
In Proceedings of 2020 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’20)

Evaluation of an InfiniBand Switch:
Choose Latency or Bandwidth, but Not Both

M. R. Siavash Katebzadeh
University of Edinburgh

Edinburgh, United Kingdom
m.r.katebzadeh@ed.ac.uk

Paolo Costa
Microsoft Research

Cambridge, United Kingdom
paolo.costa@microsoft.com

Boris Grot
University of Edinburgh

Edinburgh, United Kingdom
boris.grot@ed.ac.uk

Abstract—Today’s cloud datacenters feature a large number
of concurrently executing applications with diverse intra-
datacenter latency and bandwidth requirements. To remove
the network as a potential performance bottleneck, datacenter
operators have begun deploying high-end HPC-grade networks,
such as InfiniBand (IB), which offer fully offloaded network
stacks, remote direct memory access (RDMA) capability, and
non-discarding links. While known to provide both low latency
and high bandwidth for a single application, it is not clear
how well such networks accommodate a mix of latency-
and bandwidth-sensitive traffic that is likely in a real-world
deployment.

As a step toward answering this question, we develop a
performance measurement tool for RDMA-based networks,
RPerf, that is capable of precisely measuring the IB switch
performance without hardware support. Using RPerf, we
benchmark a rack-scale IB cluster in isolated and mixed-
traffic scenarios. Our key finding is that the evaluated switch
can provide either low latency or high bandwidth, but not
both simultaneously in a mixed-traffic scenario. We evaluate
several options to improve the latency-bandwidth trade-off and
demonstrate that none are ideal.

Keywords-InfiniBand, Datacenter Networks, Quality-of-
Service

I. INTRODUCTION

Cloud datacenters feature an ever-growing mix of
traditional and emerging applications that place high-
performance demands on the datacenter network. Some
applications, including those relying on disaggregated mem-
ory [1]–[6] and distributed in-memory storage [7]–[15],
mandate ultra-low network latency to provide the illusion
of a scale-up system. These applications produce short
flows with small message sizes and are responsible for
a minority of bytes sent/received inside a datacenter. In
many instances, such as memory disaggregation, achieving
the lowest possible per-packet latency (on the order of a
few microseconds) is critical to the success of a service
[1]. In such scenarios, increased network latency directly
translates to diminished service quality. Moreover, if the
processing is distributed across multiple nodes, it is not
enough to achieve low average latency as the slowest node

determines the actual latency of task completion. For that
reason, tail latency (e.g., 99th or 99.9th percentile) is the
metric of interest [16]. Meanwhile, other applications, such
as big-data analytics using Hadoop or Spark [17]–[19],
distributed machine-learning training [20]–[25], data backup
and VM migrations, employ a bulk communication model
that requires exchanging large amounts of data among the
nodes, necessitating high bandwidth.

To meet the network latency and bandwidth needs, data-
center operators [26] have begun deploying high-end net-
working solutions in the form of InfiniBand (IB) [27].
Initially developed for the HPC domain, these networks tend
to combine custom fully offloaded network stacks, RDMA
capability and lossless links to provide high end-to-end per-
formance. A number of recent works have demonstrated that,
indeed, IB-based deployments can offer low latency (order
of microseconds) and high bandwidth for a given cloud
application, such as a distributed in-memory KVS [12],
[28]–[30]. In most of these cases, network parameters are
tuned for an individual application to harness the maximum
potential of an IB fabric [31]. In practice, however, in public
and private datacenters, multiple applications with different
latency and bandwidth demands might coexist in a cluster
and share the network [32].

In this work, we aim to answer the following question:
How well do the existing IB switches support the resulting
mix of latency- and bandwidth-intensive traffic?

To answer this question, we study a rack-scale IB de-
ployment with a single top-of-rack (ToR) switch, which
represents the simplest fieldable cluster setup. Evaluating
a switch in such a rack-scale setup requires an accurate
measurement methodology, which is able to assess the
latency of the switch under stress in isolation (i.e., without
end-point processing overheads). We observe that existing
performance measurement tools for RDMA-based networks
suffer from end-point (local and remote) processing over-
heads that impact precise latency measurement.

To mitigate these overheads, we develop RPerf, a high-
precision RDMA performance measurement tool. RPerf



overcomes deficiencies of existing tools to precisely measure
latency and avoids the need for expensive hardware-based
solutions or support for hardware timestamping on the NICs.

Using RPerf, we observe that our IB setup achieves
very low latency in an unloaded network, corroborating
prior work. We are further able to achieve consistently
high bandwidth utilization while varying the number of
bandwidth-intensive flows. However, we find that our IB
switch is unable to provide low latency to a latency-sensitive
flow in the presence of bandwidth-intensive flows. To enable
low latency without compromising throughput, we consider
several strategies, including using different packet sizes and
priority levels but find all evaluated techniques deficient.
We also use an IB switch simulator to explore different
packet scheduling policies in the IB switch and observe that
readily-available packet scheduling policies, such as First
Come First Serve and Round-Robin, are unable to guarantee
performance isolation for both latency- and bandwidth-
intensive flows.

Based on our findings, we conclude that the contemporary
IB gear (NICs and switch) used in our evaluation may be
effective for applications with homogeneous traffic, but is
unable to accommodate heterogeneous demands of modern
datacenters.

The rest of the paper is structured as follows: Section
II provides essential background information about IB and
RDMA. Section III first explores the challenges in perfor-
mance measurement of RDMA-based networks, then re-
views existing measurement tools and their pitfalls. Section
IV introduces an accurate micro-benchmarking tool, which
provides sub-microsecond precision measurement. Section V
describes our experimental setup. Section VI evaluates the
latency and bandwidth of one-to-one setup, with and without
our IB switch. Section VII evaluates the IB switch in the
presence of mixed-type flows. Section VIII shows different
approaches we take to satisfy both latency and bandwidth
demands and describes the weaknesses of each approach.

II. BASICS OF INFINIBAND AND RDMA

To answer the need for both high-performance and low-
latency, datacenter operators have started deploying high-
performance network gear such as IB. In an IB fabric,
servers are equipped with RDMA-enabled NICs (RNICs),
which connect servers through IB switches. By providing
support for RDMA capability, IB removes network software
stack overheads, eliminates context switches and avoids
the need for software execution on the remote CPU. High
bandwidth, data integrity and reliability are other important
aspects that make IB well suited for high-end datacenter
networks.

Several factors impact the performance of an IB network,
including the type of RDMA primitives, the choice of
transport and the quality-of-service (QoS) configuration. In

this section, we provide some background on these factors
and explain how they interact with each other.

