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Abstract
Today’s datacenter workloads increasingly comprise dis-
tributed data-intensive applications, including data analyt-
ics, graph processing, and machine-learning training. These
applications are bandwidth-hungry and often congest the
datacenter network, resulting in poor network performance,
which hurts application completion time. Efforts made to
address this problem generally aim to achieve max-min fair-
ness at the flow or application level. We observe that split-
ting the bandwidth equally among workloads is sub-optimal
for aggregate application-level performance because various
workloads exhibit different sensitivity to network bandwidth:
for some workloads, even a small reduction in the available
bandwidth yields a significant increase in completion time;
for others, the completion time is largely insensitive to the
available bandwidth.

Building on this insight, we propose Saba, an application-
aware bandwidth allocation framework that distributes net-
work bandwidth based on application-level sensitivity. Saba
combines ahead-of-time application profiling to determine
bandwidth sensitivity with runtime bandwidth allocation
using lightweight software support with no modifications
to network hardware or protocols. Experiments with a 32-
server hardware testbed show that Saba improves average
completion time by 1.88× (and by 1.27× in a simulated 1,944-
server cluster).

CCS Concepts: • Networks→ Network protocols.

Keywords: Datacenter Networks, BandwidthAllocation,Max-
Min Fairness
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1 Introduction
Today’s private datacenters host a diverse range of data-
intensive applications, including machine learning train-
ing [7, 22, 38, 51, 60, 62], SQL queries [9, 30, 58], graph pro-
cessing [21, 39, 41], and big-data analytics [47, 52]. Many of
these applications are distributed and leverage parallel frame-
works, such asHadoop, Spark, Flink, and TensorFlow [1, 8, 17,
53, 61]. They typically adopt a bulk communication model
with hundreds of connections transferring data between
servers across multiple processing stages. This communi-
cation model creates a high load on the network, leading
to congestion and queueing delays that affect applications’
completion time.

To address this issue, over the last decade, there has been
a slew of proposals in the literature on how to improve
congestion control in datacenters and efficiently share net-
work bandwidth among competing flows and applications.
Some of these proposals focus on providing per-flow fair-
ness [18, 20, 34] with various network-level objectives, such
as minimizing per-packet latency [25] or flow completion
time [5, 6, 44] using network-level properties, such as flow
size or deadlines [5, 6, 13, 25, 44, 55]. Other works aim to pro-
vide isolation among tenants or applications when running
in shared datacenters [11, 12, 23, 27, 32, 48, 57].

A common trait of all of these proposals is that they aim to
achieve some variant of max-min fairness at the flow or ap-
plication level. In this paper, we challenge this conventional
wisdom and argue that max-min fairness is not the right met-
ric to optimize for as different applications exhibit different
degrees of sensitivity to the amount of network bandwidth,
and, hence, splitting the bandwidth equally among them
may lead to sub-optimal performance. Instead, we propose a
new metric called bandwidth sensitivity, which captures the
impact of the network bandwidth on the completion time
for a specific application. Our analysis using a broad collec-
tion of workloads shows that different applications exhibit
various degrees of sensitivity. For example, given a 56Gbps
network link, reducing the link capacity to 25% leads to a
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3.4× increase in the completion time of a Logistic Regression
(LR) workload, while the completion time of a PageRank (PR)
workload increases by a factor of 1.4×.

This observation is at the core of Saba, a novel application-
aware bandwidth allocation scheme that distributes network
bandwidth to applications proportionally to their bandwidth
sensitivity. Saba computes the bandwidth sensitivity of appli-
cations in advance and leverages this information at runtime
to derive the weights used in switches’ priority queues to en-
force the desired bandwidth allocations in a work-conserving
fashion.

We put particular effort into the design of Saba to make it
practical to use in existing datacenter deployments by lim-
iting the amount of resources needed during profiling and
the number of queues used in switches. Saba does not man-
date any changes to deployed congestion-control protocols
and it is fully compatible with existing switches and NICs
while requiring only a lightweight shim layer (∼350 LOCs)
installed at the end hosts.

