
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2020)

Population-based Evolutionary Distributed SGD
Amna Shahab

University of Edinburgh
Boris Grot

University of Edinburgh

ABSTRACT
Neural model training is a time-consuming task where exploiting
parallelism is of utmost importance. Employing data-parallelism
in stochastic gradient descent (SGD) by partitioning the training
dataset is a popular approach; however, algorithmic inefficiencies
when operating at large minibatch sizes limit the degree of paral-
lelism, a problem termed the scalability limit. In the face of this
scalability challenge, we propose using Evolutionary Algorithms
(EA) as a meta-algorithm together with SGD for training neural
models. Our training scheme, Population-based Evolutionary SGD
(PESGD) combines local SGD training on each training node with a
periodic evolutionary step which selects the best performing mod-
els to generate a new population of models for the next iteration.
We believe that the complementarity of SGD and EA for neural
model training can be exploited well in PESGD.
CCS CONCEPTS
• Computing methodologies → Neural networks; Genetic al-
gorithms; Distributed artificial intelligence.

KEYWORDS
neural networks; machine learning; evolutionary algorithms

1 INTRODUCTION
Neural model training is a large-scale problem with immense com-
mercial value. Minibatch SGD is the de facto standard for the train-
ing of neural models. Unfortunately, the staggering time to train
the leading models hinders rapid testing and deployment. While
modern GPUs have enabled faster training of models, the time to
train large models on massive datasets remains intolerably high.

To reduce training times significantly, machine learning (ML)
practitioners employ multiple machines to run data-parallel mini-
batch stochastic gradient descent (DP-SGD). Indeed, recent works
report using up to 2K GPUs for distributed training [2]. At this scale,
frequent communication of model parameter gradients requires a
great deal of network bandwidth, resulting in high communication
latencies. In order to reduce communication frequency in DP-SGD,
large minibatches are processed per iteration. In fact, the minibatch
size in DP-SGD is increased proportionally to the number of GPUs.
Problematically, larger minibatches limit the model’s ability to gen-
eralize, hence requiring more passes over the dataset to reach target
accuracy [4] and exhibiting statistical inefficiency [5]. Researchers
at Google Brain recently demonstrated the effects of statistical inef-
ficiency in large minibatch DP-SGD on a diverse class of workloads,
concluding that DP-SGD fails to reduce the number of training
iterations beyond a critical minibatch size [10]. As statistical inef-
ficiency prevents DP-SGD from reducing the number of training
iterations and in turn total training time, the scalability of DP-SGD
is fundamentally limited.

Evolutionary algorithms (EA) have been employed in optimizing
model architectures [8] and training hyper-parameters [7]. At the

same time, EA offer an alternative to SGD in directly training the
parameters of neural models. This branch of research has observed
little attention and studies have been limited to modestly sized
models [9]. Instead of training and evaluating a single model as
in SGD using exact gradient values, an EA-based approach uses a
population of models (same architecture but different parameter
values), where the population presents an approximation of the
gradient. For models with a large number of parameters, researchers
believe that EA with approximate gradients are unable to match
the solution quality of SGD with exact gradients [9].

Despite the drawbacks, we observe that EA enjoy several funda-
mental advantages for scalable training of complex models. EA are
advantageous in optimization problems where the optimization sur-
face is highly complex and poorly understood [1]. More importantly,
EA are highly amenable to parallelism as they train independent
model instances in a population which communicate infrequently,
making them suitable for a large-scale distributed training envi-
ronment. Another critical advantage of training a population of
models, with each GPU (or a set of GPUs) training a different model
instance, is that there is no need to scale the minibatch size with
the number of GPUs.

Our insight is that EA can be used together with SGD as a meta-
algorithm for training neural models. This training arrangement
allows a higher degree of parallelism compared to DP-SGD by virtue
of training a model population. Each model in the population trains
independently of the other models using local SGD for a defined
number of epochs. The findings of the model instances are then
consolidated through an evolutionary step the output of which is
a new and better performing population of models. The overall
training is an iterative process which terminates when the best
performing model candidate meets the termination criteria.

Our key insight is that training with EA+SGD is inherently par-
allel, and thus is more suitable for an ultra large-scale distributed
training setup compared to simple DP-SGD. This arrangement has
the potential to significantly reduce model training time, which
will aid both research and product development.

2 OUR APPROACH
We observe that training multiple and distinct instances of the
model on different training GPUs (or set of GPUs) allows for high
throughput without increasing the effective minibatch size. The
principal challenge of such an approach lies in consolidating the
“learning” of the model instances. We find that this problem maps
exactly to population-based optimization scenarios where EA oper-
ate well. Employing EA together with SGD allows training multiple
model instances through SGD independently of each other, which
are then periodically consolidated using evolutionary operators. We
name this technique Population-based Evolutionary SGD (PESGD).

