
Morrigan: A Composite Instruction TLB Prefetcher
Georgios Vavouliotis

georgios.vavouliotis@bsc.es
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya

Lluc Alvarez
lluc.alvarez@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Boris Grot
boris.grot@ed.ac.uk

University of Edinburgh

Daniel A. Jiménez
djimenez@acm.org

Texas A&M University

Marc Casas
marc.casas@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

ABSTRACT
The effort to reduce address translation overheads has typically
targeted data accesses since they constitute the overwhelming por-
tion of the second-level TLB (STLB) misses in desktop and HPC
applications. The address translation cost of instruction accesses
has been relatively neglected due to historically small instruction
footprints. However, state-of-the-art datacenter and server applica-
tions feature massive instruction footprints owing to deep software
stacks, resulting in high STLB miss rates for instruction accesses.

This paper demonstrates that instruction address translation
is a performance bottleneck in server workloads. In response, we
proposeMorrigan, a microarchitectural instruction STLB prefetcher
whose design is based on new insights regarding instruction STLB
misses. At the core of Morrigan there is an ensemble of table-based
Markov prefetchers that build and store variable length Markov
chains out of the instruction STLB miss stream. Morrigan further
employs a sequential prefetcher and a scheme that exploits page ta-
ble locality to maximize miss coverage. An important contribution
of the work is showing that access frequency is more important
than access recency when choosing replacement candidates. Based
on this insight, Morrigan introduces a new replacement policy that
identifies victims in the Markov prefetchers using a frequency stack
while adapting to phase-change behavior. On a set of 45 industrial
server workloads, Morrigan eliminates 69% of the memory refer-
ences in demand page walks triggered by instruction STLB misses
and improves geometric mean performance by 7.6%.

CCS CONCEPTS
• Software and its engineering→ Virtual memory; •Applied
computing → Data centers.

KEYWORDS
virtual memory, address translation, translation lookaside buffer,
TLB prefetching, TLB management, markov prefetching

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’21), October
18–22, 2021, Virtual Event, Greece, https://doi.org/10.1145/3466752.3480049.

ACM Reference Format:
Georgios Vavouliotis, Lluc Alvarez, Boris Grot, Daniel A. Jiménez, and Marc
Casas. 2021. Morrigan: A Composite Instruction TLB Prefetcher. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3466752.3480049

1 INTRODUCTION
Paging-based virtual memory is a fundamental feature of today’s
computers. To mitigate the high latency cost of page walks, Transla-
tion Lookaside Buffers (TLBs) cache the most recently used virtual-
to-physical translations. Despite the use of multi-level TLB hierar-
chies and other hardware and software schemes for accelerating
address translation, frequent data TLB misses still cause significant
performance degradation due to long miss penalties [30, 32, 40, 47,
54, 58, 63]. In response, the research community has proposed many
techniques for reducing the overhead of address translation associ-
ated with data accesses [36, 38, 53, 56, 60, 66, 68, 69, 73, 74, 79, 82].

Recent work [54, 62, 65, 83] has shown that modern server and
datacenter applications not only have big datasets, but also large
code footprints. Huge binaries and deep software stacks cause fre-
quent instruction cache and instruction TLB misses, compromising
performance due to unavoidable pipeline stalls. The instruction foot-
print of these applications increases at around 20-30% per year [54],
indicating that the front-end bottleneck is likely to get worse.

When it comes to instruction address translation, TLB pressure
caused by massive code working set sizes is amplified by contention
in the second-level TLB (STLB), which is shared between instruc-
tion and data translations. Instruction references evict useful data
translations and vice versa, imposing additional performance penal-
ties. However, instruction STLB (iSTLB) misses are more critical
than data STLB (dSTLB)1 misses since instruction references are
on the critical path of pipeline execution, while data misses can
overlap independent instructions thanks to out-of-order execution,
partially hiding their latency costs. Indeed, a recent work [65] shows
that iSTLB misses are a critical bottleneck in Facebook workloads.
Therefore, iSTLB misses are a growing problem in servers.

The impact of instruction address translation in terms of per-
formance and page walk memory references has received minimal
attention over the years. Existing software approaches comprise
either compile-time techniques for code layout optimization [64] or
operating system schemes leveraging large pages [43, 59, 83]. On
the hardware side, there are incremental and disruptive schemes
1iSTLB and dSTLB refer to instruction and data references to the STLB, respectively.

https://doi.org/10.1145/3466752.3480049
https://doi.org/10.1145/3466752.3480049


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

for reducing TLB misses. While developed for data TLB misses,
these approaches could also be effective for instruction TLB misses.
Incremental approaches try to increase TLB reach [41, 68, 69], but
they are limited by coalescing opportunities exposed by the applica-
tion and the OS. Disruptive approaches call for an overhaul of the
virtual memory subsystem [28, 55], which hinders their adoption
and may introduce new security vulnerabilities.

This paper highlights that iSTLBmisses are a bottleneck in server
workloads because their large code footprints pressure the STLB,
resulting in long-latency page walks for fetching the corresponding
address translations. Specifically, on a suite of contemporary indus-
trial server workloads, we find that over 40% of all STLB misses
are caused by instruction references. Our findings corroborate the
conclusions of previous industry works showing iSTLB pressure to
be a performance bottleneck in their workloads [54, 62, 65].

Furthermore, we show that prior dSTLB prefetchers [53] are
ineffective at capturing the iSTLB misses because (i) they correlate
patterns with features that are unable to provide accurate iSTLB
prefetches, and (ii) they use access recency for choosing prefetch
candidates which does not correlate well with iSTLB misses. When
applied to iSTLB prefetching, existing dSTLB prefetchers improve
the performance on industrial server workloads by up to 1.6%,
whereas the opportunity from perfect iSTLB prefetching is 11.1%.

We also examine the state-of-the-art instruction cache prefetch-
ers [22] and conclude that they, too, are ineffective at prefetching
for the iSTLB miss stream. Instruction prefetchers target the L1
I-cache and typically find the needed cache blocks in the L2 or the
LLC [47, 72], which means that they are tuned for relatively short
prefetch distances. Meanwhile, iSTLB misses result in page walks
that cause serialized accesses to the memory hierarchy. Depending
on the memory hierarchy level where these accesses are served, the
page walk can take from tens to hundreds of cycles, which cannot
be always covered by instruction cache prefetchers.

Based on these observations, this paper introduces Morrigan, a
microarchitectural iSTLB prefetcher. To the best of our knowledge,
this is the first work to characterize iSTLB misses and the first
iSTLB prefetcher. Morrigan is composed of two complimentary
prefetching modules. The first module is the Irregular Instruction
TLB Prefetcher (IRIP), an ensemble of four prediction tables that
efficiently build and store variable length Markov chains from the
iSTLB miss stream. IRIP is enhanced with a new replacement policy,
named Random-Least-Frequently-Used (RLFU), that drives replace-
ments based on a frequency stack of iSTLB misses. RLFU uses
randomness to avoid evicting recently installed but not yet fre-
quently accessed entries, thus efficiently accommodating changes
in the instruction access patterns, e.g., due to phase-based behavior.
The second module of Morrigan is the Small Delta Prefetcher (SDP),
a sequential prefetcher activated when the IRIP module is unable
to produce new prefetches. Finally, both IRIP and SDP exploit page
table locality [69, 79] to perform cost-effective spatial prefetching.

In summary, this paper makes the following contributions:

• We provide a first study on iSTLB prefetching using a set of 45
industrial server workloads [14, 22]. Key conclusions of the study
are that (i) state-of-the-art designs of dSTLB prefetchers are unable
to cover iSTLB misses, and (ii) instruction cache prefetchers are
ineffective at eliminating iSTLB misses.

