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ABSTRACT
Variability in generational behavior of cache blocks is a key
challenge for cache management policies that aim to iden-
tify dead blocks as early and as accurately as possible to
maximize cache efficiency. Existing management policies
are limited by the metrics they use to identify dead blocks,
leading to low coverage and/or low accuracy in the face of
variability. In response, we introduce a new metric – live dis-
tance – that uses the stack distance to learn the temporal reuse
characteristics of cache blocks. We further introduce Leeway,
a new dead block predictor that leverages live distance to
enable dead block predictions that are robust to variation in
generational behavior. Based on the reuse characteristics of
application’s cache blocks, Leeway classifies its behavior as
streaming or reuse and dynamically selects an appropriate
cache management policy.

1. INTRODUCTION
Dead Block Predictors (DBPs) have been shown to be

effective in improving cache performance through better uti-
lization of existing capacity [1,2,3,4,5,6]. These schemes all
rely on some metric of temporal reuse to make their decisions
regarding the end of a given block’s useful life. Previous
work has suggested hit count [1], last-touch PC [2], and num-
ber of references to the block’s set since the last reference [7],
among others, as metrics for determining whether the block
is dead at a given point in time. By identifying and evicting
dead blocks in a timely and accurate manner, these schemes
allow other blocks (that have not exhausted their useful life)
to persist in the cache and see further hits.

The task of a DBP is complicated by the fact that ap-
plications exhibit variability in the re-reference patterns of
cache blocks touched by them. The sources of variability
are numerous, stemming from microarchitectural noise (e.g.,
speculation), control-flow variability, cache pressure from
other threads, etc. The variability manifests itself as an in-
consistent behavior of the individual cache blocks from one
cache lifetime, or generation, to the next. This inconsistency
challenges DBPs in reliably identifying the end of a block’s
useful lifetime, thus resulting in lower prediction accuracy,
coverage, or both.

Our thesis is that DBPs require metrics and policies that
can tolerate inconsistencies. To that end, we propose live
distance – a metric of temporal reuse based on stack distance.
For a given cache block, live distance is the largest observed
stack distance in a generation (from allocation to eviction).
Live distance demarcates the range of the block’s temporal

reuse within the LRU stack. When the block’s position within
an LRU stack exceeds its known live distance, the block is
unlikely to be referenced and can be predicted dead. Thus,
live distance provides an efficient way to represent a block’s
range of temporal use.

To obtain stack distance values, we exploit the fact that
LRU-based policies implicitly track stack distances of cache-
resident blocks. In true LRU, when a block hits, its current
LRU stack position corresponds to its stack distance. For
policies that deviate from true LRU, such as multi-bit NRU
(see Sec. 2 for details), a block’s stack position upon a hit
only approximates the true stack distance. Nevertheless, it
provides an efficient heuristic to approximate stack distance
and, correspondingly, live distance.

We introduce Leeway, a new DBP that uses live distance
as a metric for prediction. Leeway uses code-data correlation
to associate live distance for a group of blocks with a PC
that brings the block into the cache. While live distance as a
metric provides a high degree of resilience to variability, the
per-PC live distance values themselves may fluctuate across
generations. To correctly train live distance values in the face
of fluctuation, we observe that individual applications’ cache
behavior tends to fall in one of two categories: streaming
(most allocated blocks see no hits) and reuse (most allocated
blocks see one or more hits). Based on this simple insight,
we design a pair of corresponding policies that steer updates
in live distance values either toward zero (for bypassing) or
toward the maximum recently-observed value (to maximize
reuse). For each application, Leeway picks the best policy
dynamically based on the observed cache reuse behavior.

2. LEEWAY BASICS
In this paper, we focus on Leeway with a low-cost multi-bit

Not Recently Used (NRU) family of policies. Multi-bit NRU
uses two or more bits per cache block to indicate a partial
relative order of LRU stack positions. For instance, a 2-bit
NRU policy keeps blocks in a set in one of four equivalence
classes as a function of their relative stack positions, with
class 0 for MRU blocks and class 3 for LRU ones. During
victim selection, a block in class 3 is evicted (ties are broken
through random selection). If no block is found in class 3,
every block is moved to the next class and the process is
repeated.

For the competition, we implement Leeway on such a
hardware-friendly 2-bit NRU where block’s NRU value is
used to approximate its stack distance, and in turn, live dis-
tance. However, in the discussion below, we refer to NRU val-
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ues as its LRU stack position to keep the discussion generic.
Leeway records the maximum observed hit position (i.e.,

live distance) during a block’s residency in the cache. At
eviction time, the live distance is recorded in a separate struc-
ture, Live Distance Predictor Table (LDPT), for subsequent
recall when the block is allocated again. Leeway uses the
live distance learned in the block’s previous generations to
infer when the block may have exceeded its useful lifetime
and predicts it dead. To avoid the prohibitive storage costs
of tracking individual cache blocks in the LDPT, Leeway
exploits code-data correlation and associates all cache blocks
allocated by a given PC with one LDPT block.