A. RDMA verbs

In RDMA terminology, a verb defines the type of a
communication operation. There are two types of verbs:
two-sided (SEND, RECV) and one-sided (READ, WRITE).
Two-sided verbs involve both communication end-points. In
such a communication, the remote host needs to pre-post
RECVs and the local host posts SENDs. In contrast, one-
sided verbs involve only one communication end-point (the
source). Thus, using a WRITE one-sided primitive, the local
host can write the data directly to the remote host’s memory
region. The local host can also use READ to fetch data
from the remote host memory region without notifying and
involving the remote host.

RDMA verbs follow the asynchronous I/O model, in
which data transfers are non-blocking, hence allowing the
application to continue execution before a posted request has
finished. With both one-sided and two-sided verbs, when a
request has finished, the RNIC (optionally) issues a com-
pletion signal (CQE) to an application-visible completion
queue to notify the host. The application can receive the
CQE signal by polling the completion queue.

B. RDMA transport

RDMA provides both unreliable (UD) and reliable (RC)
transport types. UD transport does not guarantee delivery of
requests. Moreover, UD provides only two-sided verbs. With
RC transport, the RNIC uses acknowledgments to guarantee
delivery of requests. In addition, RC transport supports both
one-sided and two-sided verbs.

C. RDMA execution path

Depending on the choice of RDMA verb and transport
type, an RDMA transaction follows a particular sequence
of interactions between the communicating hosts. Figure 1
illustrates a complete sequence of interactions between hosts
and RNICs for several RDMA verb and transport pairs.

At the start of each transaction, regardless of the type of
verb and transport used, the local host posts a request to the
local RNIC via an MMIO transaction over PCIe. Based on
verb type specified in the request, the local RNIC processes
the request as follows:

READ: The local RNIC sends the request over the net-
work fabric. The remote RNIC serves the request through a
DMA read from the host’s memory hierarchy and sends the
data back to the local RNIC. Upon receipt of the data, the
local RNIC issues a DMA write to store the data in local
memory. Following that, the local RNIC performs another
DMA write to issue a CQE (Figure 1a).

WRITE: First, the local RNIC fetches the payload through
a DMA read. Next, the request is sent over the network
fabric. The RNIC on the remote side performs a DMA write

2



Host RNIC RNIC Host

Local Remote

(a) READ operation using RC

Host RNIC RNIC Host

Local Remote

(b) WRITE operation using RC

Host RNIC RNIC Host

Local Remote

(c) SEND operation using UD

Host RNIC RNIC Host

Local Remote

(d) SEND operation using RC

Figure 1: RDMA operations execution sequence.

to store the data in its host’s memory and sends back an
ACK. Upon the receipt of the ACK, the local RNIC uses a
DMA write to issue a CQE (Figure 1b).

SEND: First, the local RNIC fetches the payload through a
DMA read. Then, the request is sent over the network fabric.
Once the remote RNIC receives the request, it sends back an
ACK (in case of using RC transport) and writes the payload
into its host’s memory through a DMA write. Depending on
the RDMA transport used by the SEND request, the local
RNIC issues a CQE either as soon as the request is sent
over the fabric (UD, Figure 1c) or once it receives the ACK
from the remote RNIC (RC, Figure 1d).

D. InfiniBand QoS support

To provide per-flow performance differentiation, IB pro-
vides a set of priority levels, called Service Levels (SLs) that
can be assigned to flows. For each SL, IB governs buffer
allocation, flow control, queuing and scheduling. SLs are
exposed to the application developer and are carried through
the network in the header of IB packets.

IB uses the abstraction of SLs to hide two of its architec-
tural components that help in achieving QoS:

1) Virtual Lane (VL): The concept of VLs allows a
physical link to be divided into different logical communi-
cation links, each with its own buffering, flow-control, and
congestion management resources. A VL arbiter controls
the bandwidth usage by selecting flows according to the
VL arbitration table. IB specification specifies that each port
must have a minimum of two and a maximum of 16 VLs
[27].

2) Virtual Lane Arbitration (VLArb): Every network com-
ponent in the subnet of an IB fabric has a Service Level to
Virtual Lane (SL2VL) mapping table which specifies the
VL and priority for each packet. The SL to VL mapping
and the priorities set for each VL are configurable in every
IB switch.

Further, because IB implements a hop-by-hop credit-
based flow control, whereby a sender does not send packets
beyond the credit amount that has been advertised by the
receive buffer on the opposite side of a link, the transport
layer guarantees lossless communication. The combination

Host RNIC RNIC Host

Local Remote

Local-side delays
Remote-side delays

IB Switch

Figure 2: Ping-pong style RTT calculation.

of differentiated services and credit-based flow control helps
IB achieve performance isolation.

III. IB SWITCH LATENCY MEASUREMENT

Thanks to fully offloaded network stack processing and
other high performance features summarized in Section II,
IB achieves sub-10 microsecond latency in an unloaded
network. Such low latency presents several challenges for
accurate NIC-to-NIC latency measurement.

The main challenge is isolating the latency of the switch
from other components, particularly the software and PCIe.
An ideal solution is to directly measure one-way port-to-port
latency through the switch; doing so, however, requires the
use of expensive data acquisition devices [33]. Another op-
tion is to use precise sub-microsecond clock synchronization
at the end-points [34]; however, this approach relies on the
assumption that one-way latencies in both directions are the
same, which is not the case under congestion, particularly
with a converged traffic pattern.

An alternative approach for latency measurement is a
ping-pong style test to find the round-trip time (RTT) in
software (Figure 2). Problematically, RTT calculation can
be biased by remote-side processing, which is required to
generate and transmit the response packet at the remote end.
Such remote-side processing includes the software overhead
for generating the response and the PCIe transactions nec-
essary for transferring data to/from the RNIC. This remote-
side processing delay does not reflect true network latency

3



and, as such, should be excluded from the measurement. In
addition, RTT calculation suffers from local-side process-
ing delays. Local-side processing includes multiple PCIe
transactions that the local RNIC performs to fetch data
from the host memory, putting the data into packets and
enqueuing packets. As software captures the posting time of
a request not transmiting time, the calculated RTT includes
PCIe transactions, RNIC processing and queuing delays, and
results in biased measurement.

Related work

While several methodologies and tools are available for
measuring the performance of datacenter networks [34]–
[37], only a few RDMA-based tools are available for mea-
suring the latency over an IB fabric. Unfortunately, none of
the existing tools can precisely measure the latency of an IB
switch, particularly under load.