•We demonstrate that iSTLB misses (i) follow a skewed distribu-
tion, with a modest number of instruction pages responsible for the
majority of the iSTLB misses, and (ii) have spatial locality limited
to a small region around the triggering miss.

•We propose Morrigan, a novel iSTLB prefetcher composed of
two specialized prefetch engines: a novel Markov-based prefetching
module that uses a new frequency-based replacement policy to
manage its internal state, and an enhanced small delta prefetcher.

• Across a set of 45 industrial server workloads[14, 22], Morri-
gan provides a geometric mean speedup of 7.6% and reduces the
references to the memory hierarchy due to demand page walks for
instructions by 69% over a baseline without iSTLB prefetching.

2 VIRTUAL MEMORY SUBSYSTEM
Each memory access on a paging-based virtual memory system
requires a virtual-to-physical address translation. To accelerate ad-
dress translation and improve virtual memory management, mod-
ern systems use a combination of software and hardware support.

On the software side, the page table is an OS-managed and
architecturally-visible structure that contains the virtual-to-physical
translations for all pages loaded to memory. In x86-64 architectures,
the page table is implemented as a multi-level radix tree.

On the hardware side, the Translation Lookaside Buffer (TLB) and
the MMU-Caches are hardware structures dedicated to alleviate the
address translation overheads. TLBs cache the most recently used
virtual-to-physical translations. Modern architectures implement
multi-level TLB hierarchies, with small instruction and data first-
level TLBs (I-TLB and D-TLB) and a large second-level TLB (STLB).

On each memory access (either instruction or data), the corre-
sponding first-level TLB is accessed and, in case of a miss, the STLB
is looked up. On STLB misses, the page table walker is invoked,
traversing the page table to find the requested translation. Frequent
page walks have a pernicious performance impact since they re-
quire multiple accesses to the memory hierarchy. To reduce page
walk latency, MMU caches (called Page Structure Caches (PSCs) on
x86 [67]) cache partial translations, hence reducing the number of
page walk accesses to the memory hierarchy. Finally, page table
entries (PTEs) from both intermediate and leaf nodes of the page
table are also cached in the existing cache hierarchy.

Page Table Locality. In x86-64 architectures, the cache line size
is 64 bytes and each PTE occupies precisely 8 bytes. As a result, a
single 64-byte cache line can accommodate up to 8 contiguously-
stored PTEs [37, 69, 76, 79]. When a requested PTE is read from
memory, it is grouped with 7 neighboring PTEs and they are stored
into a 64-byte cache line. Therefore, a single cache line stores the
requested PTE plus 7 more PTEs that do not require additional
accesses to the memory hierarchy to be prefetched.

2.1 Translation Prefetching
STLB misses (either instruction or data) trigger long-latency page
walks. Accurately prefetching PTEs ahead of demand STLB accesses
can improve performance by reducing STLB misses.

Figure 1 depicts the operation of a system with STLB prefetching,
considering the most common scenario whereby a Prefetch Buffer
(PB) is used to store the prefetched PTEs and the prefetch logic is
engaged on STLB misses [26, 53, 79]. When an instruction or data



Morrigan: A Composite Instruction TLB Prefetcher MICRO '21, October 18�22, 2021, Virtual Event, Greece

Figure 1: System with STLB prefetching. Diamonds indicate
decision points, circles are actions.

memory access occurs, the corresponding �rst-level TLB is looked
up and, on a miss, the STLB is probed. In case the STLB misses,
the requested PTE is searched for in the PB. If the translation is
present in the PB, it is moved to the STLB, the page walk is avoided,
and the processor replays the request. On a PB miss, ademand
page walkis initiated to fetch the corresponding translation. In
case of either PB hit or miss, the STLB prefetcher is activated and
produces new prefetches. Each prefetch requires aprefetch page
walk to fetch the corresponding translation into the PB. Note that
(i) the prefetch page walks are triggered in the background, (ii)
prefetches are speculative events, thus only non-faulting prefetches
are permitted, and (iii) before issuing new prefetches, the prefetch
logic checks if the translation already resides in the PB, but not in
the STLB, since searching the STLB for duplicates would contend
with demand STLB accesses, potentially delaying the latter.

To the best of our knowledge, there is no previously proposed
instruction STLB (iSTLB) prefetcher. However, state-the-art data
STLB (dSTLB) prefetchers, discussed next, can also be used to at-
tempt to capture the iSTLB miss stream.

Sequential Prefetcher (SP).SP [53, 78] prefetches the PTE of the page
located next to the one triggered the STLB miss.

Arbitrary Stride Prefetcher (ASP).ASP [31, 53] targets varying stride
patterns. To do so, it uses a prediction table indexed by the PC of
the instruction that triggered the STLB miss.

Distance Prefetcher (DP).DP [53] correlates patterns with the dis-
tance between pages. To do so, DP uses a prediction table indexed
by the distance between the current and the previous missing pages.

Markov Prefetcher (MP).MP [53] targets irregular STLB patterns by
building Markov chains out of the STLB miss stream. MP employs
a prediction table with three �elds per entry; the virtual page for
indexing, and two prediction slots that store the pages of the PTEs
to be prefetched when a new STLB miss occurs on that page.

3 MOTIVATION
This section elaborates on the front-end bottleneck of servers and
motivates the need for new approaches that alleviate the instruction
address translation overheads, highlighting the potential perfor-
mance gains of applying instruction STLB (iSTLB) prefetching.

3.1 Front-end Bottleneck
Modern server workloads have massive instruction working sets
that span many levels of the software stack, making the front-end of
the processor a major performance pain point [47]. Indeed, recent
work from Google [54, 62] demonstrates that their server work-
loads face severe problems due to pressure on front-end structures.

Figure 2: iSTLB MPKI of Java server workloads from the Java
DaCapo [39] and Java Renaissance [71] benchmark suites.

Moreover, they highlight that the front-end bottleneck is increas-
ing, since most of these server applications exhibit high instruction
growth rates (� 20-30% per year), outpacing the growth in instruc-
tion cache and TLB sizes. Speci�cally, Kanevet al.[54] reveal that
the front-end stalls of the Google server workloads account for
15-30% of pipeline slots, with many workloads being starved for
instructions for 5-10% of cycles. Similarly, another recent work [65]
reveals that Facebook workloads experience serious bottlenecks
due to front-end stalls mostly caused by iSTLB misses.

To justify that instruction address translation is a signi�cant
bottleneck in server applications, we analyze the iSTLB behavior of
server applications from (i) the Java DaCapo suite [39] (cassandra,
tomcat, avrora, tradesoap, xalan), and (ii) the Java Renaissance suite
[71] (http, chirper). We run these server applications on an Intel
Skylake CPU with a 1536-entry STLB, and gathered performance
counters associated with the iSTLB accesses usingperf [17].

Figure 2 presents the iSTLB MPKI rates of these workloads. For
this experiment, we enable the Transparent Huge Page support to
use 2MB pages for data accesses while mapping the code pages into
2MB pages usinglibhugetlbfssince there is no transparent way to
map code pages into huge pages today (Section 5 elaborates on the
implications of using huge pages for code). We observe that, even
with huge pages, these applications experience high iSTLB MPKI
rates that range between 0.6 and 2.1, which results in over 5% of
their execution cycles spent in iSTLB miss handling.