The functionality of Leeway can be divided into three
categories - Learning, Prediction and Update. Learning is
a continuous process for cache-resident blocks that involves
checking a block’s position in the LRU stack upon each
hit and, if the current position exceeds the past maximum,
updating the live distance. Prediction is triggered during
victim selection on a miss to a set. Any block that has moved
past its predicted live distance in an LRU stack is predicted
dead. Update occurs upon a block’s eviction from the cache,
propagating the new live distance to the LDPT. To effectively
handle variability in live distance across generations of a
given block and across blocks tracked by a given LDPT entry,
the update process is conditional as explained in Section 3.

Leeway implements set-sampling, similar to [8], to learn
the blocks’ live distances by observing their behavior in a
small number of sample sets. The reason for sampling is
two-fold: 1) it helps filter out some of the noise in observed
live distances; 2) it significantly reduces Leeway’s storage
requirement as only blocks belonging to the sample sets need
to be augmented with storage and logic needed for learning.

3. REUSE AWARE POLICIES
Due to numerous reasons, a block’s observed reuse behav-

ior may fluctuate in time even if its fundamental reuse char-
acteristics are not changing. While the live distance metric
provides a degree of protection from intra-generation noise,
Leeway must contend with inevitable fluctuation in live dis-
tance across generations and across different blocks allocated
by the same PC. In particular, it must separate unrepresenta-
tive live distance values from actual shifts in reuse behavior.
This observation points to the need for an intelligent update
policy for Leeway’s live distance values.

To design a variability-tolerant update policy, we study
both SPEC and scale-out server workloads (CloudSuite) to
understand their reuse behavior. Our workload analysis re-
veals that applications tend to fall in one of two categories in
terms of their reuse behavior affecting LLC management.

The first category is dominated by streaming accesses that
do not observe any LLC hits and should be bypassed. In many
cases, the blocks allocated by certain streaming PCs will oc-
casionally observe one or more hits. Moreover, such behavior
sometimes occurs in clusters, forcing a shift in cache man-
agement policy from bypassing to keeping blocks on chip.
Such a shift is generally undesirable, as the behavior tends
to quickly revert back to streaming. A multi-bit hystere-
sis threshold may be effective in delaying a shift in policy;
however, the high threshold is counter-productive when the
behavior reverts back to streaming as it will lead to blocks

being allocated in LLC rather than be bypassed.
The second category of applications is dominated by blocks

that do see reuse prior to being evicted from the LLC. How-
ever, we observe considerable variation in live distance for
many PCs that allocate blocks exhibiting reuse. This obser-
vation is consistent with prior work that observed that blocks
with reuse are more prone to variation in inter-generational
behavior than streaming blocks, thus posing a challenge for
dead-block predictors [9]. Given the uncertainty in reuse
behavior, such blocks should be kept longer to maximize
opportunity for reuse.

Based on the above observations, we propose two separate
policies for each type of behavior to maximize bypass oppor-
tunities for streaming workloads and reuse for workloads that
exhibit it.
Bypass-Oriented: This policy seeks to maximize opportuni-
ties for bypass by being slow to increase the live distance and
fast in dropping it back towards 0. An incoming block with a
predicted live distance of -1 is bypassed, unless it maps to a
sampler set (see Sec. 4.1.1 for details).
Reuse-Oriented: To maximize reuse opportunities for allo-
cated blocks when there is fluctuation in live distance values,
this policy is quick to increase the live distance and slow to
decrease it. Since Leeway does not evict blocks that have
not reached their live distance value in the LRU or multi-bit
NRU stack, a larger live distance enables a longer temporal
window for uncovering reuse.

The two policies call for diametrically opposite behavior:
whereas the Bypass Oriented policy is slow to increase the
live distance values in LDPT but fast to decrease them, the
Reuse Oriented policy is fast to increase live distance values
but slow to decrease them. To satisfy the demand for separate
policies in increasing and decreasing live distance in the
LDPT, Leeway deploys two Variation Tolerance Thresholds
(VTTs) that control the rate at which live distance values are
adjusted based on workload behavior and the direction of
change in live distance.

In order to choose the preferred policy for a running ap-
plication, Leeway leverages Set Dueling [8] and implements
both policies (Bypass- and Reuse- Oriented) simultaneously
on separate sampler sets. The rest of the cache follows the
policy that minimizes the misses.