RDMA Bench [38] benchmarks an RDMA-based fabric
from the application layer and does not isolate the NIC-to-
NIC latency. Perftest [39] consists of a collection of micro-
benchmarks that use a ping-pong latency measurement ap-
proach. In Perftest, the remote-side responds to a ping with a
pong generated in software; consequently, it suffers from the
remote-side processing problem. QPerf [40], another micro-
benchmarking tool, calculates the RTT at a high load using a
post-poll measurement approach. In the post-poll approach,
a QPerf client posts a WRITE request and then polls for the
completion of the request; therefore, the QPerf server does
not respond to the request in software. Such an approach
removes the remote-side software overhead; however, it still
includes the PCIe delays for DMA-ing the data into remote
memory, which is required for a WRITE request (Figure 1b).
QPerf also fails to perform precise tail latency measurement
(it does not track per packet latency) and only reports the
average latency. The accuracy of both Perftest and QPerf
is further diminished because both tools include the local-
side processing delays in their measurements. To conclude,
existing measurement tools fail to factor out local-side
and/or remote-side processing overheads, which impedes
their ability to accurately measure the latency through the
switch.

IV. RPERF

As existing methodologies fail to provide accurate latency
estimates through an IB switch, we propose RPerf, a micro-
benchmarking tool capable of precisely measuring latency
of an IB switch across a range of loads.
RPerf design details: RPerf measures the RTT between
local and remote hosts, and leverages RDMA verbs in order
to accurately measure the latency without including end-
point delays. We next describe key aspects of RPerf’s design.

1. Excluding remote-side processing: In order to exclude
all software overheads at the remote end, RPerf adopts the
post-poll approach, in which only the local host posts a

Host RNIC RNIC Host

Local Remote

Time

RTT

TP

TL

TW

TCQE

TCQE

IB Switch

Over-the-wire message
Loopback message

Figure 3: RTT calculation by RPerf.

request and polls for the completion. By leveraging the RC
transport, in which the remote RNIC generates a response
without involving the destination host, RPerf avoids software
processing overheads at the remote end. To exclude the
PCIe latency on the remote end, RPerf uses the SEND verb.
SENDs cause the remote RNIC to generate a response to
the source RNIC immediate upon the receipt of the request
and without waiting for the PCIe transaction to complete at
the remote end (see Figure 1d).

The combination of using post-poll and RDMA SENDs
avoids biasing latency measurements with remote-side soft-
ware overheads and PCIe delays.

2. Excluding local-side processing: When the application
posts a request using one of the IB verbs, the RNIC handles
the request asynchronously and the control returns to the
application. Meanwhile, the host sends the request to the
local RNIC through PCIe and the local RNIC performs a
DMA read to fetch the data for the SEND operation (Figure
1d). After fetching data, the local RNIC processes, enqueues
and eventually transmits the request. The sum of latencies
incurred by these actions at the local host and the RNIC
make up the local-side processing overhead.

In order to avoid including local-side processing delays
into RTT, RPerf calculates local-side processing overhead
for every SEND request so that it can be excluded from the
measurement of the switch latency. To do so, RPerf leverages
loopback messages, which are messages that are sent from a
host to itself via the local RNIC. Specifically, after sending
a SEND to the destination host (which we call an over-
the-wire SEND), RPerf immediately generates a loopback
SEND request at the local host and times it. The latency of
the loopback request is the local-side processing overhead,
which can then be subtracted from the latency of the over-
the-wire SEND.

3. RTT calculation: Using the ideas introduced above,
we now describe how RPerf precisely measures the RTT
through an IB switch. The process for RTT measurement
and calculation is shown in Figure 3. At the outset, the local

4



host posts a pair of SEND requests: an over-the-wire request
and a loopback, storing the posting time (TP ). While the
over-the-wire request is being sent out, the loopback work
request is processed by the local RNIC, which generates
a CQE when it is finished; RPerf captures the completion
time for the loopback request (TL). When the ACK for the
over-the-wire request arrives at the local RNIC, the RNIC
issues a CQE. RPerf records this completion time as (TW )
and calculates the RTT as follows:

RTT = (TW − TP )− (TL − TP ) = TW − TL (1)

By subtracting the time a loopback message takes to be
completed, RPerf effectively identifies and removes the time
taken by the over-the-wire request to be processed at the
local RNIC as well as the local PCIe latency.
Additional details: In order to minimize software-induced
performance variability, each RPerf thread is pinned to a
CPU core and Huge Pages are allocated for all required
buffers. For capturing the timestamps of events accurately,
RPerf uses Time Stamp Counter through rdtsc x86 assem-
bly instruction, which offers high-accuracy timestamping
measurement within user-space. RPerf follows Intel recom-
mendations for TSC calibration and access [41]. Multiple
instances of RPerf can be run on different servers, and a
user can specify a traffic pattern (e.g., one-to-one or many-
to-one) to measure specific aspects of the system, such as
zero-load latency, peak bandwidth or latency at load.

V. EXPERIMENTAL SETUP

In this section, we present the details of our hardware
testbed, simulator and traffic pattern.
Hardware testbed: For our tests, we use seven identical
hosts with dual-socket Intel Xeon E5-2630 v4 (Broadwell)
CPUs at 2.20GHz and 64GB RAM. All hosts run Ubuntu
server 18.04 LTS with kernel version 4.15.0-50. Each host is
equipped with an IB Mellanox MT27700 ConnectX-4 RNIC
[42]. The RNICs are connected via a Mellanox SX6012 IB
switch with 12 QSFP ports, 16 MBs of buffer capacity per
port, and 9 VLs [43]. The switch and the RNICs have a
peak bandwidth of 56Gbps. Mellanox reports up to 200ns
port-to-port latency through the switch.
Simulator: We use a modified version of IB OMNeT++,
originally developed by Mellanox. Similar to the hardware
testbed, the simulator models seven nodes connected to
an IB switch. The modeled switch provides two different
packet scheduling policies: First Come, First Served (FCFS)
and Round-Robin (RR). All other parameters such as peak
bandwidth, port-to-port latency and number of VLs, are set
according to our real IB switch.
Traffic pattern: One of the seven nodes serves as a des-
tination; the remaining six are sources that send messages
to the destination. Not all sources are active in all tests.

64 128 256 512 1024 2048 4096
Payload Size (B)

0

200

400

600

800

R
TT

 (n
s)

50th (w/o switch)
99.9th (w/o switch)

50th (w/ switch)
99.9th (w/ switch)

Figure 4: RTT calculated by RPerf for different packet sizes
with and without the switch.

64 128 256 512 1024 2048 4096
Payload Size (B)

0

20

40

56

B
an

dw
id

th
 (G

bp
s) w/o switch w/ switch

Figure 5: Bandwidth for different packet sizes with and
without the switch.