Intuitively, the increasing instruction footprint of server appli-
cations a�ects the performance of the I-TLB as well as the STLB,
since more instruction page table entries (PTEs) must be allocated
to map the instruction working set of the applications. Hence, the
I-TLB experiences high MPKI rates and, as a result, more requests
for instruction address translations are sent to the STLB. Since the
STLB contains both data and instruction PTEs, there is increasing
contention between them. Higher contention leads to more fre-
quent STLB misses that must be resolved through a long-latency
page walk. However, iSTLB misses are more critical than data STLB
(dSTLB) misses because instruction references are on the critical
path of execution, while data misses can overlap the execution of
independent instructions in out-of-order processors. This is the rea-
son why processor vendors (i) employ larger I-TLBs than D-TLBs
(e.g.,Intel's Skylake 2018 chips have an 128-entry (8-way) I-TLB and
an 64-entry (4-way) D-TLB [27]), and (ii) keep increasing the STLB
size � from a 512-entry STLB for Sandy Bridge [5] to a 1024-entry
STLB for Haswell [6], and a 1536-entry STLB for Co�e Lake [9].

3.2 Analyzing Industrial Server Workloads
To validate the observations of Section 3.1, we analyze the instruc-
tion cache (I-cache) and TLB behavior of 45 industrial server work-
loads provided by Qualcomm (QMM) for CVP-1 [14] and IPC-1 [22].



MICRO '21, October 18�22, 2021, Virtual Event, Greece Vavouliotis, et al.

Figure 3: Instruction MPKI for front-end structures.

Figure 4: Cycles spent serving iSTLB accesses.

Figure 5: Accumulative distribution of deltas (absolute val-
ues) between pages that produce consecutive iSTLB misses.

The QMM workloads were also used in recent works on TLB man-
agement [61, 79]. We further study the SPEC CPU 2006 [2] and
SPEC CPU 2017 [10] benchmark suites. This analysis is conducted
using ChampSim [15] enhanced with a realistic x86 page table
walker. Section 5 explains in detail our experimental setup.

Figure 3 presents the average MPKI rates of the L1 I-cache, the I-
TLB, and the STLB (considering only the instruction misses) for the
SPEC and the QMM workloads. We observe that (i) the QMM work-
loads experience an order of magnitude more instruction misses
in the three hardware structures compared to the SPEC workloads,
corroborating the conclusions of prior industrial works from Google
[54, 62], presented in Section 3.1, and (ii) the iSTLB MPKI rates of
the QMM workloads are similar to the ones of the Java DaCapo
and Java Renaissance workloads (Section 3.1).

Focusing on the QMM workloads, we measured the fraction of
the STLB misses that are caused by instruction and data references.
We found that the iSTLB misses constitute 41.6%, on average, of
the total STLB misses (the rest 58.4% are dSTLB misses). We further
measured that the average page walk latency of iSTLB and dSTLB
misses is 69 cycles and 112 cycles, respectively. Higher page walk
latency is observed for the dSTLB misses because the data footprint
is larger than the instruction footprint, thus, data PTEs experience
worse cache locality than the instruction PTEs, resulting in higher
page walk latencies. However, unlike dSTLB misses � whose latency
can be partially hidden by exploiting ILP and MLP in out-of-order
cores � iSTLB misses cause unavoidable pipeline stalls. Hence,
iSTLB misses constitute an important performance bottleneck in
server workloads.

Intel's VTune pro�ler [1, 3, 7, 42] considers instruction address
translation as a bottleneck when the stall cycles due to iSTLB ac-
cesses represent more than 5% of the total execution cycles. Figure 4
shows the cycles spent serving iSTLB accesses as a percentage of the
total execution cycles for the QMM workloads. We observe that the
QMM workloads spend 6.6%-11.7% of their execution cycles serving
iSTLB requests, exceeding the 5% threshold. Therefore, instruction
address translation is a bottleneck for the QMM workloads.

Figure 6: Instruction pages sorted by STLB miss frequency.

Figure 7: Number of successor pages per instruction page
that misses in the STLB.

3.3 Understanding the iSTLB Misses
To understand the behavior of iSTLB misses, Figure 5 depicts the
accumulative distribution of deltas (absolute values) between pages
that produce consecutive iSTLB misses for the QMM workloads in
order of increasing deltas. While we observe a wide distribution of
deltas, we note that small deltas occur frequently (e.g., deltas from
1 to 10 account for 19% of the total deltas).

Finding 1. iSTLB misses have only limited spatial locality mostly
restricted to a small region around the triggering miss.

Next, we analyze the distribution of iSTLB misses. Figure 6 plots
the accumulative distribution of iSTLB misses per page in order of
decreasing page occurrence frequency, considering a set of repre-
sentative QMM workloads. The rest of the QMM workloads follow
a distribution that is either close or in between the ones presented
in Figure 6. We observe that a small number of pages is responsible
for a signi�cant fraction of all iSTLB misses. Speci�cally, 400-800
pages cause 90% of the iSTLB misses across all QMM workloads.

Finding 2. Most iSTLB misses can be attributed to a modest number
of instruction pages.

We de�nesuccessor pageas a page immediately following a given
page in the iSTLB miss stream.2 Figure 7 shows a breakdown of the
average number of successors per each instruction page that missed
in the STLB, across all QMM workloads. It can be observed that (i)
a signi�cant fraction of instruction pages has only 1 or 2 successor
pages, (ii) the percentage of instruction pages that have up to 4 and
up to 8 successor pages is also large, and (iii) only a small number
of instruction pages have more than 8 successor pages.

Figure 7 reveals that a signi�cant fraction of the instruction pages
has more than 2 and up to 8 successors. However, to alleviate the
instruction address translation bottleneck, it is natural to mainly
focus on the instruction pages that miss the most in the STLB.
Figure 8 shows the probability of accessing a speci�c successor for
the top 50 instruction pages that miss the most in the STLB, across

2Page Y is a successor of page X if an iSTLB miss on page X is immediately followed
by an iSTLB miss on page Y.



Morrigan: A Composite Instruction TLB Prefetcher MICRO '21, October 18�22, 2021, Virtual Event, Greece

Figure 8: Probability of accessing the same successor page
after an iSTLB miss for a given page.

all QMM workloads. On average, 51% of the time the most-frequent
successor is accessed after an iSTLB miss, while 21% and 11% of
the time the same second and third most-frequent successors are
accessed after a miss, respectively. The remaining 17% of the times,
the access after a miss is to a less-frequent successor page.

Finding 3. Instruction pages that miss frequently in the STLB have
only a few likely successor pages whose reference probability is high.

3.4 Can Existing dSTLB Prefetchers Help?
Followingly, we measure the e�ectiveness of the prior dSTLB prefe-
tchers (SP, ASP, DP, MP), presented in Section 2.1, on the iSTLB
miss stream. We set the con�guration parameters of each dSTLB
prefetcher as proposed in the original papers, the prefetched PTEs
are placed into a 64-entry Prefetch Bu�er (PB), and new prefetch
requests are issued on iSTLB misses (Section 2.1). Figure 9 illus-
trates the performance of the existing dSTLB prefetchers when
prefetching for the iSTLB miss stream, including the performance
of an idealized scenario; a Perfect STLB for instruction accesses
where all iSTLB lookups are hits (Perfect iSTLB). This ideal scenario
quanti�es the upper bound for the performance improvement by
optimizing STLB operation for instruction references.