4. MICROARCHITECTURE DESIGN

4.1 Physical Fields and Structures
Fig. 1 summarizes key elements of the design.
LDPT: LDPT is implemented as a set-associative structure
with small associativity. Each LDPT block is augmented
with LRU-stack, tag and a valid bit to implement it with
LRU replacement policy. LDPT block further contains two
LDPT entries - one for each Bypass- and Reuse- Oriented
Policy. Each LDPT entry contains a stable-live-distance field
that indicates the current live distance based on most recent
history. Updates to stable-live-distance are controlled by
VTTs and two additional LDPT fields: 1) variance-count is
a counter for tracking the number of consecutively evicted
cache lines whose live distance differs from the stored value,
and 2) variance-direction is a bit indicating the direction of
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Figure 1: Schematic of Leeway for LLC

the difference. Once the count matches the value of a VTT for
a given direction, the value of stable-live-distance is updated.
To avoid additional storage for transient live distance values,
the new stable-live-distance value is taken from the evicted
block that triggers the update.
VTTs: To enable Bypass- and Reuse- Oriented policies, Lee-
way uses a pair of Variation Tolerance Thresholds that control
the rate at which stable-live-distance values are updated. Em-
pirically, we find that a 3-bit VTT is sufficient, and use the
maximum value for the slow update (i.e., requiring 7 consec-
utive evictions with a live distance different, and in the same
direction, from the stable-live-distance) and a value of 1 for
the aggressive threshold. Thus, the two valid VTT configura-
tions are either {7,1} (for the Bypass-Oriented policy, with
a slow increase and fast decrease) and {1,7} (for the Reuse-
Oriented policy with a fast increase and slow decrease).
LLC: Leeway requires all LLC blocks to carry a field, predicted-
live-distance, which is read from the LDPT at block alloca-
tion time and is subsequently used for dead block prediction.
Sampler sets carry two additional fields: live-distance &
hash-pc. These are used for learning, allowing evicted blocks
to access the LDPT and, if necessary, update its fields as
explained above.

4.1.1 Leeway in Action
Cache Miss: On an LLC miss, the LDPT is accessed using a
hash of the miss PC to recall the stable-live-distance, which
is then transferred to the incoming block’s predicted-live-
distance field. If stable-live-distance is -1 (i.e., no hits), the
block is expected to have no reuse and is bypassed to higher
level cache. Because bypassed blocks have no opportunity
to retrain, Leeway inserts them into the sampler sets with a
small probability to enhance learning.
Cache Hit (Learning): On a hit to a sampler set, the block’s
live-distance is updated if its stack position is greater than the
value of the live-distance field. No action for all other cases.
Eviction (Prediction and Update): To find victim, Leeway
searches for a dead block by comparing each block’s LRU
or NRU position to its predicted-live-distance field. If more
than one dead block is found, a victim is picked at random.
If no block is predicted dead, the LRU block is evicted. If the
evicted block resides in the sampler set, its live-distance and
hash-pc is forwarded to the LDPT for a potential update.

4.1.2 Mechanism for Policy Selection
To dynamically choose between Bypass- and Reuse- Oriented
policies, Leeway relies on set dueling [8]. Thus, two separate
groups of sampler sets are used, with each group implement-

ing one of the two policies. Each group of sets always access
their dedicated LDPT entry based on a static mapping, the
rest of the sets read the stable-live-distance from the winning
policy.

To determine the winning policy, Leeway maintains two
saturating miss counters, one for each policy. The counters
are incremented on a miss to a sampler set of a respective
policy. Periodically, the miss counters are sampled and the
winning policy is selected based on the counter with the
lowest value.

Often, the winning policy remains the same throughout
the application’s execution. In some cases, however, the win-
ning policy may change due to changes in the application’s
phase or its co-runner(s). In theory, a policy change requires
reloading predicted-live-distance for all cache blocks using
the stable-live-distance of the new winning policy in LDPT.
In practice, we find that policy change is infrequent, indicat-
ing that the simplest way to deal with it is to leave existing
blocks untouched, potentially incurring a handful of poor
decisions but minimizing microarchitectural complexity.

4.2 Leeway for Multicore
Leeway can be naturally extended to multicore deploy-

ments. The only notable difference is in determining the
winning policy for each individual core. When extended to
multicore, the sampler sets for a given core would be shared
with other cores that will use them as followers of their re-
spective (and potentially different) policies. As the choice of
a policy used by each core affects other cores, Leeway adopts
following strategy.

Leeway maintains N Miss and Access counters for each
core and each policy where N is the total number of cores. In
a sampler set for a given policy, it tracks misses and accesses
by different cores and increments counters appropriately. In
a given interval, Miss and Access counters are only incre-
mented till Access counter saturates. This allows comparing
misses among applications with different memory intensity
fairly. At the end of an interval, the policy is chosen that
minimizes total misses.

