of time an LS packet needs to wait can be computed as

follows:

Wt =
N ×Bu f f erSize
LinkBandwidth

(2)

where N is the number of ports BI flows occupy (i.e., whose input buffers are full),

BufferSize is the size of each input buffer, and LinkBandwidth is the bandwidth of a

link.

In the modeled switch, the size of each buffer is 32KB, and the link bandwidth is

56Gpbs. In this case, each additional BI flow adds 3.6µs waiting time to each LS packet,

which is close to the latency observed in both the simulator and the real switch.

Take-away: When using the FCFS policy, the simulator exhibits latency unfairness

and behaves much like a real switch.

RR policy: With RR policy, the arbiter in each turn selects a port and chooses the

packet at the head of the port. In this case, whenever an LS packet arrives, it waits for

at most the number of active ports. Having such a policy facilitates rapid preemption

and mitigates head-of-line blocking.

Figure 5.13 shows the median and tail RTT of LS flow when different numbers of

BI flows are active in the simulator with the RR scheduling policy. Without any active

BI flow, both the median and tail RTT of the LS flow are 0.4µs. With one active BI flow,

both the median and tail RTT of the LS flow are 0.6µs. By increasing the number of

active BI flows to five, the median and tail RTT grow to 2.5µs and 2.6µs.

92 Chapter 5. Characterization of an InfiniBand Switch

BI Server

Destination

BI ServerBI Server

BI Server
BI Server

LS Server

Switch

BI Flows

LS Flow

Figure 5.14: Simulation with a multi-hop setup.

Unlike the experiment with the FCFS policy, with the RR policy, increasing the

number of BI flows does not change the RTT for LS dramatically and the latency of

latency-sensitive messages is well controlled.

Take-aways:

1. The measurements attained on the simulator with the RR policy are vastly

different from those on the real switch. This further indicates that the real switch

uses the FCFS scheduling policy.

2. Unlike the FCFS policy, the RR scheduling policy is more effective at protect-

ing the latency-sensitive flow.

Packet scheduling policies in a multi-hop topology: At first glance, it seems that the

RR policy on the switch resolves the dilemma of isolation and protection of a latency-

sensitive flow. However, can the RR policy continue to be effective in a multi-hop

topology? To answer this question, we extend our simulated setup to a two-hop topology,

where a pair of switches are connected together (Figure 5.14). Two instances of the

BI workload and one LS workload are connected to the upstream switch, and three

instances of the BI workload are attached to the downstream switch. The destination

server is also attached to the downstream switch. All BI instances send 4096B messages

to the destination server.

We calculate the RTT of the LS messages in the multi-hop setup using different

packet scheduling policies and compare them with each other. In each test, the packet

policy of both switches is either FCFS or RR.

5.4. Attempts to protect latency-sensitive flows 93

FCFS RR
Packet Scheduling Policy

0

5

10

15

20

R
TT

 o
f L

S
 F

lo
w

 (
s)

50
th

99.9
th

Figure 5.15: RTT of the LS flow in a multi-hop setup.

Figure 5.15 shows the median and tail RTT of the LS flow when different packet

policy is used in the switches in the simulator. Using the FCFS policy in both switches,

the median and tail RTT of the LS flow are 18.4µs and 18.5µs. Using the RR policy, the

median and tail RTT of the LS flow are 14.5µs and 14.9µs.

We can observe that if a latency-sensitive flow shares a link (in this setup the link

that connects two switches) with bandwidth-intensive flows, the RR policy is unable

to protect the latency-sensitive flows. The reason is that the latency-sensitive flow will

be queued at the same input buffer as the bandwidth-intensive flow in the downstream

switch, and will hence suffer from head-of-line blocking.

Take-away: The RR policy fails to isolate latency-sensitive flows in a multi-hop

setup.

5.4.3 Queue separation through priority levels

Previous experiments highlight the importance of allocating separate buffer resources

and scheduling priorities for latency-sensitive and bandwidth-intensive flows in order

to optimize performance. One of the key observations from these experiments is that

indeed, head-of-line blocking, which occurs when flows contend for the same queue,

serves as the root cause of increased latency in latency-sensitive applications. To

address this issue, we delve into the concept of queue separation as a potent solution. By

separating different types of flows and assigning them different priorities, it is possible

to ensure that latency-sensitive flows are not blocked by bandwidth-intensive flows. This

can be achieved through the use of quality-of-service (QoS) configuration, such as that

provided by the InfiniBand fabric. InfiniBand QoS allows for the differentiation of flows

and separation of queues through the use of Service Levels (SLs) and Virtual Lanes

94 Chapter 5. Characterization of an InfiniBand Switch

No BI Shared Priority Dedicated Priority Dedicated Priority
 + Pretend LS

0

5

10

15

20

25

R
TT

 o
f L

S
 F

lo
w

 (
s)

50
th

99.9
th

Figure 5.16: RTT of the real LS flow in different setups.

(VLs). By leveraging these capabilities, we can effectively manage the allocation of

resources and prioritize different types of flows as needed, ensuring that the performance

of latency-sensitive applications is not compromised by competing bandwidth-intensive

traffic.

To ensure that latency-sensitive flows are not negatively impacted by bandwidth-

intensive flows, we can assign a dedicated SL to latency-sensitive flows at the local

host, and map this SL to a high-priority VL in the switch. This allows us to prioritize

latency-sensitive traffic and ensure that it is given priority over bandwidth-intensive

flows when accessing shared resources, such as buffers and queues. It is important

to note that the concept of latency sensitivity is not directly recognized in InfiniBand

terminology. As such, we choose to define latency-sensitive flows as those involving

small messages (up to 256B). This allows us to differentiate between latency-sensitive

and bandwidth-intensive flows and apply the appropriate QoS configuration to each,

ensuring that the performance of latency-sensitive applications is not compromised.

The following experiment evaluates the effectiveness of using dedicated priority

levels for latency-sensitive and bandwidth-intensive traffic, by assigning SL0 to the BI

flows and SL1 to the LS flows. In the switch, SL0 is mapped to low-priority VL0, and

SL1 is assigned to high-priority VL1.

Figure 5.16 shows the median and tail RTT for the LS traffic using a dedicated

priority level. As the figure shows, using a dedicated priority protects the latency-

sensitive flows. While with the shared priority (the same as Section 5.3.3) the median

and tail RTT of the LS flow is 20.2µs and 22.1µs, with a dedicated priority level, LS

packets have 0.7µs median and 1.1µs tail RTT. The figure shows that using a dedicated

5.4. Attempts to protect latency-sensitive flows 95

priority level improves the latency of LS by ≈ 29× for the median and ≈ 20× for

the tail RTT. Compared to the shared priority setup, the RTT of the LS flow with a

dedicated priority level is closer to the RTT of the LS flow in the absence of BI flows

(0.4µs and 0.6µs). Moreover, the total bandwidth achieved by five BI flows is the same

as that achieved without using a dedicated priority level (Section 5.3.3), which indicates

that such flow differentiation does not introduce a throughput penalty.