We evaluate Saba in a 32-server InfiniBand cluster across
a broad set of workloads. We also simulate a Saba deploy-
ment with 1,944 servers to assess its performance at scale.
Our experimental and simulation results show that Saba
improves the average performance of the co-running appli-
cations sharing the network, compared to both existing and
ideal implementations of per-flow max-min fairness.
The main contributions of this paper are the following:

• We show that enforcing per-flow max-min fairness as
an application-agnostic bandwidth allocation scheme can
lead to poor aggregate application performance when mul-
tiple applications share the network.

• We introduce the notion of bandwidth sensitivity as a guid-
ing principle to allocate bandwidth among applications
and show how this can be learned through profiling.

• We present Saba, our application-aware bandwidth allo-
cation framework, which relies on bandwidth sensitivity
for bandwidth allocation. We compare Saba against a base-
line using InfiniBand congestion control and demonstrate
that Saba can reduce the completion time for bandwidth-
sensitive jobs by up to 3.94×while only marginally impact-
ing a few of the bandwidth-insensitive jobs (1-5% slow-
down), improving the average completion time by 1.88×.

• We show in simulations that similar benefits also hold at
scale and against an ideal implementation of max-min fair-
ness, obtaining up to 1.79× speedup (3% slowdown in the
worst case) with an average improvement in completion
time of 1.27×.

2 Motivation
Mainstream bandwidth allocation schemes adopted in dat-
acenters aim to achieve max-min fairness by equally par-
titioning network bandwidth across flows. In this section,
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Figure 1. (a) Impact of available bandwidth on the perfor-
mance of workloads (see Table 1). (b) Impact of bandwidth
allocation scheme on the performance of two co-running
workloads.

we demonstrate that this approach can potentially harm ap-
plication performance (measured as job completion time)
since the impact of reduced bandwidth varies from one ap-
plication to another; hence, we argue that network resources
should be split according to the impact of the network on
applications.

2.1 Sensitivity to bandwidth in applications
To assess the impact of network bandwidth on application
performance, we profile different workloads in isolation and
compute the completion time for different percentages of
network bandwidth (25% and 75%) in an 8-server cluster
connected with a 56Gbps switch (see §8.1 for details of the
methodology). We measure the slowdown compared to the
execution with unthrottled bandwidth.

Figure 1a shows the slowdown of various workloads under
different percentages of available bandwidth. As the figure
shows, the degree of slowdown varies across the workloads.
For example, while LR suffers a 1.3× performance penalty
when 75% of the bandwidth is available, the impact on per-
formance for Sort and WordCount (WC) is negligible. With
25% of bandwidth, the slowdown of applications varies from
1.1× (Sort) to 3.4× (LR), with an average of 2.1×. This anal-
ysis indicates that applications are not equally sensitive to
bandwidth degradation.

2.2 Using sensitivity in bandwidth allocation
Our analysis presents an opportunity to rethink the use of
max-min fairness and, instead, allocate network bandwidth
based on applications’ sensitivity to it. The intuition is that
by providing more bandwidth to the applications that are
most sensitive, their completion time can be reduced without
disadvantaging applications with low latency to network
bandwidth. To validate this intuition, we run an experiment
comparing the slowdown experienced by two workloads, LR
and PR, when running together compared to the stand-alone

2



Saba: Rethinking Datacenter Network Allocation from Application’s Perspective EuroSys ’23, May 8–12, 2023, Rome, Italy

execution. We consider two different bandwidth allocation
schemes:
1. Max-min: We use InfiniBand, which employs per-flow
max-min fairness through end-to-end congestion manage-
ment via Forward Explicit Congestion Notification [3, 54]
and splits the bandwidth equally among competing flows [29].
Consequently, when both workloads simultaneously use the
network, flows from each workload get 50% of the capacity
of shared links.
2. Skewed: As illustrated in Figure 1a, LR and PR exhibit
different degrees of sensitivity to bandwidth. The skewed
allocation scheme leverages this information and provides
more bandwidth to LR and less to PR. Specifically, the skewed
scheme allocates 75% of bandwidth to LR and 25% to PR, i.e.,
the ratios shown in Figure 1a.

Figure 1b illustrates the slowdown of the two co-running
workloads under the different allocation regimes. In the max-
min configuration, LR and PR face 2.26× and 1.21× slow-
down, respectively, compared to stand-alone execution. In
the skewed configuration, in which more bandwidth is al-
located to LR, the slowdown of LR decreases from 2.26× to
1.48× (78% improvement) while the slowdown of PR slightly
increases from 1.21× to 1.34× (<13% degradation).