The ideal scenario (Perfect iSTLB) delivers a geometric speedup
of 11.1%. Meanwhile, dSTLB prefetchers provide negligible speedups
because they are mainly unable to capture the iSTLB miss patterns.
SP improves performance by 1.6% because some of the instruction
accesses are sequential but it fails at capturing the complex delta
patterns (Figure 5). ASP and DP provide almost no speedup be-
cause they use features (PC and distances, respectively) that do not
correlate well with the iSTLB misses, thus, their prediction tables
experience massive con�icting accesses (96.3% and 93.7%, respec-
tively). Intuitively, we were expecting MP to improve performance
since Figure 7 shows that the instruction pages that miss in the
STLB have a small number of successors pages. Yet we observe that
MP performs poorly, improving performance by a mere 0.2%.

To explain the poor performance of MP and examine its potential
for iSTLB prefetching, we evaluate two idealized versions of MP;
both versions have an unbounded prediction table that accommo-
dates all instruction pages that miss in the STLB. The two only di�er
in the number of successor pages they can store per prediction table
entry; one version maintains up to two successors, and the other
can store any number of successor pages per entry. The unbounded
MP with two and in�nite successor pages per prediction table entry
deliver 7.9% and 10.3% geomean performance, respectively.

There are two important conclusions from this study. First, in-
creasing the number of entries in the prediction table signi�cantly
improves MP's performance (from 0.2% speedup with the baseline
having a 128-entry prediction table to 7.9% speedup with in�nite

Figure 9: Performance comparison between state-of-the-art
dSTLB prefetchers and an ideal scenario.

Figure 10: Performance of FNL+MMA with and without tak-
ing into account instruction address translation. The base-
line system utilizes the next-line I-cache prefetcher.

number of prediction table entries). Our analysis indicates that the
replacement policy of MP is one of the reasons why MP does not
improve performance with practical prediction table sizes. Since
MP uses the LRU policy we conclude that recency is not a useful
feature for replacement decisions. Secondly, accommodating mul-
tiple successors per page, beyond just two, further increases the
speedup from 7.9% to 10.3%, which approaches the ideal of 11.1%.

Finding 4. A Markov prefetcher has potential for iSTLB prefetching
but it requires dynamically building variable length Markov chains
out of the iSTLB miss stream in a storage-e�cient manner and an
e�ective replacement policy for its prediction table.

3.5 Instruction Cache Prefetching
Modern I-cache prefetchers may trigger instruction prefetches
across page boundaries [22]. When that happens, if the correspond-
ing translation is absent in the TLB, a page walk is triggered. Hence,
I-cache prefetchers implicitly work as instruction TLB prefetchers;
however, their e�ectiveness in this role has not been analyzed.

To quantify how e�ective state-of-the-art I-cache prefetchers
are at prefetching for the iSTLB miss stream, we consider the three
top performers of the IPC-1 contest: EPI, FNL+MMA, and D-Jolt.
IPC-1 infrastructure does not model instruction address translation,
i.e., all I-cache prefetches that cross page boundaries are translated
without cost. We extend the IPC-1 infrastructure to consider address
translation costs (Section 5) and con�gure the IPC-1 prefetchers
to store in the STLB PB the PTEs of the beyond-page-boundaries
prefetches, thus providing iSTLB prefetches.

Our analysis indicates that FNL+MMA outperforms the other
IPC-1 prefetchers when address translation is taken into account,
thus we focus on this I-cache prefetcher. Figure 10 shows the per-
formance of FNL+MMA. Line FNL+MMA+TLB (FNL+MMA) shows
the measured performance of the prefetcher when instruction ad-
dress translation is (is not) considered. When address translation
is taken into account (FNL+MMA+TLB), we observe signi�cantly
lower speedups than the ones reported in IPC-1. This degradation
comes from the instruction prefetches that cross page boundaries



MICRO '21, October 18�22, 2021, Virtual Event, Greece Vavouliotis, et al.

and fail to �nd the corresponding translation in the TLB hierarchy,
thus requiring long-latency page walks to fetch it. Such prefetches
hurt the timeliness of the FNL+MMA and delay demand STLB
accesses by occupying the page table walker ports, resulting in
poor performance. Moreover, we observe only a small reduction
(29.6% on average) in demand iSTLB misses because FNL+MMA is
unable to cover iSTLB misses due to their poor timeliness in the
face of long-latency page walks that require serialized memory
accesses. Therefore, state-of-the-art I-cache prefetchers require a
smart iSTLB prefetcher to e�ectively cross page boundaries.

Finding 5. I-cache prefetchers are mainly ine�ective at reducing
iSTLB misses due to poor timeliness.

4 MORRIGAN
To alleviate the instruction address translation performance bot-
tleneck, this paper proposesMorrigan(Irish goddess of destiny), a
composite iSTLB prefetcher. Morrigan is fully legacy-preserving
and does not disrupt the existing virtual memory subsystem. Morri-
gan is also synergistic with I-cache prefetchers as it improves their
timeliness when they cross page boundaries.

4.1 Design
Morrigan is inspired by our analysis �ndings regarding the iSTLB
miss behavior (Section 3) and consists of two complementary mod-
ules: theIrregular Instruction TLB Prefetcher (IRIP)which builds and
stores Markov chains out of the iSTLB miss stream, and theSmall
Delta Prefetcher (SDP), an enhanced sequential prefetcher. Sections
4.1.1 and 4.1.2 present the IRIP and SDP modules while Section 4.2
explains the operation of Morrigan.

4.1.1 Irregular Instruction TLB Prefetcher (IRIP).The IRIP module
is designed as a Markov prefetcher since our analysis indicates that
a Markov prefetcher has potential for iSTLB prefetching (Finding
4, Section 3.4). Speci�cally, IRIP is an ensemble of four table-based
Markov prefetchers that e�ciently build and store variable length
Markov chains from the iSTLB miss stream. IRIP also takes into
account the variable number of successor pages (Figure 7) of the
instruction pages that miss in the STLB. Designing IRIP as a Markov
prefetcher with a single prediction table and a �xed number of
successors per entry�as the state-of-the-art MP does (Section 2.1)�
results in suboptimal performance gains (Section 6.3).

IRIP employs four prediction tables (PRT-S1, PRT-S2, PRT-S4,
PRT-S8) that dynamically build a store variable length Markov
chains from the iSTLB miss stream. Each prediction table entry
stores up to a pre-de�ned number of successors; PRT-S1, PRT-S2,
PRT-S4, and PRT-S8 accommodate instruction pages that have one,
two, up to four, and up to eight successor pages, respectively. Each
prediction table is realized as a set-associative bu�er and stores the
virtual page of the missed instruction for indexing,sprediction slots,
andscon�dence counters, one per prediction slot. For example, each
PRT-S2 entry hass=2prediction slots, ands=2con�dence counters.
The only di�erence in the design of the prediction tables is the
number of prediction slots and con�dence counters. For simplicity,
we illustrate in Figure 11 the design and the operation of PRT-S2.

A naive IRIP design would store the full virtual page number
(VPN) in each prediction slot (as the state-of-the-art MP [53] does).

Figure 11: Operation of IRIP on PRT-S2 hits.

However, such a design choice is expensive, storage-wise, since each
VPN requires 36 bits of state. To lower this storage cost, IRIP stores
the distances between the current and the previous virtual pages
that produced an iSTLB miss. This approach lowers the amount of
storage for the prediction tables without any performance loss.