Note that queue separation can be an effective solution for safeguarding latency-

sensitive applications in multi-hop switch setups too. This effectiveness arises from

the fundamental principle that, even in a multi-hop configuration, latency-sensitive

and bandwidth-intensive flows do not share the same queue for buffering. Unlike the

single-queue scenario where head-of-line blocking can occur, the separation of queues

in the multi-hop setup ensures that latency-sensitive flows are isolated from bandwidth-

intensive ones. Consequently, head-of-line blocking, which hampers the performance

of latency-sensitive applications by causing delays, is averted. The segregated queues

maintain the necessary prioritization and resource allocation at switches, enabling

latency-sensitive applications to experience minimal disruptions even in multi-hop

switch topologies.

Take-away: Queue separation through differentiating flow types and assigning

priority to each type can effectively protect latency-sensitive flows.

Is using priority queues a solution to the latency-bandwidth trade-off? While

assigning a dedicated priority to small messages may seem promising, it is possible

that a bandwidth-intensive flow could abuse (intentionally or not) this approach by

pretending to be a latency-sensitive flow in order to receive more bandwidth than it

would otherwise be allocated. This scenario could result in an unfair allocation of

bandwidth, as the bandwidth-intensive flow would be able to receive more than its fair

share. To game the QoS, a BI workload can send large amounts of data segmented

into small packets. To show how this BI flow harms the bandwidth of other BI flows,

we devise a test with a dedicated priority for latency-sensitive flows, in which a BI

flow pretending to be an LS flow (referred to as a pretend LS) sends 256B messages

asynchronously. We run all five Spark workloads (described in Table 5.1) together on

five servers in the cluster. To do so, we run one instance of each BI workload on one

server, called the destination server, with two cores assigned to each workload and

memory equally partitioned among all workloads. We also run one instance of each BI

workload on a server. In one test, Logistic Regression pretends to be an LS workload

and transfers data with small (256B) payloads. Meanwhile, a real LS workload from

96 Chapter 5. Characterization of an InfiniBand Switch

Dedicated Priority Dedicated Priority
 + Pretend LS

0

10

20

30

40

50

To
ta

l B
an

dw
id

th
 (G

bp
s)

8.9

21.5
9.9

6.79.9

6.7
9.9

6.8

9.8
7.0

Logistic Regression
Join

SVM
NWeight

PageRank

Figure 5.17: Total bandwidth achieved by BI workloads under converged traffic.

the seventh server sends latency-sensitive flows to the same destination server, forming

a converged traffic pattern with BI workloads.

Figure 5.16 shows the median and tail RTT of LS traffic, and Figure 5.17 illustrates

the total bandwidth achieved by all BI flows and the pretend LS (when all flows are

active), along with their share of the bandwidth. Figure 5.16 shows that Logistic

Regression, i.e., the pretend LS, hurts the latency of the real LS flow (8.5µs median and

9.1µs tail RTT), as both pretend and real LS flows have the same priority, and hence, the

same queue on the switch. Moreover, Figure 5.17 illustrates that Logistic Regression

achieves 21.5Gbps bandwidth, while each of the other BI workloads achieves 6.7 to

7Gbps. We can observe that a bandwidth-intensive source can pretend to be latency-

sensitive and take three times higher bandwidth share compared to other bandwidth-

intensive sources, leading to bandwidth unfairness. One might think that limiting the

bandwidth for each SL/VL mapping will prevent gaming the priority-based setup;

however, imposing such a limit will hurt the latency of the LS, especially when a burst

of latency-sensitive packets arrives at a switch.

Take-away: By differentiating flows using priority levels, latency-sensitive flows

can be protected in an environment with different types of flows. The risk, however,

is that it opens up the possibility of gaming to achieve a higher bandwidth share by

5.4. Attempts to protect latency-sensitive flows 97

bandwidth-intensive flows.

5.4.4 Discussion

Our evaluation reveals that the tested InfiniBand switch can either provide low latency

to a latency-sensitive flow or high bandwidth for bandwidth-intensive flow(s), but not

both simultaneously. We show that our switch uses the FCFS scheduling policy that is

particularly harmful to latency-sensitive flows in the presence of bandwidth-intensive

flows. Using a Round-Robin policy instead of FCFS can improve fairness in a single-

hop topology. However, with just two network hops, latency-sensitive packets can still

be blocked by other packets, leading to poor latency performance.

Motivated by these observations, we examined InfiniBand’s QoS mechanism, which

assigns different priority levels and separated queues to different flows. Our analysis

shows that separating queues is necessary for latency-sensitive flows to achieve low

latency without negatively impacting the link utilization of bandwidth-intensive flows.

However, it is also possible for a bandwidth-intensive flow to abuse this system by

pretending to be a latency-sensitive flow and sending small messages in bursts in order

to receive more bandwidth than other bandwidth-intensive flows that do not attempt to

manipulate the system. Therefore, relying solely on payload size for queue management

is insufficient, and additional controls are necessary.

How can these findings be applied to Ethernet-based RDMA switches? In light

of our findings, the implications extend to RoCE (RDMA over Converged Ethernet)

switches, which, like InfiniBand switches, grapple with the challenge of balancing

low latency for latency-sensitive flows and high bandwidth for bandwidth-intensive

flows. RoCE switches also employ similar QoS mechanisms to InfiniBand switches.

RoCE switches typically provide Weighted Round-Robin (WRR) scheduling for Traffic

Classes (TCs) per egress port, akin to the assignment of VLs in InfiniBand.

The insights derived from our study underscore the relevance of revisiting scheduling

policies and prioritization mechanisms in RoCE switches. Comparing policies like

FCFS and Round-Robin remains pertinent, as these choices significantly influence

fairness and latency performance, regardless of the underlying link-level technology. By

adopting Round-Robin or similar policies to distribute resources more equitably, RoCE

switches can address the challenges faced by latency-sensitive flows and bandwidth-

intensive flows alike.

Furthermore, the exploration of InfiniBand’s QoS mechanism offers valuable lessons

98 Chapter 5. Characterization of an InfiniBand Switch

for RoCE switches. Implementing queue separation strategies that assign different

priority levels and separate queues for various flows can enable RoCE switches to

optimize the coexistence of latency-sensitive and bandwidth-intensive flows without

compromising performance.

However, the potential for abuse of these mechanisms can still exist in the context

of RoCE switches similar to InfiniBand, as highlighted in our analysis. To mitigate this

risk, RoCE switches may need to incorporate additional controls beyond payload size

to ensure fair and efficient resource allocation.