Sources can be configured to use one of two types of traffic
generators:

1. Bandwidth-Sensitive Generator (BSG): sends RC flows
asynchronously (open-loop) and calculates the bandwidth
during the tests. The message size varies in different ex-
periments.

2. Latency-Sensitive Generator (LSG): sends RC packets
synchronously (closed-loop). In the hardware testbed, an
RPerf instance calculates the RTT using the methodology
described in Section IV. The size of each message is 64B.
Metrics: We consider the 99.9th latency percentile as the
tail. In all experiments, we run the test three times and
the duration of each test is 15 minutes. All graphs plot the
average values of the three runs; we do not plot standard
errors, as they are negligible (below 0.001).

VI. PERFORMANCE UNDER ONE-TO-ONE TRAFFIC

In this section, we study the performance of the switch in a
one-to-one setup, whereby a single generator sends traffic to
the destination server. First, we evaluate the isolated latency
of the switch using RPerf by measuring the RTT with and
without the switch, then we measure the end-to-end RTT
using Perftest and Qperf.

A. Latency and bandwidth without the switch

We first measure the RTT without the switch by directly
connecting the RNICs of a generator and the destination
server.

5



64 128 256 512 1024 2048 4096
Payload Size (B)

0

2

4

6

8

10

12

R
TT

 (u
s)

50th (Perftest)
99.9th (Perftest)

50th (Qperf)

Figure 6: End-to-end RTT calculated by Perftest and Qperf
for different packet sizes with the switch.

In the first test, we study the RTT at zero-load by having
a server sending messages to the destination server. Figure 4
shows the RTT distributions of two hosts directly connected
for different payload sizes. As Figure 4 illustrates, the
median RTT for 64B is 20ns, and the tail RTT is 47ns.
Furthermore, by increasing the message size to 4096B, the
median and tail RTT grow to 76ns and 85ns, respectively.
Additionally, Figure 4 shows that the difference between the
median and tail RTT of a setup without the switch is at most
30ns. We observe that the RTT is very low and payload size
has a small effect on RTT.

The second test evaluates the maximum achievable band-
width with different payload sizes. In this test, the traf-
fic generator is a BSG. As Figure 5 shows, the attained
bandwidth varies with payload size. Using a payload size
in the range of 1024B to 4096B, BSGs can achieve 51.8
to 53Gbps at the destination port, showing that with large
payload sizes, our setup attains over 90% of bandwidth of
a 56Gbps link. However, achieved bandwidth is very poor
with small payloads; e.g., with 64B messages, the bandwidth
is 4.1Gbps, meaning that less than 10% of link capacity is
utilized. This problem is largely due to two reasons:
1) Header size of an IB packet can be up to 52B [27]; hence,
less than 56% of the frame is the payload for a 64B message.
2) To achieve line rate bandwidth, here 56Gbps, the RNIC
must be capable of processing ≈ 110 million 64B packet per
second, which is beyond the RNIC’s capability; this problem
is well known and [38] discusses the reasons.

Take-aways:
1. Without the switch, the latency between a pair of

RNICs connected back-to-back is extremely low, well under
100ns for all evaluated payload sizes.

2. While over 90% of link capacity can be achieved with
large packet sizes, bandwidth utilization is poor with small
packets.

3. RPerf is able to exclude almost all of end-points delays,
which existing IB latency measurement tools fail to do.

B. Latency and bandwidth with the switch

Next, we study the performance of the IB switch. We
connect two servers (one generator, one destination) through

the switch and run the same one-to-one traffic pattern as
above.

In the first test, we examine the RTT at zero-load for
messages sent by the generator. As Figure 4 shows, the
median RTT for 64B messages is 432ns and the tail is 625ns.
Moreover, increasing the payload size to 4096B results in the
median and tail RTT of 498ns and 688ns, respectively. We
can observe that the measured RTT through the switch by
RPerf is ≈ 432-498ns for 64-4096B payload sizes, which
is close to the latency claimed by Mellanox (200ns one-
way port-to-port latency, i.e. 400ns RTT [43]). Additionally,
Figure 4 shows that regardless of the size of payload, the
difference between the median and tail RTT through the
switch is ≈ 200ns. By comparing to the no-switch setup, in
which the difference between the median and tail RTT is at
most 30ns, we can deduce that the switch introduces at least
a 170ns delay to the tail RTT, which is about 45% of the
median RTT; therefore, the switch suffers from tail latency,
even at zero-load.

In the second test, we evaluate the maximum achievable
bandwidth for a BSG over the switch with different payload
sizes. Figure 5 illustrates the bandwidth achieved for differ-
ent payload sizes over the switch. With payload size of 64B
and 4096B, our setup attains 3.9 and 52.2Gbps, respectively.
We can observe that the bandwidth achieved through the
switch is slightly lower (by up to 0.8Gbps) than without the
switch.

Take-aways:
1. Using RPerf, the median RTT through the switch is

432-498ns, depending on payload size. This latency is close
to the expected 400ns round-trip latency per the switch spec.

2. The switch increases the tail latency to about 45%
above the median latency.

3. The switch has a negligible effect on the bandwidth of
BSG in the one-to-one setup.

C. Latency calculation by existing tools

Finally, we measure the end-to-end RTT with the switch
using Perftest and Qperf.

Figure 6 shows the RTT distributions of two hosts con-
nected through the switch calculated by Perftest and Qperf
for different payload sizes. In Figure 6, Perftest reports
2.20µs median RTT, and 4.11µs tail RTT for 64B. Further-
more, by increasing the message size to 4096B, the median
and tail RTT grow to 5.46µs and 9.51µs, respectively. Figure
6 also shows that the median RTT reported by Qperf is
2.82µs for 64B. By increasing the message size to 4096B,
the median grows to 5.85µs. Unfortunately, Qperf does not
report tail RTT.

We observe that while Perftest and Qperf are useful for
measuring end-to-end latency, their calculated latency is an
order of magnitude higher than the reported latency in the
switch specification. We conclude that these tools are unable

6



0 1 2 3 4 5
Number of BSGs

0

10

20

30

R
TT

 o
f L

S
G

 (u
s) 50th 99.9th

(a) RTT of LSG

1 2 3 4 5
Number of BSGs

0

10

20

30

40

50
56

To
ta

l B
an

dw
id

th
 (G

bp
s)

(b) Total bandwidth of all BSGs

Figure 7: Converged traffic

to isolate the switch latency due to end-point overheads,
especially when we increase the message size.

Take-away: Existing tools are unable to isolate the switch
latency due to end-point overheads.