The con�dence counters associated with the prediction slots
are exploited in a two-fold manner: (i) to drive the replacement
policy of the prediction slots,i.e., when all the prediction slots are
occupied and a new distance has to be placed in one of these slots,
the distance with the lowest con�dence is replaced, and (ii) the
distance with the highest con�dence is selected to apply spatial
prefetching, leveraging page table locality (Section 2). Speci�cally,
on PRT-S2 hits, IRIP issues one prefetch request per predicted dis-
tance of the hit entry. Each prefetch requires a page walk to fetch
the corresponding translation (Section 2.1). At the end of a prefetch
page walk, page table locality can be exploited to prefetch for free
the PTEs that share the cache line with the target PTE. However,
prefetching all the free PTEs in all prefetch page walks might harm
performance by fetching a lot of inaccurate prefetches. To mitigate
this problem, IRIP prefetches cache-line adjacent PTEs only for the
distance with the highest con�dence.

Figure 11 shows an operational example of PRT-S2, starting with
an iSTLB miss for virtual page 0xA1. Initially, a PRT-S2 lookup
takes place to determine if there is an entry corresponding to vir-
tual page 0xA11. In the example, the PRT-S2 lookup experiences a
hit. Hence, the predicted distances 17 and 2 of the hit entry are sep-
arately summed with the currently missed page (0xA1) to generate
new prefetch requests for pages 0xB2 and 0xA3, respectively2. In
parallel, IRIP �nds the predicted distance with the highest con�-
dence counter3. Since distance 2 has the highest con�dence value,
IRIP applies spatial prefetching for the prefetch 0xA34. Speci�-
cally, at the end of the prefetch page walk for 0xA3, IRIP leverages
page table locality to also prefetch the PTEs adjacent to the PTE of
0xA3 5. To update PRT-S2, IRIP calculates the distance between
the currently missed (0xA1) and previously missed (0xB5) virtual
pages and stores the outcome into a register6. Meanwhile, IRIP
�nds which of the predicted distances for the previously missed
virtual page has the lowest con�dence counter7. Since distance
666 has the lowest con�dence, IRIP replaces it with the current
distance for future reuse, while resetting the corresponding con�-
dence counter8. Finally, IRIP stores the currently missed virtual



Morrigan: A Composite Instruction TLB Prefetcher MICRO '21, October 18�22, 2021, Virtual Event, Greece

Figure 12: Design and operation of Morrigan. Diamonds indicate decision points, circles are actions.

page into the register holding the previously missed virtual page
to be used on the next IRIP operation9. Note that when Morrigan
operates, steps7 and 8 take place only for PRT-S8; for PRT-S1,
PRT-S2, and PRT-S4 Morrigan transfers the entry coupled with the
new distance into a prediction table with more prediction slots per
entry. Section 4.2 explains the operation of Morrigan in detail.

Updating the con�dence counters.When a prefetch is proved to
be accurate,i.e., it produces a hit that eliminates a demand page
walk, the con�dence counter of the corresponding prediction slot
is incremented by 1.

Replacement policy.A critical aspect of the IRIP design is the
replacement policy of the prediction tables. While previous table-
based dSTLB prefetchers, like MP [53], use the LRU policy, we �nd
that LRU does not keep the most useful entries in the prediction
tables because it is prone to lose track of important entries (Sec-
tion 3.4). Our analysis �ndings indicate that the miss frequency of
virtual pages is a good feature to correlate the iSTLB miss stream.
Therefore, we employ a frequency-based replacement policy for all
the prediction tables of IRIP which (i) maintains a frequency stack of
the iSTLB misses to drive the replacement of entries on prediction
table con�icts, similar to Least-Frequently-Used (LFU) policy, and
(ii) uses a random component that gives recently installed entries,
which have not yet accumulated a large number of hits, a chance to
persist when a replacement candidate is selected. This policy gives
IRIP the ability to adjust to phase-based behavior in workloads.
We refer to this policy as Random-Least-Frequently-Used (RLFU).
Finally, the complexity of RLFU is similar to LRU.

A problem with a frequency-based replacement policy is that
it may be slow to adapt to phase changes in application behavior
(e.g., when a page causes frequent iSTLB misses in one phase but
not in another). To avoid the associated performance pathologies,
Morrigan periodically resets the frequency stack to better identify
instruction pages causing the most iSTLB misses in a given interval.

4.1.2 Small Delta Prefetcher (SDP).SDP prefetches the PTE of the
virtual page adjacent to the missed virtual page, similar to SP [53].
SDP further exploits page table locality to prefetch all the adjacent

PTEs within the target cache line. In this way, SDP captures the
majority of the small-strided iSTLB misses (Finding 1, Section 3.3).

For instance, assume an iSTLB miss for page 0xA7. First, SDP
issues a prefetch request for page 0xA8 (0xA7+1). After the com-
pletion of the prefetch page walk for page 0xA8, SDP prefetches all
the PTEs that share the cache line with the PTE of page 0xA8. Note
that in this example, fetching the PTEs of pages 0xA7 and 0xA8
requires two separate page walks since the PTE of 0xA7 resides in
the last position of a cache line (0xA7 & 0x07) while the PTE of
0xA8 is stored in the �rst position within another cache line.

4.2 Operation of Morrigan
This section explains the operation of Morrigan, considering the
most common case where the iSTLB prefetcher is invoked on iSTLB
misses, and the prefetched PTEs are stored into a Prefetch Bu�er
(PB), as explained in Section 2.1.

Figure 12 illustrates the operation of Morrigan. When an iSTLB
miss occurs1, the requested translation is looked up in the PB2.
On PB misses, a demand page walk is initiated3 to fetch the corre-
sponding translation into the TLB4. On PB hits, the demand page
walk is avoided and the corresponding translation is transferred
from the PB to the TLB5, and in the background we increment the
con�dence counter of the prediction table entry that produced the
PB hit, if the prefetch was produced by the IRIP module6.

Morrigan is engaged in case of either PB hit or miss7. First,
Morrigan looks up in parallel all prediction tables (PRT-S1, PRT-S2,
PRT-S4, PRT-S8) of IRIP8 (step 1 in Figure 11). When there is a
hit in one prediction table (there is no duplication of entries in the
prediction tables, thus only one hit might occur), Morrigan gener-
ates one prefetch per valid prediction slot of the hit entry9 (step2
in Figure 11) of the corresponding prediction table. Before issuing
the prefetch requests, Morrigan checks whether the translations al-
ready reside in the PB10. For the prefetches that are already stored
in the PB the corresponding requests are discarded11. For the rest,
separate prefetch page walks are initiated to fetch the translations
12. At the end of the prefetch page walks the corresponding PTEs
are stored into the PB13. Then, Morrigan leverages page table



MICRO '21, October 18�22, 2021, Virtual Event, Greece Vavouliotis, et al.

locality to apply lookahead prefetching by fetching in the PB the
adjacent PTEs that are transferred together with the prefetched PTE
solely for the prefetch with the highest con�dence14 (steps3- 5
in Figure 11). When all the prediction tables of IRIP experience a
miss, Morrigan has to store the currently missed virtual page in one
of the prediction tables. Since this page does not have any valid pre-
diction, it is always placed in the PRT-S115 but it might be moved
into another prediction table if future STLB misses reveal that it has
multiple successor pages. If PRT-S1 is full, Morrigan uses the RLFU
policy to �nd a victim entry. Therefore, on prediction table misses
Morrigan is unable to produce prefetch requests based on the IRIP
module. At this point, SDP is activated and issues prefetches16 by
exploiting page table locality, which are eventually stored into the
PB 17. SDP is enabled only on IRIP misses, thus Morrigan does not
loose any potential for performance improvement since it produces
new prefetches on every iSTLB miss.