5. HARDWARE COST AND COMPLEXITY
Cost: We analyze storage requirements for a 16-way 2MB
LLC with 64B blocks. In theory, LDPT can be directly in-
dexed by hash-pc. However, for applications like CloudSuite
with large code-footprint, it may require a large table not to
be affected by destructive aliasing. To overcome this, LDPT
is designed as a set-associative structure. We find that 512
sets and 4 ways per core is sufficient and is not affected by
destructive aliasing. Number of sets are scaled with number
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Figure 2: IPC Improvement for SHiP and Leeway when
compared to LRU for SPEC applications

of cores, keeping associativity the same. Replacements in the
LDPT are handled via LRU.

Each LDPT block requires a 13-bits for tag (for 22-bit
hash-pc and 512 sets), 2-bits for LRU-stack and 1 valid bit
of meta data. Every LDPT block stores two LDPT entries -
one for each Leeway policy. Each LDPT entry consists of 6
bits: 2 for stable-live-distance, 3 for variance-count and 1 for
variance-direction. The resulting cost of each LDPT block is
28 bits, translating to total cost of 7KB for the entire LDPT.

We use a 64-set sampler per policy. Each block in the
sampler carries a 2-bit live-distance and 22-bit hash-pc fields
and 1 policy-selection bit (not shown in the figure for brevity)
requiring 6.25KB of storage in total. All cache blocks, in-
cluding the sampler, include a 2-bit predicted-live-distance
and 2-bit NRU-bits, totaling 22.25KB of cache storage. The
total storage overhead of Leeway is thus 29.25 KB, leaving
ample room for accommodating various registers used by
the Leeway implementation for a 32KB of storage budget.
Table 1 lists the storage requirement of different structures
and their fields for 1- and 4-core configurations.
Complexity: Operations performed by Leeway at various
stages are limited to simple addition, comparisons and shifts,
which are quite hardware friendly. Additionally, Leeway
embeds the metadata necessary for the prediction (i.e., live
distance) with the cache blocks. As a result, LLC hits and
replacement decisions never access remote metadata. The
only time Leeway accesses its prediction table (LDPT) is
upon cache misses, when stable-live-distance is read and pos-
sibly updated. These accesses are entirely off the critical path,
since they do not involve state updates to a live cache block.

In contrast, state-of-the-art DBPs, such as [2, 4, 5, 6], use
a PC-indexed prediction table that is probed on every LLC
access (including hits) to inform the block’s eviction priority.
For example, Hawkeye [5] incurs ∼2.3x more accesses to its
prediction table when compared to Leeway (SPEC average).
Such frequent accesses to the prediction table are particularly
undesirable in a modern multicore CPU with a NUCA LLC,
as each LLC hit requires state-of-the-art DBPs to access the
PC-indexed prediction table located elsewhere on a chip,
incurring latency, energy, and traffic overheads due to the
need to traverse the on-chip network.

6. RESULTS
We evaluate SHiP [3] as the state-of-the-art technique with

complexity comparable to Leeway as both SHiP and Lee-
way access their predictor tables only on misses. Figure 2
shows the percentage IPC improvement over baseline LRU

Structure Fields 1-core 4-cores

LDPT Entry

stable-live-distance (a) 2 2
variance-count (b) 3 3
variance-direction (c) 1 1
Total size (d = a+b+c) 6 6

LDPT Block

LRU bits (e) 2 2
Tag bits (f) 13 13
Valid bit (g) 1 1
2 LDPT entries (h = 2*d) 12 12
Total size (i = e+f+g+h) 28 28

LDPT

Sets (j) 512 2048
Ways (k) 4 4
Number of Blocks (l = j*k) 2048 8192
Total size (m = l * i) 57344 229376

Sampler Block

NRU bits (n) 2 2
predicted-live-distance (o) 2 2
live-distance (p) 2 2
hash-pc (q) 22 22
policy-type (r) 1 1
Total size (s = n+o+p+q+r) 29 29

Follower Block
NRU bits (t) 2 2
predicted-live-distance (u) 2 2
Total size (v = t+u) 4 4

Cache

Ways (w) 16 16
Number of Sampler Sets (x) 128 512
Number of Follower Sets (y) 1920 7680
Size of Sampler Sets (z = x*w*s) 59392 237568
Size of Follower Sets (A = y*w*v) 122880 491520
Total size (B = z+A) 182272 729088

Total storage (bits) Total size (C= B+m) 239616 958464
Total storage (KB) Total size (C= B+m) 29.25KB 117KB

Table 1: Leeway storage for 1-core and 4-core configurations

for all SPEC applications. Overall, Leeway provides ge-
omean improvement of 6.4% vs 5.7% in SHiP. While Leeway
outperforms SHiP on 20 out of 29 applications, it does not
slow down any application by more than 3%.
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