2.3 Why does the bandwidth sensitivity arise?
To answer this question, we assess the impact of bandwidth
on the resource utilization of LR and PR. In this experiment,
we run each application separately. Figure 2 shows the time-
line of normalized resource utilization for both CPUs and
network with 75% and 25% of total network bandwidth avail-
able to the application. In the figure, a low network utilization
with high CPU utilization implies a computation phase. Like-
wise, a high network utilization with low CPU utilization
shows that the workload is in a communication phase.
As the figure shows, the duration of the computation

phases in LR remains relatively constant when the available
bandwidth is decreased from 75% to 25%. Meanwhile, the du-
ration of the communication phases increases as bandwidth
is decreased from 75% to 25%. As a result, the completion
time of LR increases by 2.59× (from 172s to 447s). In contrast,
PR has more communication phases, but the workload is
dominated by computation. Moreover, as Figure 2b shows,
unlike LR, in PR, some of the data transmission is overlapped
with computation (i.e., high network and CPU utilization).
As a result, decreasing bandwidth has less impact on PR than
LR. We observe that by decreasing the bandwidth from 75%
to 25%, the completion time of PR increases by only a factor
of 1.37× (from 310s to 427s).

2.4 Sensitivity-aware bandwidth allocation
The results above are important because they demonstrate
that, for this kind of workloads, i) equally distributing the
bandwidth like in traditional max-min fairness protocols
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Figure 2. Impact of available bandwidth on resource utiliza-
tion and completion time.

(e.g., TCP), or ii) focusing on reducing average flow com-
pletion time for individual flows (e.g., Homa [44]) or for
coflows1 (e.g., Sincronia [2]), does not necessarily result in
shorter average application completion times. In fact, our
experiments in Figure 1b show that by unequally distributing
the bandwidth between LR and PR, and by increasing the
flow completion time for the less sensitive application (PR),
the average completion time of applications is significantly
reduced. Therefore, in this paper, we argue that application
sensitivity should be the primary factor driving network
bandwidth allocation rather than traditional network-level,
application-agnostic metrics.

Building a sensitivity-aware allocation scheme as described
in §2.2, however, requires solving the following challenges,
which we address in the following sections:
• Sensitivity Differentiation: An application-aware solution
requires a robust approach to capture the application’s
sensitivity to network bandwidth.

• Dynamism: At the datacenter scale, a multitude of ap-
plications will share the network, with new applications
arriving and others terminating or migrating over time. A
bandwidth allocation mechanism must be able to handle
such dynamism in a timely and resource-effective manner.

1collection of related flows
3
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Figure 3. An overview of the main components of Saba.

• Practicality: To facilitate adoption and maximize gener-
ality, a bandwidth allocation scheme should not require
changes to deployed hardware and/or network protocols.

3 Saba Overview
We introduce Saba, an application-aware bandwidth allo-
cation scheme that aims to maximize performance across
non-interactive applications that share the network in a dat-
acenter. At the heart of Saba is a metric called bandwidth
sensitivity, which reflects the effect of network bandwidth on
application performance. We define bandwidth sensitivity
for a given application as the degree of performance degrada-
tion caused by a reduction in available bandwidth. Saba’s key
idea is that providing more bandwidth to applications that
are more sensitive to bandwidth can reduce their completion
time, without compromising the performance of bandwidth-
insensitive applications.
Saba consists of three main components: an offline pro-

filer, a controller, and a library (Figure 3). The offline profiler
determines the bandwidth sensitivity of applications by pro-
filing them in advance (Figure 3a). The controller uses the
bandwidth sensitivity information provided by the profiler
to calculate the bandwidth share of applications in a way that
minimizes the average slowdown across applications and or-
chestrates the network switches to enforce bandwidth. Saba
expects compliant applications to be registered at launch.
The Saba library provides a software interface for applica-
tions to communicate with the controller and conduct the
registration (Figure 3b).
While Saba dynamically partitions network bandwidth

for Saba-compliant applications, non-Saba-compliant appli-
cations (e.g., control or latency-critical services) can co-exist
on the same network. To support this co-existence, datacen-
ter operators can statically allocate a queue for non-Saba-
compliant applications on switches and reserve a portion
of the network bandwidth for them. This queue-based sepa-
ration effectively isolates flows of non-Saba-compliant ap-
plications, preventing interference between them and Saba-
compliant applications. Thus, it allows Saba-compliant ap-
plications to benefit from the dynamic bandwidth allocation
without negatively impacting the performance of other ap-
plications running on the same network.