In case of either hit or miss in the prediction tables of IRIP,
Morrigan inserts the new predicted distance in one of the prediction
slots of the prediction table entry that accommodates the previously
missed virtual page18. If the previously missed page resides in one
of PRT-S1, PRT-S2, and PRT-S419 and the prediction slots are fully
occupied20, then instead of victimizing one of the prediction slots
we simply transfer this entry into the next prediction table that
has more prediction slots21; if it is full, Morrigan uses the RLFU
replacement policy to open up space for the transferred entry22.
Next, this entry is removed from the previous prediction table23. If
the previously missed page resides in the PRT-S8 and the prediction
slots are fully occupied24, the new distance is placed into the
prediction slot that has the lowest con�dence counter25. Note
that in step 19 we do not search all prediction tables to �nd the
previously missed page, but we use a register to store the identi�er
of the table that stores the previously missed page.

4.3 Additional Aspects

Operation on SMT Cores.Morrigan can operate under SMT colo-
cation by sharing the IRIP module among the threads. To do so, it
only requires a di�erent register per thread holding the virtual page
that produced the previous iSTLB miss (step9, Figure 11) to ensure
that each thread builds its own Markov chains without intermixing.

Context Switches.The prediction tables of the IRIP module must
be �ushed on a context switch. Their small sizes ensures that, fol-
lowing a context switch, they are quickly re�lled. SDP is stateless;
as such, it requires no action on a context switch.

Multiple Page Sizes.Sections 4.1 and 4.2 focus on a single page
size to describe the design and operation of Morrigan. This is not
a limitation of the design as multiple page sizes are supported
without any modi�cation. The page size is known only after address
translation, thus, Morrigan can issue two prefetches per request to
target 4KB and 2MB pages. Once the page size is known, Morrigan
discards the outcome of the prefetch page walk for the mismatched
page size. This approach does not add complexity in the design
since modern architectures support speculative page walks [67].

Page Replacement Policy and TLB Shootdowns. Morrigan sets the
access bit of all prefetched pages since the x86 memory consistency
model dictates that all TLB prefetches are obliged to do so [27].

Component Description

L1 I-TLB 128-entry, 8-way, 1-cycle, 4-entry MSHR

L1 D-TLB 64-entry, 4-way, 1-cycle, 4-entry MSHR

L2 TLB 1536-entry, 6-way, 8-cycle, 4-entry MSHR, 1 page walk / cycle

Page Structure 3-level Split PSC, 2-cycle.
Caches PML4: 2-entry, fully; PDP: 4-entry, fully; PD: 32-entry, 4-way.

Prefetch Bu�er (PB) 64-entry, fully assoc, 2-cycle

L1 I-Cache 32KB, 8-way, 4-cycle, 8-entry MSHR, next line prefetcher

L1 D-Cache 32KB, 8-way, 4-cycle, 8-entry MSHR, next line prefetcher

L2 Cache 512KB, 8-way, 8-cycle, 32-entry MSHR, SPP [57]

LLC (per core) 2MB, 16-way, 10-cycle, 64-entry MSHR

DRAM tRP=tRCD=tCAS=12, 12.8 GB/s

Branch Predictor hashed perceptron

Table 1: System con�guration.

Therefore, Morrigan does not complicate TLB shootdowns because
the information about the prefetched instruction PTEs is conveyed
to the OS as usual. Regarding the impact on the page replacement
policy, a prefetch is harmful for the page replacement policy if it is
evicted from the STLB PB without providing any hit and does not
belong to the active footprint of the application. Morrigan issues
prefetches based on the control-�ow behavior and does not permit
faulting prefetches, thus the probability of negatively a�ecting the
page replacement policy is negligible. To annihilate this probability,
Morrigan could issue a correcting page walk to reset the access bit
of the PTEs that are evicted from the PB without providing any hit.
These correcting page walks could be issued when the TLB MSHR
is not full to avoid delaying any other page walk.

Synergy with I-Cache Prefetching.Morrigan is complementary
to I-cache prefetchers because it prefetches instruction PTEs, thus
improving the timeliness of I-cache prefetches that go beyond page
boundaries by avoiding long-latency page walks (Section 3.5). Sec-
tion 6.5 quanti�es the performance gains of using Morrigan to
improve the timeliness of a state-of-the-art I-cache prefetcher.

Di�erent Architectures.We focus on x86 architectures; however,
architectural support for virtual memory used in x86 architectures
[23, 25] is similar to other architectures (e.g., ARM [8] and RISC-
V [11]). Thus, Morrigan would be applicable to these architectures.

Page Tables.Morrigan is compatible with a 5-level radix tree
page table [12], and may deliver higher performance gains because
the extra page table level might increase the page walk latency. If
a hashed page table [77, 82] is used, Morrigan would operate the
same since hashed page tables preserve page table locality.

TLB Prefetching Strategy.TLB prefetching schemes are typically
engaged on STLB misses and store the prefetched PTEs into a PB
(Section 2.1). Our analysis indicates that these two strategies have
a positive e�ect on performance. Nonetheless, Morrigan could be
also activated on STLB hits and prefetch directly into the STLB.

5 METHODOLOGY
Simulation Infrastructure. To evaluate Morrigan, we use the
latest version of ChampSim [15], a detailed simulator that models a
4-wide out-of-order processor. We extend ChampSim to simulate a
realistic x86 page table walker, modeling the variable latency cost
of page walks and also the variable number of memory references



Morrigan: A Composite Instruction TLB Prefetcher MICRO '21, October 18�22, 2021, Virtual Event, Greece

they require to complete. Speci�cally, we added a 4-level page
table, a page table walker, and a 3-level split PSC. The page table
walker supports up to 4 concurrent TLB misses, similar to Skylake
microarchitecture [27], while one page walk can be initiated per
cycle. Finally, our baseline uses the next-line I-cache prefetcher but
we also consider the I-cache prefetchers from IPC1 [22] in Sections
3.5 and 6.5. Table 1 summarizes our experimental setup.

We also extended ChampSim to simulate a dual-threaded SMT
core to evaluate our proposal under workload colocation. Every
cycle, a di�erent thread fetches one basic block of instructions. Our
SMT model fully accounts for the contention due to colocation in all
shared microarchitectural structures (TLBs, PSCs, cache hierarchy).

Our work focuses on 4KB pages, similar to prior work using the
QMM workloads [61]. So why not use huge pages to mitigate the
address translation overhead? Although pro�table when the appli-
cation exhibits high locality and the system is not fragmented, huge
pages are not a stop-gap solution to the address translation bottle-
neck for both data and code accesses. In practise, using huge pages
for data and code potentially hurts performance in datacenters
and exposes security vulnerabilities, as we explain below. Further-
more, the performance of legacy systems and cloud applications
that continue to use 4KB pages still matters for their users.

Huge pages have been shown to introduce performance patholo-
gies [29,59,83], particularly for servers. Another problem is the lack
of �exibility in memory management with huge pages compared
to standard 4KB pages [24, 50, 70]. Speci�cally, huge pages require
memory contiguity and defragmentation that is not guaranteed
in datacenters due to high uptimes and the fact that datacenters
handle thousands of diverse applications [24, 54, 81]. Indeed, [59]
demonstrates that memory defragmentation can result in tail la-
tency spikes and performance variability, both of which might nega-
tively impact the performance of datacenter applications. Moreover,
a recent work [24] shows that transparent 2MB support for data
pages is not adequate anymore and there is need for creating trans-
parent support for 1GB pages. Finally, [48] reveals that huge pages
can harm the performance of NUMA machines; this problem might
be ampli�ed with the advent of heterogeneous memories where the
OSes have to migrate data between fast and slow tiers of memory.