5.5 Summary

In this chapter, we identify shortcomings in existing RDMA-based performance mea-

surement tools and show why they are unable to accurately assess the latency of an

InfiniBand switch. We introduce the RPerf performance measurement tool that lever-

ages RDMA verbs to exclude endpoint overheads and provide a highly accurate latency

measurement for RDMA-based switches. Using the precise measurements enabled by

RPerf, we analyze the latency and bandwidth of an InfiniBand switch in one-to-one

and many-to-one traffic scenarios. We show that the switch fails to protect the latency-

sensitive flows from bandwidth-intensive ones and that the latency is proportional to the

number of active bandwidth-hungry flows. We consider several strategies for improving

latency fairness, including using small packet sizes for bandwidth-intensive flows and

the use of InfiniBand’s QoS mechanism, but find all evaluated approaches deficient

in some respect. We thus conclude that better mechanisms are needed to provide

performance isolation in a mixed-traffic environment.

Chapter 6

Conclusions and Future Work

Datacenters are facilities that house large numbers of servers and other computing

infrastructure, and are used to store, process, and manage large amounts of data. These

facilities are crucial to the operation of many businesses, organizations, and online

services, as they provide the computing power and storage capacity needed to run

applications, store and retrieve data, and host online services.

Datacenter networks play an important role by connecting the various components

of a datacenter and enabling communication and data transfer between them. These

networks typically consist of a combination of switches, routers, and other networking

equipment, and are designed to handle large amounts of traffic and data transfer at high

speeds.

Bandwidth allocation is an important aspect of datacenter networking, as it de-

termines how much of the available bandwidth is allocated to different applications

and services. Proper bandwidth allocation can help ensure that critical applications

and services have sufficient resources to operate effectively, while also ensuring that

non-critical applications do not consume too much bandwidth and negatively impact

the performance of the datacenter.

Existing bandwidth allocation schemes do not take into account the specific require-

ments and characteristics of different applications, leading to inefficient use of resources

and poor performance. This observation motivates the design of a new bandwidth

allocation scheme with application-level performance in mind.

In this final chapter, we first summarize the main contributions of this thesis, we

then discuss limitations.

99

100 Chapter 6. Conclusions and Future Work

6.1 Summary of contributions

Introducing the notion of bandwidth sensitivity

In Chapter 3, we demonstrate the shortcomings in bandwidth allocation disciplines

that are based on max-min fairness or shortest-flow first on a per-flow basis. We

show that such allocation schemes do not effectively utilize the network in shared

environments like datacenters, as they are unable to identify the bandwidth demands of

applications. Our findings show that for the most effective use of available bandwidth,

the allocation scheme should be able to distinguish between applications that require

a lot of bandwidth for acceptable performance and those that can function with less

bandwidth without greatly extending their completion time. To this end, we introduce

the notion of bandwidth sensitivity as a guiding principle to allocate bandwidth among

applications and show how this metric can be learned through profiling.

Designing Saba, an application-aware bandwidth allocation scheme

In Chapter 4, we introduce Saba, an application-aware bandwidth allocation scheme,

which determines the sensitivity of applications to bandwidth, and allocates bandwidth

to applications according to their bandwidth sensitivity. Saba uses a combination of

ahead-of-time application profiling to identify the bandwidth sensitivity of applications

and runtime bandwidth allocation using lightweight software support, all without

requiring any changes to network hardware or protocols. This allows Saba to effectively

allocate bandwidth and improve the performance of sensitive applications without the

need for complex and costly network modifications In our evaluation, Saba effectively

improves the performance of co-located workloads compared to existing and ideal

implementations of max-min fairness, as well as state-of-the-art SRPT-based bandwidth

allocation schemes.

Characterization of latency and bandwidth of InfiniBand switches

In Chapter 5, we identify shortcomings in existing RDMA-based performance

measurement tools and show why they are unable to accurately assess the latency of an

InfiniBand switch. We introduce the RPerf performance measurement tool that leverages

RDMA verbs to exclude endpoint overheads and provide a highly accurate latency

measurement for RDMA-based switches. Using the precise measurements enabled by

RPerf, we analyze the latency and bandwidth of an InfiniBand switch in one-to-one

and many-to-one traffic scenarios. We show that the switch fails to protect the latency-

sensitive flows from bandwidth-intensive ones and that the latency is proportional to the

number of active bandwidth-hungry flows. We consider several strategies for improving

6.2. Limitations and Future Work 101

latency fairness, including using small packet sizes for bandwidth-intensive flows and

the use of InfiniBand’s QoS mechanism, but find all evaluated approaches deficient

in some respect. We thus conclude that better mechanisms are needed to provide

performance isolation in a mixed-traffic environment.

6.2 Limitations and Future Work

In this section, we highlight the limitations of our bandwidth allocation scheme and

describe potential future directions for research in bandwidth allocation schemes.

Extending Saba to manage latency-sensitive applications

Given the emergence of latency-sensitive applications, such as those relying on

disaggregated memory and distributed in-memory storage, ultra-low latencies are be-

coming a top priority in datacenters. Our observations in Chapter 5 show that queue

separation is necessary for protecting latency-sensitive flows in the presence of conges-

tion. As explained in Chapter 4, Saba is designed for bandwidth-intensive applications

and assumes that a portion of bandwidth is allocated to non-Saba-compliant applica-

tions, including latency-critical applications. The flows from these applications pass

through dedicated queues that are out of Saba’s control.

Recent studies (e.g., [110]) have already begun characterizing the performance of

applications as a function of network latency. It is possible to extend Saba to leverage

these characterizations in order to manage latency-sensitive flows as well. One possible

approach could be to introduce an application-level measurable metric for sensitivity

to latency, model the latency sensitivity of applications through profiling (similar to

Section 4.2), and perform queue assignment accordingly. By considering the specific

latency requirements of different applications, Saba can better allocate resources and

improve the performance of latency-sensitive applications.

Removing the need for ahead-of-time profiling

As explained in Chapter 3, the sensitivity of applications to bandwidth can be

measured through extensive offline profiling. While this approach may be practical

in private datacenters where applications are recurring, it is generally not possible to

profile applications in public datacenters. Additionally, while we have designed Saba to

minimize the resources required for profiling, ahead-of-time profiling is still an extra

step for launching new applications and it would be beneficial if datacenter operators

could avoid it.

To eliminate the need for ahead-of-time profiling, it is possible to extend Saba to

102 Chapter 6. Conclusions and Future Work

monitor running applications and estimate their bandwidth demands at runtime. There

are several possible approaches for estimating bandwidth sensitivity at runtime. For

instance, a framework-specific solution can use information about the computation and

communication stages of a submitted job to estimate how much of the completion time

will be spent on communication. By understanding the communication needs of a job,

the solution can more effectively allocate bandwidth and improve the performance of

the job.