App1

App1

Sensitivity Table

Name Coefficients

App1 c0, c1, ... , ck

...             ...
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Available BW% Performance Degradation

Figure 4. Details of the offline profiler.

The following sections provide details of the aforemen-
tioned components of Saba (offline profiler, controller and
library), as well as details of our implementation.

4 Offline Profiler
Saba borrows the idea of using a-priori profiling of applica-
tions to make resource allocation decisions [4, 56, 59]. Saba’s
offline profiler performs ahead-of-time profiling on applica-
tions to measure their bandwidth sensitivity based on the
performance degradation caused by limited network band-
width. The profiler uses application completion time as the
metric of performance. Completion time is commonly used to
evaluate the performance of data-intensive applications [33]
and can easily be determined at the system level by recording
the start time and end time of an application.

4.1 Profiling Process
Figure 4 depicts the profiling process managed by the profiler.
To profile a given application 𝐴𝑝𝑝1, the profiler first deploys
the application on multiple nodes 1○. In order to measure
the performance degradation of the application caused by
changes in available bandwidth, the profiler runs the applica-
tion 𝑛 times. In each run, the profiler limits the bandwidth of
NICs of all nodes to a certain percentage of link capacity from
𝐵𝑊 = {𝑏1, 𝑏2, . . . , 𝑏𝑛} and measures the completion time of
the application 2○. Next, for each measured completion time,
the profiler determines the performance degradation by cal-
culating the slowdown, i.e., the ratio of completion time under
a given percentage of bandwidth to the completion time with
unthrottled bandwidth. The output is 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}, a
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Figure 5. Sensitivity models of SQL and LR workloads with
various degrees of polynomial (𝑘).

set of performance degradation values, each of which repre-
sents the impact of the corresponding percentage of band-
width on the performance of the application. The profiler
uses 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = {(𝑏1, 𝑑1), (𝑏2, 𝑑2), . . . , (𝑏𝑛, 𝑑𝑛)} to generate a
polynomial regression model and establish the relationship
between the bandwidth and the slowdown of the applica-
tion 3○. We refer to this regression model as the sensitivity
model. The sensitivity model of 𝐴𝑝𝑝1 can be represented as
follows:

𝐷𝐴𝑝𝑝1 (𝑏) = 𝑐0 + 𝑐1𝑏 + 𝑐2𝑏2 + · · · + 𝑐𝑘𝑏𝑘 =

𝑘∑︁
𝑖=0

𝑐𝑖𝑏
𝑖 (1)

where 𝑘 is the degree of polynomial. The profiler determines
the value of the coefficients, 𝐶 = {𝑐0, · · · , 𝑐𝑘 }, by fitting the
polynomial to the samples, and records the coefficients in
the sensitivity table. Saba uses this table in its controller for
bandwidth allocation (§5).

4.2 Accuracy of Sensitivity Model
In order to evaluate the goodness-of-fit and accuracy of a sen-
sitivity model, we use 𝑅2 (coefficient of determination) [37].
𝑅2 quantifies the fraction of the slowdown trend that the
model is able to explain. 𝑅2 = 1 implies that the model ex-
plains all the observed slowdowns in response to bandwidth.
A model with 𝑅2 = 0 does not explain any of the observed
slowdown trend. The accuracy of the sensitivity model gener-
ated by the profiler depends on the degree of the polynomial,
and on the differences between settings at runtime as com-
pared to profile time. These settings include the size of the
dataset and the number of nodes. We next discuss the effect
of each of these parameters on 𝑅2.

Degree of polynomial: The degree of polynomial deter-
mines the ability of the model to capture any non-linearity
in the relationship between bandwidth and performance
degradation of an application. We assess the degree of non-
linearity for the studied workloads by profiling them as
discussed in §4.1 (see the complete methodology in §8.1).
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Figure 6. Impact of degree of polynomial (a), dataset size
(b), and number of nodes (c) on the accuracy of sensitivity
models.