VII. PERFORMANCE UNDER CONVERGED TRAFFIC

In this section, we evaluate the network performance of
the IB switch in a many-to-one setup. In this setup, varied
number of BSGs (from one to five) send bandwidth-intensive
flows with 4096B payload size to one destination server,
forming a converged traffic pattern. Meanwhile, a LSG sends
latency-sensitive flows to the same destination server.

Latency of LSG: Figure 7a shows the median and tail RTT
of the LSG as we vary the number of active BSGs. With one
active BSG, the LSG’s median and tail RTT through the
switch is 0.6µs and 0.9µs, respectively. Adding a second
BSG increases the median and tail RTT of LSG to 5.2µs
and 5.7µs, respectively. The third BSG further worsens the
LSG’s latency by increasing the median and tail RTT to
10.7µs and 12.6µs, respectively. As the figure shows, adding
yet more BSGs further degrades the LSG’s median and tail
latency. Indeed, with each added BSG, the median RTT
of the LSG increases by 4.8µs to 6.1µs, leading us to
conclude that the switch fails to provide latency isolation in
the presence of bandwidth-intensive flows, and that latency-
sensitive flows are unprotected.

Bandwidth of BSGs: Figure 7b illustrates the total band-
width achieved by BSGs as we vary the number of active
BSGs. As Figure 7b shows, the bandwidth attained by one
active BSG is 52.2Gbps. With two BSGs, each BSG achieves
25.5 to 25.6Gbps, resulting in the overall bandwidth of
51.1Gbps. When five BSGs are active, the bandwidth per
BSG ranges from 8.9 to 9.9Gbps, with overall attained
bandwidth of 48.4Gbps. While one would not expect the
total bandwidth through the switch to vary as a function
of the number of active BSGs, we observe that increasing
the number of BSGs from one to five deteriorates the total
achieved bandwidth of all BSGs by 7% (from 52.2 to
48.4Gbps).

Take-aways:
1. The latency observed by the latency-sensitive source

is proportional to the number of active bandwidth-intensive

64 128 256 512 1024 2048 4096
Payload Size of BSGs (B)

0

10

20

30

40

R
TT

 o
f L

S
G

 (u
s) 50th 99.9th

Figure 8: RTT of the LSG. Note that BSGs send different
message sizes in each test.

64 128 256 512 1024 2048 4096
Payload Size of BSGs (B)

0

10

20

30

40

50
56

To
ta

l B
an

dw
id

th
 (G

bp
s)

Figure 9: Total bandwidth achieved by BSGs as a function
of the message size.

flows, indicating that the switch fails to provide latency
isolation.

2. Increasing the number of convergent bandwidth-hungry
flows diminishes the total achieved bandwidth through the
switch.

VIII. ATTEMPTS TO PROTECT LATENCY-SENSITIVE
FLOWS

In Section VII, we observed that the IB switch fails
to isolate latency-sensitive flows from bandwidth-intensive
ones. In this section, we explore different approaches to help
the switch in providing protection for latency-sensitive flows.

A. BSGs with different message sizes

Observing high latency for latency-sensitive flows in the
presence of bandwidth-intensive ones, we hypothesize that
the large message sizes used by our BSGs force packets from
the LSG to wait for a long time while the large messages are
transmitted. Thus, we set up an experiment to see whether
using a smaller message size for the BSGs can improve the
LSG’s latency without sacrificing BSGs’ bandwidth.

We direct five BSGs sending flows to one destination
server. The payload size of BSGs varies in different tests.
We also use batching with small payload sizes to improve
the bandwidth utilization. At the same time, the LSG sends
64B messages to the same destination server.

Figure 8 shows the RTT of the LSG in the presence of
flows from BSGs (with different payload sizes in different
tests), and Figure 9 shows the overall bandwidth that the
BSGs can achieve with different payload size.

7



0 1 2 3 4 5
Number of BSGs

0

5

10

15

20

25

30

R
TT

 o
f L

S
G

 (u
s)

50th (FCFS)
99.9th (FCFS)

50th (RR)
99.9th (RR)

Figure 10: The impact of the number of BSGs on RTT of
LSG in the simulator.

According to Figures 8 and 9, small payload sizes for
BSGs lead to low LSG latency. For instance, when BSGs use
a payload size of 64B, the median and tail RTT of LSG are
0.4µs and 0.6µs, and with 128B payload size of BSGs, the
median and tail RTT of LSG are 0.6µs and 0.9µs. However,
using small payloads for the BSGs sacrifices their ability to
achieve high throughput. With 64B or 128B payload sizes,
BSGs can barely utilize 35% or 70%, respectively, of link
capacity at the destination port.

Meanwhile, if BSGs generate flows with large payload
sizes, they can achieve high bandwidth utilization. Using
a payload size in the range of 512B to 4096B, BSGs can
achieve from 88% to 93% of link capacity at the destination
port. However, choosing a large payload size for BSGs hurts
the latency of the LSG. With a 512B payload size, the
median and tail RTT of LSG are 20.0µs and 20.6µs. Larger
payloads further worsen the median and tail RTT of LSG
(26.3µs and 28.2µs for 4096B).

Take-away: By changing the payload size of BSG flows,
we can achieve either low-latency for LSG flows or high-
bandwidth for BSG flows, but not both at the same time.

B. Packet scheduling policy at the switch

In Section VIII-A, we observed that reducing the pay-
load size of bandwidth-intensive flows does not resolve the
latency-bandwidth trade-off. In this section, we take another
step in an attempt to prevent latency-sensitive flows from
being stalled by bandwidth-intensive ones. To this end, we
study the impact of different in-switch packet scheduling
policies on per-flow latency and bandwidth.

We consider a policy to be fair if the time each flow
spends in the switch is proportional to the size of the flow.
Thus, if the switch uses an unfair policy for packet schedul-
ing, latency-sensitive flows might be stalled by bandwidth-
intensive ones. Such a policy is unfair because it does not
take flow size into account and fails to perform proportion-
ally fair scheduling in each turn.