Leveraging the sensitivity information in job allocation
Chapter 4 demonstrates how Saba leverages bandwidth sensitivity information in its

approach to bandwidth allocation, which is just one aspect of resource management in

datacenters. However, other resource management components, such as job allocation

and VM placement, can also benefit from using sensitivity information. By using

sensitivity modeling to understand the requirements and characteristics of different

applications and jobs, VM placement systems can make more informed decisions

about how to allocate resources and reduce network contention between co-running

applications. This can help improve the overall performance of the datacenter and

ensure that allocated servers are able to meet the bandwidth requirements of submitted

jobs, allowing applications and services to operate at their optimal levels.

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon

Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale

Machine Learning. In Proceedings of the 12th Symposium on Operating System

Design and Implementation (OSDI), pages 265–283, 2016.

[2] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agarwal, David

Shmoys, and Amin Vahdat. Sincronia: Near-optimal network design for coflows.

In Proceedings of the 2018 Conference of the ACM Special Interest Group on

Data Communication, SIGCOMM ’18, page 16–29, New York, NY, USA, 2018.

Association for Computing Machinery.

[3] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel

Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubra-

manian, and Michael Wei. Remote memory in the age of fast networks. SoCC

2017 - Proceedings of the 2017 Symposium on Cloud Computing, pages 121–127,

2017.

[4] Fatma Alali, Fabrice Mizero, Malathi Veeraraghavan, and John M. Dennis. A

measurement study of congestion in an infiniband network. In 2017 Network

Traffic Measurement and Analysis Conference (TMA), pages 1–9, 2017.

[5] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,

Minlan Yu, and Ming Zhang. CherryPick: Adaptively unearthing the best cloud

configurations for big data analytics. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), pages 469–482, Boston, MA,

March 2017. USENIX Association.

103

104 Bibliography

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data

center TCP (DCTCP). Computer Communication Review, 40(4):63–74, 2010.

[7] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data

center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference,

pages 63–74, 2010.

[8] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin

Vahdat, and Masato Yasuda. Less is more: Trading a little bandwidth for {Ultra-

Low} latency in the data center. In 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), pages 253–266, 2012.

[9] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. pFabric: minimal near-optimal datacenter

transport. In Proceedings of the ACM SIGCOMM 2013 Conference, pages

435–446, 2013.

[10] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E. Dahl,

and Geoffrey E. Hinton. Large scale distributed neural network training through

online distillation. 6th International Conference on Learning Representations,

ICLR 2018 - Conference Track Proceedings, 2018.

[11] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi, George E.

Dahl, and Geoffrey E. Hinton. Large scale distributed neural network training

through online distillation. In ICLR (Poster), 2018.

[12] Apache. Flink.

[13] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and

Matei Zaharia. Spark SQL: Relational Data Processing in Spark. In SIGMOD

Conference, pages 1383–1394, 2015.

[14] InfiniBand Trade Association. InfiniBand architecture specification volume 1

and 2. Technical report, 2015.

[15] Microsoft Azure. Introducing the new HB and HC Azure VM sizes for HPC,

2018.

Bibliography 105

[16] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Antony I. T. Rowstron.

Towards predictable datacenter networks. In Proceedings of the ACM SIGCOMM

2011 Conference, pages 242–253, 2011.

[17] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gu-

nawardena, and Greg O’Shea. Chatty Tenants and the Cloud Network Sharing

Problem. In Proceedings of the 10th Symposium on Networked Systems Design

and Implementation (NSDI), pages 171–184, 2013.

[18] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gu-

nawardena, and Greg O’Shea. Chatty tenants and the cloud network sharing

problem. In 10th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 13), pages 171–184, 2013.

[19] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zama-

nian. The End of slow networks: It’s time for a redesign. Proceedings of the

VLDB Endowment, 9(7):528–539, 2016.

[20] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fow-

ers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young

Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa

Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. A cloud-scale accelera-

tion architecture. In Proceedings of the 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 7:1–7:13, 2016.

[21] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. Scheduling Mix-flows

in Commodity Datacenters with Karuna. In Proceedings of the ACM SIGCOMM

2016 Conference, pages 174–187, 2016.

[22] Mosharaf Chowdhury. Coflow: A Networking Abstraction for Distributed Data-

Parallel Applications. PhD thesis, University of California, Berkeley, 2015.

[23] Mosharaf Chowdhury and Ion Stoica. Coflow: a networking abstraction for

cluster applications. In Proceedings of The 11st ACM Workshop on Hot Topics

in Networks (HotNets-XI), pages 31–36, 2012.

[24] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jordan, and Ion

Stoica. Managing data transfers in computer clusters with orchestra. ACM

SIGCOMM computer communication review, 41(4):98–109, 2011.

106 Bibliography

[25] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow scheduling

with Varys. In Proceedings of the ACM SIGCOMM 2014 Conference, pages

443–454, 2014.

[26] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, et al. Spanner: Google’s globally distributed database.

ACM Transactions on Computer Systems (TOCS), 31(3):1–22, 2013.

[27] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the

ACM, 56(2):74–80, 2013.

[28] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. In Proceedings of the 6th Symposium on Operating System

Design and Implementation (OSDI), pages 137–150, 2004.

[29] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on

large clusters. In OSDI 2004 - 6th Symposium on Operating Systems Design and

Implementation, pages 137–149, San Francisco, CA, 2004.

[30] Alan J. Demers, Srinivasan Keshav, and Scott Shenker. Analysis and Simulation

of a Fair Queueing Algorithm. In Proceedings of the ACM SIGCOMM 1989

Conference, pages 1–12, 1989.

[31] DPDK. Data plane development kit.

[32] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Cas-

tro. FaRM: Fast remote memory. Proceedings of the 11th USENIX Symposium

on Networked Systems Design and Implementation, NSDI 2014, pages 401–414,

2014.

[33] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and

Georg Carle. MoonGen: A scriptable high-speed packet generator. In Proceed-

ings of the ACM SIGCOMM Internet Measurement Conference, IMC, volume

2015-Octob, pages 275–287, 2015.

[34] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,

Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt

Bibliography 107

Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu

Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel

Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair,

Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert G.

Greenberg. Azure Accelerated Networking: SmartNICs in the Public Cloud. In

Proceedings of the 15th Symposium on Networked Systems Design and Imple-

mentation (NSDI), pages 51–66, 2018.

[35] Ronald Aylmer Fisher. Statistical methods for research workers. In Breakthroughs

in statistics: Methodology and distribution, pages 66–70. Springer, 1970.

[36] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,

2004(124):5, aug 2004.

[37] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,

Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements

for resource disaggregation. Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2016, pages 249–264,

2016.

[38] Peter Xiang Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia

Ratnasamy, and Scott Shenker. pHost: distributed near-optimal datacenter

transport over commodity network fabric. In Proceedings of the 2015 ACM

Conference on Emerging Networking Experiments and Technology (CoNEXT),

pages 1:1–1:12, 2015.