Figure 5 plots the profiling samples for two studied work-
loads, SQL and LR, along with the sensitivity models for
three different degrees of polynomial.

As Figure 5 shows, the non-linearity of the samples varies
across the twoworkloads. For SQL, the non-linearity is high –
as bandwidth is decreased from 100% to 25%, performance de-
grades by a mere 1.2×; however, as the bandwidth is further
reduced to 10%, performance drops by 2.2×. In contrast, LR
experiences a higher performance degradation throughout
the bandwidth range but exhibits a more linear correlation
between performance and bandwidth. Performance of LR de-
grades by 1.3×, 3.4×, and 4.5× as bandwidth is decreased to
75%, 25%, and 10%, respectively. The figure clearly shows that
a first-degree polynomial model is unable to accommodate
the data for SQL, and a third-degree polynomial is needed
for a good fit; while a second-degree polynomial perfectly
fits the data for LR.

We next study the accuracy of the sensitivity models based
on different degrees of the polynomial. Figure 6a shows that
as the degree of polynomials increases, 𝑅2 of the sensitivity
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models also increases. The sensitivity models of all work-
loads show accuracy above 0.60 using the first-degree poly-
nomial (𝑘 = 1). We observe that some workloads enjoy a
big jump in their accuracy by using higher degrees of poly-
nomial in their sensitivity model; e.g., 𝑅2 for the sensitivity
model of SQL increases from 0.63 to 0.96 as we increase the
degree of polynomial of the model from 1 to 3. For other
workloads, lower degrees of polynomial provide models with
high accuracy; e.g., the sensitivity model of LR generated
with 𝑘 = 1 attains an accuracy of 0.84. Using 𝑘 = 2 increases
the accuracy of LR’s model to 0.94, while 𝑘 = 3 provides
only a small additional improvement to 0.95. We conclude
that the degree of polynomial directly affects the accuracy
of sensitivity models.

Application dataset size: In practice, it may be challeng-
ing to know the target dataset in the profiling phase. It may
also be desirable to run profiling with a smaller dataset size
than in deployment to reduce profiling time and cost. Thus,
the size of the dataset at runtime may differ from that used
by the profiler. To analyze how the accuracy of each model
depends on the dataset size, we conduct a study to estimate
the accuracy of the sensitivity model of each workload when
the size of datasets used at runtime differs from the profiling
datasets. In this study, all models are generated with the
polynomial of degree three (𝑘 = 3).

Figure 6b shows the impact of the runtime dataset size on
the accuracy of sensitivitymodels of the studiedworkloads in
extreme cases inwhich the dataset size at runtime is ten times
smaller (0.1x) or larger (10x) than the dataset used by the
profiler (1x). We observe that while using datasets with sizes
of 0.1x and 10x reduces the accuracy of themodels, all models
obtain 𝑅2 above 0.55. SVM experiences the most negligible
impact as the accuracy of its model reduces from 0.92 (dataset
size 1x) to 0.83 (dataset size 0.1x) and 0.81 (dataset size 10x).
Nutch Indexing (NI) experiences the highest impact as the
accuracy of its sensitivity model decreases from 0.95 (dataset
size 1x) to 0.57 (dataset size 0.1x) and 0.59 (dataset size 10x).
We conclude that for the studied workloads, an order of
magnitude difference in dataset size between profiling and
runtime attains 𝑅2 above 0.55, indicating that the sensitivity
model retains good predictive power despite the change in
dataset size.
Number of nodes: Similar to the dataset size, the num-

ber of nodes running a distributed application may not be
the same as the number of nodes used by the profiler. For
instance, limiting the number of nodes used in the profiling
phase may be desirable to contain the costs of profiling. To
study the impact of the number of nodes at runtime on the
accuracy of sensitivity models, we compare the 𝑅2 of models
of the workloads across various numbers of nodes at runtime,
ranging from 0.5x to 4x of the number of nodes used by the
profiler (8 nodes). All models use 𝑘 = 3.

As Figure 6c shows, the sensitivity models of all workloads
maintain an accuracy above 𝑅2 = 0.50 when the number of

nodes at runtime ranges from 0.5x to 3x. The sensitivity
model of NWeight (NW), delivers the lowest observed ac-
curacy 𝑅2 = 0.51 when tripling the number of nodes. When
increasing the number of nodes at runtime to 4x compared
to profiling, we observe that 𝑅2 drops for most models to
below 0.50; the exceptions are LR, Random Forest (RF), and
Sort. We conclude that the number of nodes is a crucial factor
governing the accuracy of the sensitivity models.