As the scheduling policy of our switch is not configurable,
we use the IB simulator (Section V) to assess the effect
of scheduling policies on fairness. We use the same setup
as in the Section VII, with five BSGs sending 4096B

flows and one LSG sending 64B messages to the same
destination server. The IB simulator provides two different
packet scheduling policies: First Come, First Served (FCFS)
and Round-Robin (RR). We calculate the RTT of LSG flows
in the converged setup using different packet scheduling
policies and compare them with the real switch. Note that
Mellanox documentation does not specify the scheduling
policy implemented in our switch, so one of our goals is
to understand the implemented policy.
FCFS policy: Figure 10 shows the median and tail RTT of
the LSG as we vary the number of BSGs in the simulator
under the FCFS scheduling policy. In the absence of a BSG,
both the median and tail RTT of the LSG are 0.4µs. With
one active BSG, both the median and tail RTT of the LSG
are 0.6µs. Adding the second BSG increases the median
and tail RTT of LSG to 4.5µs and 4.6µs, respectively. With
five active BSGs, the median and tail RTT is 18.2µs and
18.3µs, respectively. We can observe that the median and tail
RTT in the simulator are almost identical (0.1µs difference).
Thus, unlike the real switch, simulator does not introduce
significant tail RTT. The reason is that the switch uArch is
not modeled in detail in the simulator; therefore the median
and tail RTT of simulator are much closer, compared to the
median and tail RTT of real switch.

In the simulator, each additional BSG adds a delay of
3.9µs to 4.6µs to the median RTT of the LSG. This trend
closely matches the behavior observed with the real switch,
where each additional BSG adds 4.6µs to 5.2µs to the LSG’s
latency.

To investigate the additional delay added by each BSG,
we look into the architecture of the simulated switch. In
the modeled switch, each input port has dedicated buffering
used for absorbing bursts. With the FCFS policy, in each
turn, the arbiter examines the packet at the head of each
input buffer and chooses the oldest packet. In our converged
traffic experiment, each BSG fills to capacity its respective
input buffer. Once an LSG packet enters the switch, it too
is enqueued at its port’s input buffer. Following the FCFS
policy, the arbiter selects the LSG packet only after all other
packets present at the switch when the LSG’s packet arrived
have been scheduled. Therefore, in our setup, the minimum
amount of time a LSG packet needs to wait can be computed
as follows:

Wt =
N ×BufferSize

LinkBandwidth
(2)

where N is the number of BSG ports (i.e., whose input
buffers are full), BufferSize is the size of each input buffer,
and LinkBandwidth is the bandwidth of a link.

In the modeled switch, the size of each input buffer is
32KB, and the link bandwidth is 56Gpbs. In this case, each
additional BSG adds 3.6µs waiting time to each LSG packet,
which is close to the latency observed in both the simulator
and the real switch.

8



FCFS RR
Packet Scheduling Policy

0

5

10

15

20

25

R
TT

 o
f L

S
G

 (u
s)

50th 99.9th

Figure 11: RTT of LSG in a multi-hop setup.

Take-away: With the FCFS policy, the simulator suffers
from latency unfairness and behaves similar to the real
switch.
Round-Robin policy: With RR policy, the arbiter in each
turn selects a port and chooses the packet at the head of the
port. In this case, whenever a LSG packets arrives, it waits
for at most the number of active ports.

Figure 10 shows the median and tail RTT of LSG flows,
when different numbers of BSGs are active in the simulator
with the RR scheduling policy. Without any active BSGs,
both the median and tail RTT of LSG are 0.4µs. With one
active BSG, both the median and tail RTT of LSG are 0.6µs.
By increasing the number of active BSGs to five, the median
and tail RTT grow to 2.5µs and 2.6µs.

Unlike the experiment with FCFS policy, with RR policy,
increasing the number of BSGs does not change the RTT
for LSG dramatically.

Take-aways:
1. The measurements attained on the simulator with the

RR policy are vastly different to those on the real switch.
This further indicates that the real switch uses the FCFS
scheduling policy.

2. Unlike the FCFS policy, the RR scheduling policy is
more effective at protecting the latency-sensitive flow.
Packet scheduling policies in a multi-hop topology: At
first glance it seems that the RR policy on the switch resolves
the dilemma of isolation and protection of a latency-sensitive
flow. However, can the RR policy continue to be effective in
a multi-hop topology? To answer this question, we extend
our simulated setup to a two-hop topology, where a pair of
switches are connected together. Two BSGs and one LSG
are connected to the upstream switch, and three BSGs are
attached to downstream switch. The destination server is also
attached to the downstream switch. All BSGs send 4096B
messages to the destination server.

We calculate the RTT of LSG messages in the multi-hop
setup using different packet scheduling policies and compare
them with each other. In each test, the packet policy of both

No BSGs Shared SL Dedicated SL Dedicated SL + Pretend LSG
0

5

10

15

20

25

R
TT

 o
f L

S
G

 (u
s)

50th 99.9th

Figure 12: RTT of the real LSG in different setups.

switches is either FCFS or RR.
Figure 11 shows the median and tail RTT of LSG,

when different packet policy is used in the switches in the
simulator. Using FCFS policy in both switches, the median
and tail RTT of LSG are 18.4µs and 18.5µs. Using RR
policy, the median and tail RTT of LSG are 14.5µs and
14.9µs.

We can observe that if a latency-sensitive flow shares a
link (in this setup the link that connects two switches) with
bandwidth-intensive flows, the RR policy is unable to protect
the latency-sensitive flows. The reason is that the latency-
sensitive flow will be queued at the same input buffer as
the bandwidth-intensive flow in the downstream switch, and
will hence suffer from head-of-line blocking.

Take-away: The RR policy fails to isolate latency-
sensitive flows in a multi-hop setup.

C. InfiniBand QoS

The previous experiments motivate the need for sepa-
rate buffer resources and scheduling priorities for latency-
sensitive and bandwidth-intensive flows. Such a strategy
allows the latency-sensitive flow(s) to avoid queuing along-
side the bandwidth-intensive flows; therefore the bandwidth-
intensive flows will not block latency-sensitive flows. IB
QoS configuration provides such a mechanism through a
combination of SLs and VLs.

To protect the latency-sensitive flows from the LSG, we
want to assign a dedicated SL to latency-sensitive flows at
the local host and map this SL to a high-priority VL in the
switch. Due to the fact that the notion of latency-sensitivity
is not defined in IB terminology, we consider small messages
(up to 256B) as latency-sensitive flows.

The following experiment evaluates the effectiveness of
using dedicated SLs for latency-sensitive and bandwidth-
intensive traffic, by assigning SL0 to BSGs and SL1 to LSG
flows. In the switch, SL0 is mapped to low-priority VL0, and
SL1 is assigned to high-priority VL1.

Figure 12 shows the median and tail RTT for LSG
traffic using a dedicated SL. As the figure shows, using
a dedicated SL protects the latency-sensitive flows. While
with the shared SL/VL (the same as Section VII) the median
and tail RTT of LSG is 20.2µs and 22.1µs, with dedicated

9



Dedicated SL + Pretend LSG Shared SL
0

10

20

30

40

50

56

To
ta

l B
an

dw
id

th
 (G

bp
s)

7.0

6.8

6.7

6.7

21.5

9.8

9.9

9.9

9.9

8.9

48.7 48.4

BSG 1
BSG 2

BSG 3
BSG 4

BSG 5

Figure 13: Total bandwidth achieved by BSGs under con-
verged traffic.