[39] Vasilis Gavrielatos, Antonios Katsarakis, Vijay Nagarajan, Boris Grot, and Arpit

Joshi. Kite: Efficient and Available Release Consistency for the Datacenter. In

Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’20, pages 1–16, New York, NY, USA, 2020.

Association for Computing Machinery.

[40] Vasilis Gavrielatos, Nicolai Oswald, Antonios Katsarakis, Boris Grot, Arpit

Joshi, and Vijay Nagarajan. Scale-Out ccNUMA: Exploiting Skew with Strongly

Consistent Caching. Proceedings of the 13th EuroSys Conference, EuroSys 2018,

2018-Janua:21:1—-21:15, 2018.

[41] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-

blum, and Amin Vahdat. Simon: A simple and scalable method for sensing,

108 Bibliography

inference and measurement in data center networks. In Proceedings of the 16th

USENIX Symposium on Networked Systems Design and Implementation, NSDI

2019, pages 549–564, 2019.

[42] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Choosy: Max-min

fair sharing for datacenter jobs with constraints. In Proceedings of the 8th ACM

European Conference on Computer Systems, pages 365–378, 2013.

[43] Apache Giraph. Apache giraph. Available at http://giraph.apache.org/.

[44] S. Jamaloddin Golestani. Network Delay Analysis of a Class of Fair Queueing

Algorithms. IEEE J. Sel. Areas Commun., 13(6):1057–1070, 1995.

[45] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.

Franklin, and Ion Stoica. GraphX: Graph Processing in a Distributed Dataflow

Framework. In Proceedings of the 11th Symposium on Operating System Design

and Implementation (OSDI), pages 599–613, 2014.

[46] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large

Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint arXiv:1706.02677,

2017.

[47] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He.

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. CoRR,

abs/1706.02677, 2017.

[48] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta

Sengupta. Vl2: A scalable and flexible data center network. In Proceedings of

the ACM SIGCOMM 2009 conference on Data communication, pages 51–62,

2009.

[49] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and

Kang G. Shin. Efficient memory disaggregation with Infiniswap. Proceedings of

the 14th USENIX Symposium on Networked Systems Design and Implementation,

NSDI 2017, pages 649–667, 2017.

http://giraph.apache.org/

Bibliography 109

[50] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng

Sun, Wenfei Wu, and Yongguang Zhang. SecondNet: a data center network

virtualization architecture with bandwidth guarantees. In Proceedings of the

2010 ACM Conference on Emerging Networking Experiments and Technology

(CoNEXT), page 15, 2010.

[51] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave

Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi Wei Lin, and Varugis

Kurien. Pingmesh: A Large-scale system for data center network latency mea-

surement and analysis. In SIGCOMM 2015 - Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication, volume 45, pages

139–152. ACM, 2015.

[52] Ellen L. Hahne. Round-Robin Scheduling for Max-Min Fairness in Data Net-

works. IEEE J. Sel. Areas Commun., 9(7):1024–1039, 1991.

[53] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.

Moore, Gianni Antichi, Marcin Wójcik, and Marcin Wojcik. Re-architecting

datacenter networks and stacks for low latency and high performance. In SIG-

COMM 2017 - Proceedings of the 2017 Conference of the ACM Special Interest

Group on Data Communication, pages 29–42, 2017.

[54] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.

Moore, Gianni Antichi, and Marcin Wójcik. Re-architecting datacenter networks

and stacks for low latency and high performance. In Proceedings of the ACM

SIGCOMM 2017 Conference, pages 29–42, 2017.

[55] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The Hi-

Bench benchmark suite: Characterization of the MapReduce-based data analysis.

In ICDE Workshops, pages 41–51, 2010.

[56] P&S Intelligence. Data center market to surpass $343.6 billion revenue by

2030. Available at https://www.prnewswire.com/news-releases/data-

center-market-to-surpass-343-6-billion-revenue-by-2030--says-

ps-intelligence-301529854.html.

[57] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. Silo: Predictable

message latency in the cloud. In Steve Uhlig, Olaf Maennel, Brad Karp, and

Jitendra Padhye, editors, Proceedings of the 2015 ACM Conference on Special

https://www.prnewswire.com/news-releases/data-center-market-to-surpass-343-6-billion-revenue-by-2030--says-ps-intelligence-301529854.html
https://www.prnewswire.com/news-releases/data-center-market-to-surpass-343-6-billion-revenue-by-2030--says-ps-intelligence-301529854.html
https://www.prnewswire.com/news-releases/data-center-market-to-surpass-343-6-billion-revenue-by-2030--says-ps-intelligence-301529854.html

110 Bibliography

Interest Group on Data Communication, SIGCOMM 2015, London, United

Kingdom, August 17-21, 2015, pages 435–448. ACM, 2015.

[58] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prab-

hakar, Albert G. Greenberg, and Changhoon Kim. EyeQ: Practical Network

Performance Isolation at the Edge. In Proceedings of the 10th Symposium on

Networked Systems Design and Implementation (NSDI), pages 297–311, 2013.

[59] Saurabh Jha, Archit Patke, Ann Gentile, Benjamin Lim, Mike Showerman,

Greg Bauer, Supercomputing Applications, Larry Kaplan, Zbigniew Kalbarczyk,

Saurabh Jha, Archit Patke, Jim Brandt, Ann Gentile, Benjamin Lim, Mike Show-

erman, Greg Bauer, Larry Kaplan, Zbigniew Kalbarczyk, William Kramer, and

Ravi Iyer. Measuring Congestion in High-Performance Datacenter Interconnects.

17th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20), 2020.

[60] Steven G. Johnson. The NLopt nonlinear-optimization package, 2011.

[61] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA efficiently

for key-value services. Computer Communication Review, 44(4):295–306, 2015.

[62] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines for

high performance RDMA systems. Proceedings of the 2016 USENIX Annual

Technical Conference, USENIX ATC 2016, pages 437–450, 2016.

[63] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, scalable

and simple distributed transactions with two-sided (RDMA) datagram RPCs. In

Proceedings of the 12th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2016, pages 185–201, Savannah, GA, 2016. {USENIX}

Association.

[64] M. R. Siavash Katebzadeh, Paolo Costa, and Boris Grot. Evaluation of an

InfiniBand Switch: Choose Latency or Bandwidth, but Not Both. In ISPASS20,

pages 180–191, 2020.

[65] M. R. Siavash Katebzadeh, Paolo Costa, and Boris Grot. Smart Priority Assign-

ment in Datacenter Networks. In the 2nd Young Architect Workshop (YArch),

2020.