In addition to the above, concurrently supporting multiple page
sizes is a complex problem; this is the reason why Linux has support
for transparent 2MB pages only for data, which, in fact, took a long
time to be properly implemented [27]. Today, Linux does not have
support for 2MB transparent huge pages for code blocks. The only
way to map executable �les onto huge pages in Linux is to uselib-
hugetlbfs[4]. However,libhugetlbfsdoes not provide automatic and
transparent support for huge page code mappings since it requires
shaping the text layout in the application's address space [44]. In-
deed, a recent work [64] reveals that (i) mapping the.textsection of
server applications onto huge pages provides performance degra-
dation since it puts pressure on the limited number of L1 I-TLB
entries that can accommodate huge pages, and (ii) mapping too
many huge pages usinglibhugetlbfsin production machines makes
the Linux kernel misbehave as it becomes overwhelmed by the
need to relocate physical pages to satisfy requests for huge pages.

Another concern with mapping code in huge pages is that doing
so represents a security risk. Modern systems use Address Space
Layout Randomization (ASLR) to obstruct certain security attacks

Figure 13: Miss coverage of Morrigan for various budgets.

by making it di�cult for an adversary to predict target addresses.
Prior work has shown that using huge pages for code signi�cantly
diminishes the e�ectiveness of ASLR [34, 35, 46, 75]. Another se-
curity risk is the iTLB multihit [16] vulnerability that arises when
huge pages are used for code. Speci�cally, when an instruction fetch
hits multiple entries in the I-TLB it may incur a machine check error.
To mitigate this issue, cloud providers such as Microsoft Azure and
Amazon force all executable instruction pages to be mapped into
4KB pages [13, 18�21], removing the possibility of multiple hits.

For these reasons, we focus our evaluation on 4KB pages but
Morrigan is entirely compatible with larger page sizes (Section 4.2).

Workloads. We use a set of server workloads provided by Qual-
comm (QMM) for the CVP-1 [14] and IPC-1 [22] contests that were
previously used in other TLB-related research works [61, 79]. Work-
loads with an iSTLB MPKI of at least 0.5 are considered instruction
TLB intensive, thus our evaluation considers 45 instruction TLB
intensive QMM server workloads. Our simulations use 50 million
warmup instructions, then 100 million instructions are executed to
measure the experimental results, similar to prior work [61].

We also analyze the SPEC CPU 2006 [2] and SPEC CPU 2017 [10]
benchmark suites, but we �nd that these workloads have an iSTLB
MPKI of 0.5 or less, so they are not considered in our evaluation.
However, we use the SPEC CPU workloads in Section 3 to show that
we are consistent with the conclusions of previous works [54, 62].

Finally, datacenters colocate applications on SMT cores for better
CPU and memory utilization [54, 80]. To consider colocation, we
simulate a dual-threaded SMT core executing two di�erent QMM
workloads. Our evaluation (Section 6.6) considers 50 randomly
chosen pairs of QMM workloads.

6 EVALUATION
6.1 IRIP Module
The IRIP module of Morrigan is an ensemble of table-based hard-
ware Markov prefetchers. Therefore, the e�ectiveness of Morrigan
directly depends on the number entries in the prediction tables
(PRT-S1, PRT-S2, PRT-S4, PRT-S8) of the IRIP module. Each predic-
tion table entry requires 16 bits for storing a partial tag of the virtual
page for indexing, 15 bits per predicted distance of the prediction
slots, and a 2-bit saturating counter per predicted distance (Sec-
tion 4). Note that Sections 6.1.1 and 6.1.2 consider fully associative
prediction tables and a 64-entry Prefetch Bu�er (PB); Section 6.1.3
examines di�erent prediction table associativities and PB sizes.

6.1.1 Miss Coverage.Figure 13 presents the miss coverage of Mor-
rigan across all QMM workloads as a function of di�erent storage
budgets. Starting with small storage budgets, we observe a large
increase in the miss coverage of Morrigan as the storage budget



MICRO '21, October 18�22, 2021, Virtual Event, Greece Vavouliotis, et al.

Figure 14: Miss coverage of Morrigan when the prediction
tables of the IRIP module use di�erent replacement policies
for various storage budgets.

increases. However, after 5KBs, the miss coverage begins to plateau.
Going beyond 7.5KB of storage budget provides negligible bene�ts.

6.1.2 Replacement Policy.The prediction tables of the IRIP module
use the RLFU policy (Section 4). To highlight the bene�ts of RLFU
we compare against the following alternatives: (i) LRU policy, (ii)
Random policy, and (iii) LFU policy that replaces the least frequently
accessed entry. Figure 14 shows the miss coverage of Morrigan
when the IRIP module leverages the above explained replacement
policies as a function of di�erent budgets, similar to Section 6.1.1.

Looking at Figure 14, we observe that the RLFU replacement
policy provides signi�cantly higher miss coverage than the other
replacement policies when the prediction tables of the IRIP module
accommodate a small number of entries. As the size of the prediction
tables increases, the miss coverage gap between RLFU and the other
policies shrinks because the prediction tables can store the majority
of the virtual pages that produce iSTLB misses (Sections 3.3 and
3.4), thus making the replacement policy irrelevant.

Considering Morrigan with 3.76KB of storage budget, Figure 14
reveals that the LRU and Random replacement policies provide the
lowest miss coverage since the former evicts useful entries based
on their recency position and the latter randomly selects victims
without any insight. The LFU replacement policy provides higher
coverage than LRU and Random replacement policies, highlighting
that the iSTLB miss stream correlates well with the miss frequency
of the virtual pages. Finally, the RLFU policy improves miss cov-
erage over the LFU policy by 4.9%. This happens because RLFU
randomly replaces one of the least recently used entries, acting like
a second-chance policy for not yet frequently accessed entries.

6.1.3 Configuring IRIP.Taking into account the results of Sections
6.1.1 and 6.1.2, we conclude that there is a cost-performance trade-
o� in the design space of Morrigan. For the rest of the paper, we
focus on the con�guration of Morrigan with 3.76KB of storage
budget, which achieves 81% miss coverage (Figure 13). We select
this con�guration because it represents an attractive point in terms
of miss coverage and required storage budget.

Using the above selected version of Morrigan, we evaluated
di�erent capacities and associativities for the prediction tables of
IRIP. Empirically, we found the following preferred con�guration:
128-entry (32 ways) PRT-S1, 128-entry (32 ways) PRT-S2, 128-entry
(32 ways) PRT-S4, and a 64-entry (16 ways) PRT-S8. Among the
prediction tables, PRT-S8 is the smallest one because the number of
instruction pages that have more than 4 and up to 8 successors is

Figure 15: Performance comparison between Morrigan and
the state-of-the-art data STLB (dSTLB) prefetchers.

lower than the number of instruction pages that have 1, 2, and up
to 4 successor pages (Section 3.3) and the probability of accessing a
non frequent successor page is relatively low (Figure 8). Finally, the
empirically selected con�guration provides a miss coverage of 76%
(5% lower than the version with fully associative prediction tables).

Regarding the PB size, we consider a 64-entry PB because a PB
with 16 or 32 entries provides rather poor miss coverage compared
to the 64-entry PB (4%-12% reduction), whereas a 128-entry PB
increases coverage by 2% compared to the 64-entry PB.

6.2 ISO-Comparison with dSTLB Prefetchers
This section compares Morrigan with the state-of-the-art dSTLB
prefetchers (Section 2.1) that are con�gured to prefetch for the
iSTLB miss stream, similar to Section 3.4. To make a fair comparison,
we set the con�guration parameters of these prefetchers in such a
way that they match the storage budget of Morrigan (3.76KB).