SL/VL, LSG packets have 0.7µs median and 1.1µs tail RTT.
The figure shows that using dedicated SL/VL improves the
latency of LSG by ≈ 29X for the median and ≈ 20X for
the tail RTT. Compared to the shared SL/VL setup, the RTT
of LSG with dedicated SL/VL is closer to the RTT of LSG
in the absence of BSGs (0.4µs and 0.6µs). Moreover, the
total bandwidth achieved by five BSGs is the same as the
bandwidth achieved without using a dedicated SL (Section
VII), which indicates that this SL configuration does not
introduce a throughput penalty.

Take-away: Differentiating flow type and assigning prior-
ity to each flow type can effectively protect latency-sensitive
flows.
Gaming the dedicated SL/VL setup: While assigning a
dedicated SL to small messages seems promising, a BSG
may abuse (intentionally or not) this approach by pretending
to be a LSG so as to achieve bandwidth higher than its
fair share. To game the QoS, BSG sends large amounts of
data segmented into small packets. To show how this BSG
harms the bandwidth of other BSGs, we devise a test with a
dedicated SL for latency-sensitive flows, in which the BSG
pretending to be an LSG (referred to as a pretend LSG)
sends 256B messages asynchronously. It further optimizes
for throughput by using batching.

Figure 12 shows the median and tail RTT of LSG traffic,
and Figure 13 illustrates the total bandwidth achieved by
all BSGs and the pretend LSG, along with their share of
the bandwidth. Figure 12 shows that pretend LSG hurts
the latency of the real LSG (8.5µs median and 9.1µs
tail RTT), as both pretend and real LSGs have the same
SL/VL. As Figure 13 illustrates, the pretend LSG achieves
21.5Gbps bandwidth, while each of the other BSGs achieves
6.7 to 7Gbps. We can observe that a bandwidth-intensive
source can pretend to be latency-sensitive and take three
times higher bandwidth share compared to other bandwidth-
intensive sources, leading to bandwidth unfairness. One

might think that limiting the bandwidth for each SL/VL
mapping will prevent gaming the SL/VL setup; however,
imposing such a limit will hurt the latency of the LSG,
specially when a burst of latency-sensitive packets arrives
at a switch.

Take-away: By using IB QoS in the switch, latency-
sensitive flows can be protected in an environment with
different types of flows. The risk, however, is that it opens
up the possibility of gaming to achieve a higher bandwidth
share by bandwidth-intensive flows.

EVALUATION SUMMARY: Our evaluation reveals that
the tested IB switch can either provide low latency to a
latency-sensitive flow or high bandwidth for bandwidth-
intensive flow(s), but not both simultaneously. We showed
that our switch uses the FCFS scheduling policy that is par-
ticularly damaging for latency-sensitive flows in the presence
of bandwidth-intensive flows. An alternative policy using
Round-Robin improves fairness over FCFS, but only in a
single-hop topology; with just two network hops, latency-
sensitive packets can be blocked by other packets, inevitably
hurting latency.

Motivated by these observations, we examined IB’s QoS
mechanism that assigns different service levels and virtual
lanes to flows. While the results are encouraging in that
a latency-sensitive flow can achieve low latency without
compromising throughput of bandwidth-intensive ones, such
an approach is prone to gaming. Specifically, we observed
that a bandwidth-intensive flow can pretend to be a latency-
sensitive one and burst small messages, which allows it
to achieve a larger share of network bandwidth than other
bandwidth-intensive flows that do not try to game the
system.

IX. CONCLUSION

In this paper, we identify shortcomings in existing
RDMA-based performance measurement tools and show
why they are unable to accurately assess the latency of an IB
switch. We introduce the RPerf performance measurement
tool that leverages RDMA verbs to exclude end-point over-
heads and provide a highly accurate latency measurement
for RDMA-based switches. Using the precise measurements
enabled by RPerf, we analyze the latency and bandwidth of
an IB switch in one-to-one and many-to-one traffic scenarios.
We show that the switch fails to protect the latency-sensitive
flows from bandwidth-intensive ones, and that the latency
is proportional to the number of active bandwidth-hungry
flows. We consider several strategies for improving latency
fairness, including using small packet sizes for bandwidth-
intensive flows and the use of IB’s QoS mechanism, but
find all evaluated approaches deficient in some respect. We
thus conclude that better mechanisms are needed to provide
performance isolation in a mixed traffic environment.

10



REFERENCES

[1] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker, “Network re-
quirements for resource disaggregation,” Proceedings of the
12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, pp. 249–264, 2016.

[2] V. Shrivastav et al., “Shoal : A Network Architecture for Dis-
aggregated Racks This paper is included in the Proceedings
of the of Jerusalem,” Proceedings of the 16th USENIX Sym-
posium on Networked Systems Design and Implementation,
NSDI 2019, pp. 255–270, 2019.

[3] K. Katrinis et al., “Rack-scale disaggregated cloud data
centers: The dReDBox project vision,” in Proceedings of the
2016 Design, Automation and Test in Europe Conference and
Exhibition, DATE 2016, ser. DATE ’16. San Jose, CA, USA:
EDA Consortium, 2016, pp. 690–695.

[4] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin,
“Efficient memory disaggregation with Infiniswap,” Proceed-
ings of the 14th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2017, pp. 649–667, 2017.

[5] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi,
P. Subrahmanyam, L. Suresh, K. Tati, R. Venkatasubrama-
nian, and M. Wei, “Remote memory in the age of fast
networks,” SoCC 2017 - Proceedings of the 2017 Symposium
on Cloud Computing, pp. 121–127, 2017.

[6] L. Shuang, R. Noronha, and D. K. Panda, “Swapping to
remote memory over InfiniBand: An approach using a high
performance network block device,” Proceedings - IEEE
International Conference on Cluster Computing, ICCC, p. nil,
2005.

[7] B. Fitzpatrick, “Distributed caching with memcached,” Linux
Journal, vol. 2004, no. 124, p. 5, aug 2004.

[8] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA:
A holistic approach to fast in-memory key-value storage,” in
Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2014. Seattle,
WA: {USENIX} Association, 2014, pp. 429–444.

[9] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “SILT:
A memory-efficient, high-performance key-value store,” in
SOSP’11 - Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. New York,
NY, USA: ACM, 2011, pp. 1–13.