Bibliography 111

[66] M.R. Siavash Katebzadeh, Paolo Costa, and Boris Grot. Saba: Rethinking

datacenter network allocation from application’s perspective. In Proceedings of

the Eighteenth European Conference on Computer Systems, EuroSys ’23, page

623–638, New York, NY, USA, 2023. Association for Computing Machinery.

[67] K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodoropoulos,

I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo,

Q. Chen, M. Nemirovsky, D. Roca, H. Klos, and T. Berends. Rack-scale disag-

gregated cloud data centers: The dReDBox project vision. In Proceedings of the

2016 Design, Automation and Test in Europe Conference and Exhibition, DATE

2016, DATE ’16, pages 690–695, San Jose, CA, USA, 2016. EDA Consortium.

[68] Antonis Katsarakis, Vasileios Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi,

Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. Hermes: a fast, fault-

tolerant and linearizable replication protocol. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 12 2019.

[69] Marios Kogias, Stephen Mallon, and Edouard Bugnion. Lancet: A self-correcting

latency measuring tool. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19), pages 881–896, Renton, WA, July 2019. USENIX Association.

[70] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey

Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,

Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis

Pandis, Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris

Tsirogiannis, Skye Wanderman-Milne, and Michael Yoder. Impala: A Modern,

Open-Source SQL Engine for Hadoop. In Proceedings of the 7th Biennial

Conference on Innovative Data Systems Research (CIDR), 2015.

[71] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan Wassel, Xian Wu,

Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,

Mike Ryan, David J. Wetherall, and Amin Vahdat. Swift: Delay is Simple and

Effective for Congestion Control in the Datacenter. In Proceedings of the ACM

SIGCOMM 2020 Conferenced, 2020.

[72] Katrina LaCurts, Jeffrey C. Mogul, Hari Balakrishnan, and Yoshio Turner. Cicada:

112 Bibliography

Introducing Predictive Guarantees for Cloud Networks. In Proceedings of the

6th workshop on Hot topics in Cloud Computing (HotCloud), 2014.

[73] Fan Lai, Jie You, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowd-

hury. Sol: Fast Distributed Computation Over Slow Networks. In Proceedings of

the 17th Symposium on Networked Systems Design and Implementation (NSDI),

pages 273–288, 2020.

[74] Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan, Amin Vahdat, and George

Varghese. Netshare and stochastic netshare: predictable bandwidth allocation for

data centers. Comput. Commun. Rev., 42(3):5–11, 2012.

[75] Jeng Farn Lee, Meng Chang Chen, and Yeali S. Sun. WF. Comput. Networks,

51(6):1403–1420, 2007.

[76] Jeongkeun Lee, Myungjin Lee, Lucian Popa, Yoshio Turner, Sujata Banerjee,

Puneet Sharma, and Bryan Stephenson. {CloudMirror}:{Application-Aware}
bandwidth reservations in the cloud. In 5th USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud 13), 2013.

[77] Tsern-Huei Lee. Correlated token bucket shapers for multiple traffic classes.

In IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004,

volume 7, pages 4672–4676 Vol. 7, 2004.

[78] Andrew Lester. Application-Aware Bandwidth Scheduling for Data Center

Networks. 7(3):194–205, 2014.

[79] Colin Lewis-Beck and Michael Lewis-Beck. Applied regression: An introduction,

volume 22. Sage publications, 2015.

[80] Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, and Torsten

Hoefler. Taming Unbalanced Training Workloads in Deep Learning with Partial

Collective Operations. arXiv preprint arXiv:1908.04207, 2019.

[81] Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, and Torsten

Hoefler. Taming unbalanced training workloads in deep learning with partial

collective operations. In PPoPP20, pages 45–61, 2020.

[82] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: A

memory-efficient, high-performance key-value store. In SOSP’11 - Proceedings

Bibliography 113

of the 23rd ACM Symposium on Operating Systems Principles, SOSP ’11, pages

1–13, New York, NY, USA, 2011. ACM.

[83] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky.

MICA: A holistic approach to fast in-memory key-value storage. In Proceedings

of the 11th USENIX Symposium on Networked Systems Design and Implementa-

tion, NSDI 2014, pages 429–444, Seattle, WA, 2014. {USENIX} Association.

[84] Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M. Hellerstein. GraphLab: A New Framework For Parallel

Machine Learning. CoRR, abs/1408.2041, 2014.

[85] James MacQueen et al. Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[86] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In SIGMOD Conference, pages 135–146, 2010.

[87] Yandong Mao, Eddie Kohler, and Robert Morris. Cache craftiness for fast

multicore key-value storage. In EuroSys’12 - Proceedings of the EuroSys 2012

Conference, EuroSys ’12, pages 183–196, New York, NY, USA, 2012. ACM.

[88] Mellanox. ConnectX®-4 VPI IC PRODUCT BRIEF. [Online].

Available: http://www.mellanox.com/related-docs/prod_silicon/PB_

ConnectX-4_VPI_IC.pdf.

[89] Mellanox. IB flit simulator.

[90] Mellanox. Mellanox SwitchX and SwitchX®-2 1U Switch and Gateway Systems

Hardware User Manual.

[91] Mellanox. SparkRDMA.

[92] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha Sen, and

Jinyang Li. Balancing CPU and network in the cell distributed b-tree store. In

Proceedings of the 2016 USENIX Annual Technical Conference, USENIX ATC

2016, pages 451–464, Denver, CO, 2016. {USENIX} Association.

http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_IC.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_IC.pdf

114 Bibliography

[93] Radhika Mittal. Revisiting Network Support for RDMA Rise of RDMA in

datacenters. 1(ii):1–10.

[94] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John K. Ousterhout.

Homa: a receiver-driven low-latency transport protocol using network priorities.

In Proceedings of the ACM SIGCOMM 2018 Conference, pages 221–235, 2018.

[95] Daniel Müllner. fastcluster: Fast hierarchical, agglomerative clustering routines

for r and python. Journal of Statistical Software, 53(1):1–18, 2013.

[96] Aisha Mushtaq, Radhika Mittal, James Mccauley, Mohammad Alizadeh, Sylvia

Ratnasamy, Scott Shenker, U C Berkeley, Radhika Mittal, Sylvia Ratnasamy,

James Mccauley, and Scott Shenker. Datacenter congestion control: Identifying

what is essential and making it practical. Computer Communication Review,

49(3):32–38, 2019.

[97] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R

Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:

Generalized pipeline parallelism for dnn training. In Proceedings of the 27th

ACM Symposium on Operating Systems Principles, pages 1–15, 2019.

[98] OFED. OFED.

[99] OFED. perftest. [Online]. Available: https://github.com/linux-rdma/

perftest.

[100] OFED. qperf. [Online]. Available: https://github.com/linux-rdma/

qperf.

[101] Gabriele Paoloni. How to Benchmark Code Execution Times on Intel ® IA-32

and IA-64 Instruction Set Architectures. Intel Manual, 123(September):1–37,

2010.