PESGD mechanics. PESGD works with a population of mod-
els. Initially, a population of neural models (same architecture but
different parameters) is generated – the population generation step



(a) Model population (b) Population mapping

(c) Evolution step
Figure 1: Model population creation and mapping in PESGD.

(figure 1(a)). Each model instance in a population is independently
trained using SGD locally (figure 1(b)), hence using the exact gradi-
ent values. Local SGD is run for a pre-defined number of epochs
over the entire training dataset – the SGD step. At the end of each
SGD step, all of the models in the population are evaluated using
the evaluation dataset – the evaluation step. The evaluation scores
are analogous to the "fitness" of each candidate model to the target
score or the "fitness target". Based on the obtained fitness scores,
the top performing models are selected as parents for the next pop-
ulation generation – the selection step. Using the selected parents, a
pool of models is then created making use of evolutionary operators
such as mutation and cross-over – the evolution step (figure 1(c)).
This pool of models is then installed as the new population for next
SGD step. The PESGD algorithm is summarized below.

while max(fitness_eval) < fitness_target:
do

1. Population generation step
2. SGD step
3. Evalution step
4. Selection step
5. Evolution step

done

PESGD benefits. PESGD combines the best of both SGD and
EA. First, each model in a population trains using local SGD for a
defined number of epochs. Operating on exact gradients with local
SGD during this period helps preserve precision in the search for a
good quality solution. In contrast, with an approximate gradient
(e.g., if using EA exclusively), the trajectory towards the eventual
solution can be longer.

Second, each model in the population runs a local SGD instance
meaning that the minibatch is confined only to that GPU. The
effective minibatch size, therefore, does not need to increase with
the population size or the number of training machines/units.

Third, each model in the population trains completely indepen-
dently of the other models during the SGD step. This naturally
eliminates worker stalling for each SGD iteration due to stragglers
which is a common problem in synchronous DP-SGD [6].

Finally, population-based training maps better to a distributed
training setup where network can often be the bottleneck. Within
PESGD, each SGD step is completely devoid of communication
over the network. The only communication is during the short
selection and evolution steps which is negligible in comparison to
the per-iteration communication in DP-SGD.

PESGD challenges. While SGD and EA provide complemen-
tary benefits for neural model training, careful selection of hyper-
parameters for each algorithm is imperative. Existing literature
provides extensive studies for hyper-parameter tuning of SGD [3],
and highlights the importance of the choice of hyper-parameters
for the SGD training trajectory. We believe that similar is true for
EA. A suitable selection of population size, evolution frequency,
evolutionary operators and population diversity will produce a
favourable PESGD trajectory.

3 CONCLUSION
The need for high-quality deep neural models mandates low train-
ing times to facilitate rapid exploration of a large number of po-
tential models. For example, training a model in a few hours as
opposed to a few weeks would qualitatively change the extent of
experimentation that both researchers and practitioners can af-
ford. State-of-the-art SGD-based training algorithms are ineffective
at leveraging additional hardware resources in a large-scale dis-
tributed setup to reduce training time. In response, we propose
supplementing SGD with a meta-algorithm, EA, which lends itself
to higher degrees of hardware parallelism. This training approach
has the potential to unlock unprecedentedly low model training
times through massive parallelism.

REFERENCES
[1] X. Cui et al. 2018. Evolutionary stochastic gradient descent for optimization of

deep neural networks. In NIPS. 6048–6058.
[2] X. Jia et al. 2018. Highly scalable deep learning training system with mixed-

precision: Training imagenet in four minutes. arXiv:1807.11205 (2018).
[3] Y. Jiang et al. 2019. Fantastic Generalization Measures and Where to Find Them.

arXiv:1912.02178 (2019).
[4] N. Keskar et al. 2016. On large-batch training for deep learning: Generalization

gap and sharp minima. arXiv:1609.04836 (2016).
[5] A. Koliousis et al. 2019. CROSSBOW: scaling deep learning with small batch

sizes on multi-gpu servers. VLDB 12, 11 (2019), 1399–1412.
[6] S. Li et al. 2018. Near-optimal straggler mitigation for distributed gradient

methods. In 2018 IEEE IPDPSW. IEEE, 857–866.
[7] I. Loshchilov and F. Hutter. 2016. CMA-ES for hyperparameter optimization of

deep neural networks. arXiv:1604.07269 (2016).
[8] R. Miikkulainen et al. 2019. Evolving deep neural networks. In Artificial Intelli-

gence in the Age of Neural Networks and Brain Computing. Elsevier, 293–312.
[9] G. Morse and K. O Stanley. 2016. Simple evolutionary optimization can rival

stochastic gradient descent in neural networks. In GECCO. 477–484.
[10] C. Shallue et al. 2018. Measuring the effects of data parallelism on neural network

training. arXiv:1811.03600 (2018).

2


	Abstract
	1 Introduction
	2 Our Approach
	3 Conclusion
	References