[10] Y. Mao, E. Kohler, and R. Morris, “Cache craftiness for fast
multicore key-value storage,” in EuroSys’12 - Proceedings of
the EuroSys 2012 Conference, ser. EuroSys ’12. New York,
NY, USA: ACM, 2012, pp. 183–196.

[11] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zama-
nian, “The End of slow networks: It’s time for a redesign,”
Proceedings of the VLDB Endowment, vol. 9, no. 7, pp. 528–
539, 2016.

[12] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro,
“FaRM: Fast remote memory,” Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI 2014, pp. 401–414, 2014.

[13] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST:
Fast, scalable and simple distributed transactions with two-
sided (RDMA) datagram RPCs,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2016. Savannah, GA: {USENIX}
Association, 2016, pp. 185–201.

[14] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li,

“Balancing CPU and network in the cell distributed b-tree
store,” in Proceedings of the 2016 USENIX Annual Technical
Conference, USENIX ATC 2016. Denver, CO: {USENIX}
Association, 2016, pp. 451–464.

[15] V. Gavrielatos, A. Katsarakis, V. Nagarajan, B. Grot, and
A. Joshi, “Kite: Efficient and Available Release Consistency
for the Datacenter,” in Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 1–16.

[16] J. Dean and L. A. Barroso, “The tail at scale,” Communica-
tions of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop distributed file system,” in 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies, MSST2010,
ser. MSST ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–10.

[18] M. Zaharia et al., “Apache spark: A unified engine for
big data processing,” Communications of the ACM, vol. 59,
no. 11, pp. 56–65, oct 2016.

[19] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in OSDI 2004 - 6th Sympo-
sium on Operating Systems Design and Implementation, San
Francisco, CA, 2004, pp. 137–149.

[20] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image
Classification at Supercomputer Scale,” in NeurIPS, 2018.

[21] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour,” arXiv
preprint arXiv:1706.02677, 2017.

[22] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,
C. Kim, A. Krishnamurthy, M. Moshref, D. R. K. Ports,
and P. Richtárik, “Scaling Distributed Machine Learning with
In-Network Aggregation,” arXiv preprint arXiv:1903.06701,
2019.

[23] S. Li, T. Ben-Nun, S. Di Girolamo, D. Alistarh, and
T. Hoefler, “Taming Unbalanced Training Workloads in Deep
Learning with Partial Collective Operations,” arXiv preprint
arXiv:1908.04207, 2019.

[24] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and M. Erez, “Kelp: QoS for accelerated machine learning
systems,” in Proceedings - 25th IEEE International Sympo-
sium on High Performance Computer Architecture, HPCA
2019. IEEE, 2019, pp. 172–184.

[25] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and
G. E. Hinton, “Large scale distributed neural network training
through online distillation,” 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track
Proceedings, 2018.

[26] M. Azure, “Introducing the new HB and HC Azure VM sizes
for HPC,” 2018.

[27] I. T. ASSOCIATION, “Infiniband Architecture Specification
Volume 1,” 2015.

[28] V. Gavrielatos, N. Oswald, A. Katsarakis, B. Grot, A. Joshi,
and V. Nagarajan, “Scale-Out ccNUMA: Exploiting Skew
with Strongly Consistent Caching,” Proceedings of the 13th
EuroSys Conference, EuroSys 2018, vol. 2018-Janua, pp.
21:1—-21:15, 2018.

[29] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
efficiently for key-value services,” Computer Communication
Review, vol. 44, no. 4, pp. 295–306, 2015.

11



[30] A. Katsarakis, V. Gavrielatos, M. Katebzadeh, A. Joshi,
A. Dragojevic, B. Grot, and V. Nagarajan, “Hermes: a
fast, fault-tolerant and linearizable replication protocol,” in
Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 12 2019.

[31] Y. Zhang, J. Gu, Y. Lee, M. Chowdhury, and K. G. Shin,
“Performance isolation anomalies in RDMA,” in KBNets
2017 - Proceedings of the 2017 Workshop on Kernel-Bypass
Networks, Part of SIGCOMM 2017, ser. KBNets ’17. New
York, NY, USA: ACM, 2017, pp. 43–48.

[32] Y. Zhu et al., “Congestion control for large-scale RDMA
deployments,” SIGCOMM 2015 - Proceedings of the 2015
ACM Conference on Special Interest Group on Data Com-
munication, vol. 45, no. 5, pp. 523–536, aug 2015.

[33] N. Zilberman, M. Grosvenor, D. A. Popescu, N. Manihatty-
Bojan, G. Antichi, M. Wójcik, and A. W. Moore, “Where
has my time gone?” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 10176 LNCS,
2017, pp. 201–214.

[34] D. A. Popescu and A. W. Moore, “PTPmesh: Data Center
Network Latency Measurements Using PTP,” in Proceedings
- 25th IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems,
MASCOTS 2017. IEEE, sep 2017, pp. 73–79.

[35] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill:
Attributing the Source of Tail Latency through Precise Load
Testing and Statistical Inference,” Proceedings - 2016 43rd
International Symposium on Computer Architecture, ISCA
2016, pp. 456–468, 2016.

[36] C. Guo et al., “Pingmesh: A Large-scale system for data
center network latency measurement and analysis,” in SIG-
COMM 2015 - Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, vol. 45,
no. 4. ACM, 2015, pp. 139–152.

[37] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosen-
blum, and A. Vahdat, “Simon: A simple and scalable method
for sensing, inference and measurement in data center net-
works,” in Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019,
2019, pp. 549–564.

[38] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guide-
lines for high performance RDMA systems,” Proceedings of
the 2016 USENIX Annual Technical Conference, USENIX
ATC 2016, pp. 437–450, 2016.

[39] OFED, “perftest,” [Online]. Available: https://github.com/
linux-rdma/perftest.

[40] OFED, “qperf,” [Online]. Available: https://github.com/
linux-rdma/qperf.

[41] G. Paoloni, “How to Benchmark Code Execution Times on
Intel ® IA-32 and IA-64 Instruction Set Architectures,” Intel
Manual, vol. 123, no. September, pp. 1–37, 2010.

[42] Mellanox, “ConnectX®-4 VPI IC PRODUCT BRIEF,” [On-
line]. Available: http://www.mellanox.com/related-docs/prod
silicon/PB ConnectX-4 VPI IC.pdf.

[43] Mellanox, “Mellanox SwitchX and SwitchX®-2 1U Switch
and Gateway Systems Hardware User Manual.”

12

https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/qperf
https://github.com/linux-rdma/qperf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_IC.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-4_VPI_IC.pdf