[102] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran

Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna

Badrinarayanan. Big Data Analytics over Encrypted Datasets with Seabed. In

Proceedings of the 12th Symposium on Operating System Design and Implemen-

tation (OSDI), pages 587–602, 2016.

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/qperf
https://github.com/linux-rdma/qperf

Bibliography 115

[103] Abhay K Parekh and Robert G Gallager. A generalized processor sharing

approach to flow control in integrated services networks: The multiple node case.

IEEE/ACM transactions on networking, 2(2):137–150, 1994.

[104] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans

Fugal. Fastpass. ACM SIGCOMM Computer Communication Review, 44(4):307–

318, 2014.

[105] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,

Sylvia Ratnasamy, and Ion Stoica. FairCloud: sharing the network in cloud

computing. In Proceedings of the ACM SIGCOMM 2012 Conference, pages

187–198, 2012.

[106] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio

Turner, and Jose Renato Santos. ElasticSwitch: practical work-conserving band-

width guarantees for cloud computing. In Proceedings of the ACM SIGCOMM

2013 Conference, pages 351–362, 2013.

[107] Diana Andreea Popescu. Latency-driven performance in data centres. Technical

Report UCAM-CL-TR-937, University of Cambridge, Computer Laboratory,

June 2019.

[108] Diana Andreea Popescu and Andrew W. Moore. PTPmesh: Data Center Network

Latency Measurements Using PTP. In Proceedings - 25th IEEE International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-

nication Systems, MASCOTS 2017, pages 73–79. IEEE, sep 2017.

[109] Diana Andreea Popescu and Andrew W. Moore. No delay: Latency-driven,

application performance-aware, cluster scheduling, 2019.

[110] Diana Andreea Popescu, Noa Zilberman, Andrew W Moore, Diana Andreea,

Popescu Noa, Zilberman Andrew, and W Moore. Characterizing the impact of

network latency on cloud-based applications’ performance. (914):3–20, 2017.

[111] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and

Dorgival Guedes. Gatekeeper: Supporting bandwidth guarantees for multi-tenant

datacenter networks. In 3rd Workshop on I/O Virtualization (WIOV 11), 2011.

116 Bibliography

[112] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

Inside the Social Network’s (Datacenter) Network. In Proceedings of the ACM

SIGCOMM 2015 Conference, pages 123–137, 2015.

[113] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,

Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K. Ports,

and Peter Richtárik. Scaling Distributed Machine Learning with In-Network

Aggregation. arXiv preprint arXiv:1903.06701, 2019.

[114] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,

Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K. Ports,

and Peter Richtárik. Scaling Distributed Machine Learning with In-Network

Aggregation. In NSDI21, pages 785–808, 2021.

[115] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy Data

Analytics in the Cloud Using SGX. In IEEE Symposium on Security and Privacy,

pages 38–54, 2015.

[116] WP Dev Shed. How many people use google in 2022? Available at https:

//wpdevshed.com/how-many-people-use-google/.

[117] Social Shepherd. 20 essential meta statistics you need to know in 2022. Available

at https://thesocialshepherd.com/blog/meta-statistics.

[118] Alan Shieh, Srikanth Kandula, Albert G. Greenberg, and Changhoon Kim. Sea-

wall: Performance Isolation for Cloud Datacenter Networks. In Proceedings of

the 2nd workshop on Hot topics in Cloud Computing (HotCloud), 2010.

[119] Madhavapeddi Shreedhar and George Varghese. Efficient fair queueing using

deficit round robin. In Proceedings of the conference on Applications, technolo-

gies, architectures, and protocols for computer communication, pages 231–242,

1995.

[120] Vishal Shrivastav, Ki Suh Lee, Asaf Valadarsky, Han Wang, Hitesh Ballani,

Rachit Agarwal, Paolo Costa, Hakim Weatherspoon, Ki Suh Lee, Waltz Net-

works, Han Wang, Barefoot Networks, Rachit Agarwal, Hakim Weatherspoon,

Implementation Nsdi, Ki Suh Lee, Han Wang, Paolo Costa, and Hakim Weather-

spoon. Shoal: A Network Architecture for Disaggregated Racks. Proceedings of

https://wpdevshed.com/how-many-people-use-google/
https://wpdevshed.com/how-many-people-use-google/
https://thesocialshepherd.com/blog/meta-statistics

Bibliography 117

the 16th USENIX Symposium on Networked Systems Design and Implementation,

NSDI 2019, pages 255–270, 2019.

[121] Liang Shuang, Ranjit Noronha, and Dhabaleswar K. Panda. Swapping to remote

memory over InfiniBand: An approach using a high performance network block

device. Proceedings - IEEE International Conference on Cluster Computing,

ICCC, page nil, 2005.

[122] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

Hadoop Distributed File System. In MSST10, pages 1–10, 2010.

[123] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

Hadoop distributed file system. In 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies, MSST2010, MSST ’10, pages 1–10, Washington, DC,

USA, 2010. IEEE Computer Society.

[124] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,

Stephen Stuart, and Amin Vahdat. Jupiter rising: A decade of clos topologies

and centralized control in acenter network. In SIGCOMM 2015 - Proceedings of

the 2015 ACM Conference on Special Interest Group on Data Communication,

pages 183–197, 2015.

[125] Anirudh Sivaraman, Suvinay Subramanian, Anurag Agrawal, Sharad Chole,

Shang Tse Chuang, Tom Edsall, Mohammad Alizadeh, Sachin Katti, Nick

McKeown, and Hari Balakrishnan. Towards programmable packet scheduling.

Proceedings of the 14th ACM Workshop on Hot Topics in Networks, HotNets-XIV

2015, 2015.

[126] Chakchai So-In, Raj Jain, and Jinjing Jiang. Enhanced forward explicit con-

gestion notification (e-fecn) scheme for datacenter ethernet networks. In 2008

International Symposium on Performance Evaluation of Computer and Telecom-

munication Systems, pages 542–546, 2008.

[127] Tim Szigeti, Christina Hattingh, Robert Barton, and Kenneth Briley Jr. End-to-

End QoS network design: Quality of Service for rich-media & cloud networks.

Cisco press, 2013.

118 Bibliography

[128] TechJury. 47 amazon statistics. Available at https://techjury.net/blog/

amazon-statistics/.

[129] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-

ham, et al. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD interna-

tional conference on Management of data, pages 147–156, 2014.

[130] D. Ustiugov, Plamen Petrov, M. R. Siavash Katebzadeh, and Boris Grot. Bankrupt

Covert Channel: Turning Network Predictability into Vulnerability. In Pro-

ceedings of the 14th USENIX Workshop on Offensive Technologies (WOOT),

co-located with USENIX Security, 2020.