Performance Comparison.Figure 15 shows the performance com-
parison between Morrigan and the dSTLB prefetchers. The baseline
considers the system without STLB prefetching. SP, DP, ASP, MP,
and Morrigan provide a geometric speedup of 1.6%, 0.1%, 0.4%, 0.7%,
and 7.6%, respectively. Morrigan signi�cantly outperforms all pre-
viously proposed dSTLB prefetchers because the QMM workloads
exhibit highly complex patterns that the dSTLB prefetchers are
unable to capture. Speci�cally, SP captures only the sequential pat-
terns, DP and ASP experience massive con�icts in their prediction
tables, and MP uses the LRU policy that fails at keeping in the
prediction table the most useful instruction pages (Section 3.4).

In terms of PB hits provided by the two modules of Morrigan
(IRIP and SDP), we measured that 93% of the prefetches that hit in
the PB were triggered by the IRIP, while the remaining 7% by SDP.

Cost of Prefetching & Analysis.Figure 16 presents the distribu-
tion of the normalized number of memory references triggered
by demand and prefetch page walks for Morrigan and the prior
dSTLB prefetchers. For the purposes of this study, the termmem-
ory referencerefers to a page walk reference that is served by the
memory hierarchy (L1, L2, LLC, DRAM). Note that (i) we take into
account cache locality in page walks (Section 5), and (ii) a page
walk memory reference is triggered only for references that miss
in the PSC, which we also model. The normalization factor, 100%
in Figure 16, is the number of memory references due to demand
page walks without STLB prefetching.

SP, ASP, DP, MP, and Morrigan reduce the memory references
due to demand page walks by 11%, 1%, 2%, 8%, and 69%, respectively.
Regarding the prefetch page walks, SP, ASP, DP, MP, and Morrigan



Morrigan: A Composite Instruction TLB Prefetcher MICRO '21, October 18�22, 2021, Virtual Event, Greece

Figure 16: Normalized page walk memory references.

Figure 17: Performance of Morrigan when the IRIP module
uses an ensemble of four tables (Morrigan) versus a single-
table design (Morrigan-mono).

trigger 20%, 1%, 6%, 7%, and 117% additional memory references due
to prefetch page walks with respect to the baseline, respectively.

The prior dSTLB prefetchers do not reduce demand page walk
memory references for instructions, so they provide negligible per-
formance improvements, as Figure 15 shows. They also introduce
only a small number of memory references for prefetch page walks
because (i) SP issues only one prefetch per iSTLB miss, (ii) ASP
and DP experience a lot of con�icting accesses in their prediction
tables which does not allow them to produce prefetch requests, and
(iii) MP leverages the LRU replacement policy that fails at keeping
the most useful entries in the prediction table; on prediction table
lookup misses, no prefetches are issued.

While Morrigan does generate more memory references for
prefetch page walks than the existing dSTLB prefetchers, it achieves
much higher coverage than the prior designs. Indeed, Morrigan
reduces the memory references for demand page walks by 69% due
to its high coverage. The vast majority of memory references due
to prefetch page walks are caused by the IRIP module since the SDP
module (i) issues only one prefetch at a time that requires a prefetch
page walk, and (ii) is enabled only when the IRIP module is unable
to issue prefetch requests (Section 4.1.2). However, the demand page
walks are responsible for the iSTLB performance bottleneck since
they take place on the critical path of execution causing unavoid-
able pipeline stalls, while the prefetch page walks are performed in
the background without stalling the pipeline execution.

Finally, we examine the fraction of prefetch page walk mem-
ory references served by each level of the memory hierarchy. We
�nd that 20%, 25%, 45%, and 10% of Morrigan's prefetch page walk
memory references are served by L1, L2, LLC, and DRAM, respec-
tively. Hence, the large reduction of demand page walk memory
references that Morrigan achieves, lowers the instruction address
translation overhead, thus providing signi�cant performance gains.

6.3 Comparing Di�erent IRIP Designs
This section highlights the bene�ts of using multiple prediction
tables with di�erent number of prediction slots per entry for the

Figure 18: Performance comparison with other approaches
that improve TLB performance.

IRIP module over the state-of-the-art approach that uses a single
prediction table with �xed number of successors per entry. To do
so, we implement Morrigan-monowhose operation is identical to
Morrigan but its IRIP module leverages a single prediction table
with a �xed number of successors per entry, as the state-of-the-
art MP [53] does. We opt to provide an ISO-storage comparison
between Morrigan and Morrigan-mono, so we con�gure the IRIP
module of Morrigan-mono with a 203-entry prediction table with
8 prediction slots per entry,3 and a 2-bit con�dence counter per
prediction slot to match the storage and the operation of Morrigan's
IRIP module.

Figure 17 reveals that Morrigan outperforms Morrigan-mono
(1.9% on average) across all the QMM server workloads. We observe
this behavior because Morrigan makes better use of the available
storage budget, hence tracking a much larger e�ective working set.
Whereas Morrigan dynamically tracks the required number of pre-
diction slots per instruction page and enables e�cient transferring
of entries between the prediction tables, Morrigan-mono accommo-
dates eight prediction slots per prediction table entry. Speci�cally,
Morrigan-mono tracks 203 entries and Morrigan e�ectively tracks
448 entries (128*3+64). Indeed, we �nd that Morrigan-mono re-
quires 6.9KB of storage to match the performance of Morrigan
having a 3.76KB storage budget.

6.4 Comparison with Other Approaches
Figure 18 compares Morrigan with other approaches that improve
TLB performance and the ideal case of the Perfect STLB for instruc-
tion references (Perfect iSTLB), as explained in Section 3.4.

ISO-Storage Comparison.We compare Morrigan against a system
that does not apply STLB prefetching but for fairness it is enhanced
with an enlarged STLB. Speci�cally, STLB is augmented with 388
additional entries to match the storage budget of Morrigan (includ-
ing the PB) without a�ecting its access time. Figure 18 shows that
Morrigan outperforms the this scenario by 4.1%.

Prefetching into TLB.Prior STLB prefetchers [38, 53] and patents
[26, 52] use a PB to store the prefetched PTEs. Figure 18 shows that
placing the prefetches of Morrigan directly into the STLB (P2TLB)
provides a 18.9% performance degradation because it causes STLB
pollution when the prefetches are inaccurate. Our results are con-
sistent with prior work [27, 38, 53] stating that prefetching directly
into the STLB causes pollution and performance degradation.

3The IRIP module of Morrigan-mono is enhanced with 8 prediction slots per prediction
table entry to make a fair comparison with the IRIP module of Morrigan since PRT-S8
can store up to 8 predictions per entry.


	Abstract
	1 Introduction
	2 Virtual Memory Subsystem
	2.1 Translation Prefetching

	3 Motivation
	3.1 Front-end Bottleneck
	3.2 Analyzing Industrial Server Workloads
	3.3 Understanding the iSTLB Misses
	3.4 Can Existing dSTLB Prefetchers Help?
	3.5 Instruction Cache Prefetching

	4 Morrigan
	4.1 Design
	4.2 Operation of Morrigan
	4.3 Additional Aspects

	5 Methodology
	6 Evaluation
	6.1 IRIP Module
	6.2 ISO-Comparison with dSTLB Prefetchers
	6.3 Comparing Different IRIP Designs
	6.4 Comparison with Other Approaches
	6.5 Synergy with I-Cache Prefetching
	6.6 Workload Colocation in SMT Cores

	7 Related Work
	8 Conclusions
	9 acknowledgements
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

	References