[131] Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar. Deadline-aware data-

center tcp (D2TCP). In Proceedings of the ACM SIGCOMM 2012 Conference,

pages 115–126, 2012.

[132] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. Ernest: Efficient performance prediction for Large-Scale ad-

vanced analytics. In 13th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 16), pages 363–378, Santa Clara, CA, March 2016.

USENIX Association.

[133] Jerome Vienne, Jitong Chen, Md Wasi-ur Rahman, Nusrat S. Islam, Hari Sub-

ramoni, and Dhabaleswar K. Panda. Performance analysis and evaluation of

InfiniBand FDR and 40GigE RoCE on HPC and cloud computing systems. In

Proceedings - 2012 IEEE 20th Annual Symposium on High-Performance Inter-

connects, HOTI 2012, pages 48–55, 2012.

[134] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kompella. The only constant is

change: Incorporating time-varying network reservations in data centers. In Pro-

ceedings of the ACM SIGCOMM 2012 conference on Applications, technologies,

architectures, and protocols for computer communication, pages 199–210, 2012.

[135] Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Rao Kompella. The only constant

is change: incorporating time-varying network reservations in data centers. In

Proceedings of the ACM SIGCOMM 2012 Conference, pages 199–210, 2012.

https://techjury.net/blog/amazon-statistics/
https://techjury.net/blog/amazon-statistics/

Bibliography 119

[136] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Shark: SQL and rich analytics at scale. In SIGMOD Conference,

pages 13–24, 2013.

[137] Hailong Yang, Alex D. Breslow, Jason Mars, and Lingjia Tang. Bubble-flux:

precise online QoS management for increased utilization in warehouse scale

computers. In Proceedings of the 40th International Symposium on Computer

Architecture (ISCA), pages 607–618, 2013.

[138] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image

Classification at Supercomputer Scale. CoRR, abs/1811.06992, 2018.

[139] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image

Classification at Supercomputer Scale. In NeurIPS, 2018.

[140] Yifei Yuan, Anduo Wang, Rajeev Alur, and Boon Thau Loo. On the feasibility of

automation for bandwidth allocation problems in data centers. In 2013 Formal

Methods in Computer-Aided Design, pages 42–45, 2013.

[141] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Sto-

ica. Apache Spark: a unified engine for big data processing. Commun. ACM,

59(11):56–65, 2016.

[142] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica.

Apache spark: A unified engine for big data processing. Communications of the

ACM, 59(11):56–65, oct 2016.

[143] Lixia Zhang. Virtual clock: A new traffic control algorithm for packet switching

networks. In Proceedings of the ACM symposium on Communications architec-

tures & protocols, pages 19–29, 1990.

[144] Yiwen Zhang, Juncheng Gu, Youngmoon Lee, Mosharaf Chowdhury, and

Kang G. Shin. Performance isolation anomalies in RDMA. In KBNets 2017 - Pro-

ceedings of the 2017 Workshop on Kernel-Bypass Networks, Part of SIGCOMM

2017, KBNets ’17, pages 43–48, New York, NY, USA, 2017. ACM.

120 Bibliography

[145] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill: At-

tributing the Source of Tail Latency through Precise Load Testing and Statistical

Inference. Proceedings - 2016 43rd International Symposium on Computer

Architecture, ISCA 2016, pages 456–468, 2016.

[146] Haishan Zhu, David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-

ganathan, and Mattan Erez. Kelp: QoS for Accelerated Machine Learning

Systems. In HPCA19, pages 172–184, 2019.

[147] Haishan Zhu, David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-

ganathan, and Mattan Erez. Kelp: QoS for accelerated machine learning systems.

In Proceedings - 25th IEEE International Symposium on High Performance

Computer Architecture, HPCA 2019, pages 172–184. IEEE, 2019.

[148] Jing Zhu, Dan Li, Jianping Wu, Hongnan Liu, Ying Zhang, and Jingcheng Zhang.

Towards bandwidth guarantee in multi-tenancy cloud computing networks. In

2012 20th IEEE International Conference on Network Protocols (ICNP), pages

1–10. IEEE, 2012.

[149] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, Ming

Zhang, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and

Ming Zhang. Congestion control for large-scale RDMA deployments. SIG-

COMM 2015 - Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication, 45(5):523–536, aug 2015.

[150] Noa Zilberman, Yury Audzevich, G. Adam Covington, and Andrew W. Moore.

NetFPGA SUME: Toward 100 Gbps as Research Commodity. IEEE Micro,

34(5):32–41, 2014.

[151] Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan

Manihatty-Bojan, Gianni Antichi, Marcin Wójcik, and Andrew W. Moore. Where

has my time gone? In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

volume 10176 LNCS, pages 201–214, 2017.

[152] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida,

Ce Zhang, and Ankit Singla. Is advance knowledge of flow sizes a plausi-

121

ble assumption? Proceedings of the 16th USENIX Symposium on Networked

Systems Design and Implementation, NSDI 2019, pages 565–580, 2019.

	Introduction
	Datacenter application and network trends
	Bandwidth allocation in datacenters
	Problem discussion
	Our Approach
	Thesis contributions
	Thesis organization

	Background
	Datacenter applications
	Communication patterns
	Workloads

	Datacenter network architecture
	RDMA-based interconnection technologies
	RDMA verbs
	RDMA transport
	RDMA execution path

	QoS support in datacenter networks
	QoS in RDMA networks
	QoS in non-RDMA Ethernet networks:

	Bandwidth allocation in datacenters

	Characterizing the Impact of Bandwidth on Applications
	Methodology
	Sensitivity to bandwidth in applications
	Does flow-level fairness offer optimal performance?
	Why does the bandwidth sensitivity arise?
	Implications for future application design
	Discussion
	Summary

	Saba: Application-Aware Bandwidth Allocation Scheme
	Saba overview
	Profiler
	Profiling process
	Accuracy of sensitivity models

	Controller
	Bandwidth calculation and assignment
	Bandwidth enforcement
	Mapping applications to queues
	Centralized vs distributed controller

	Saba library
	Connection manager
	Software interface

	Implementation
	Profiler
	Controller
	Saba library

	Evaluation
	Methodology
	Main results
	Sensitivity studies
	Simulation results
	Overhead of the controller
	Discussion

	Summary

	Characterization of an InfiniBand Switch
	InfiniBand latency measurement
	RPerf
	Excluding remote-side processing
	Excluding local-side processing
	RTT calculation

	Evaluation of InfiniBand switches
	Methodology
	Performance under one-to-one traffic
	Coexistence of flows with different types

	Attempts to protect latency-sensitive flows
	Bandwidth-intensive flows with different message sizes
	Packet scheduling policy at the switch
	Queue separation through priority levels
	Discussion

	Summary

	Conclusions and Future Work
	Summary of contributions
	Limitations and Future Work

	Bibliography