We quantify the performance of Sabawith varying degrees
of polynomial, dataset size, and the number of nodes in §8.2.

5 Controller
Saba relies on a controller to perform bandwidth allocation
and orchestrate switches for bandwidth enforcement. To
conduct the allocation and enforcement, the controller re-
quires the following information: 1) which applications are
Saba-compliant, and 2) the source and destination of each
connection for each Saba-compliant application. The con-
troller needs information about the source and destination
of a given connection to determine the switches along their
path2. Applications explicitly or transparently send the above
information to the controller via a software interface pro-
vided by the Saba library (details are in §6). The controller
collects the above information from applications and deter-
mines the bandwidth share of each application at runtime.
To calculate the bandwidth share of applications, Saba uses
the bandwidth sensitivity information in the sensitivity table
provided by the profiler. The controller assigns the allocated
bandwidth to applications and configures the switches to
enforce the bandwidth shares.

5.1 Bandwidth Calculation and Assignment
Saba allocates bandwidth for applications that have regis-
tered themselves via the Saba library and are actively using
the network. By tracking the active applications through
the Saba library, the controller has global information about
the paths of Saba-compliant flows passing through switches
in the network (see §5.4 for details on scalability). The con-
troller uses this information combined with the profiling
result in the sensitivity table and determines the percentage
of bandwidth to be allocated to the flows from each applica-
tion at each switch output port in a way that minimizes the
total slowdown across applications.

For a given set of applications𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} sending
flows to a given switch output port, weight𝑤𝑖 represents the
percentage of bandwidth allocated to application 𝑎𝑖 at that
port. The goal is to find a set of weights to minimize the total
slowdown across applications. To do so, the controller uses
the sensitivity models generated by the profiler to predict the
slowdown of each application. �̂� = {𝐷1, 𝐷2, . . . , 𝐷𝑛} is the
set of sensitivity models corresponding to 𝐴, each of which

2If the underlying network layer supports multipathing, the controller
determines switches along all paths between the source and destination.
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generated via Eq 1. The controller calculates the weights
�̂� = {𝑤1, . . . ,𝑤𝑛} for applications at the given switch output
port as follows:

�̂� = argmin
®𝑊

𝑛∑︁
𝑖=1

𝐷𝑖 (𝑤𝑖 )

subject to
𝑛∑︁
𝑖=1

𝑤𝑖 = 𝐶𝑆𝑎𝑏𝑎

(2)

where 𝐶𝑆𝑎𝑏𝑎 is the percentage of link capacity that the oper-
ator reserves for Saba-compliant applications. The controller
uses these weights to configure the given output port of the
switch and enforce bandwidth.

5.2 Bandwidth Enforcement
Saba enforces the allocated bandwidth at network switches
and leverages the available rate-limiting mechanism used in
the transport layer. This approach decouples the bandwidth
allocation and enforcement from congestion management,
leading to a cleaner design. Thus, Saba does not need to cal-
culate and limit the transmission rates at the endpoints and
leaves the rate-limiting to the congestion-control protocol.
Bandwidth enforcement at switches works in Saba with-

out any modification to existing switches, as long as the
network layer supports the following requirements: 1) ser-
vice differentiation through Priority Levels (PLs), and 2) per-
port queues in switches. Service differentiation is required to
differentiate flows coming from different applications. Per-
port queues in switches are needed to enforce bandwidth by
assigning flows with weights to queues. Moreover, Saba as-
sumes that switches implement the Weighted Fair Queuing
(WFQ) scheduling algorithm to schedule the packets inside
the per-port queues in proportion to the weights of queues.
WFQ is work-conserving, meaning that other applications
may utilize the remaining bandwidth quota if one applica-
tion does not use some or all of its share. Furthermore, WFQ
is not subject to starvation, meaning that all flows progress
and are eventually transmitted, which is an advantage for a
bandwidth allocation scheme. Fortunately, modern switches
used in datacenters support both service differentiation and
per-port queues and implement variations of WFQ [10, 44].

In Saba, the controller assigns a PL to flows coming from
each application with the help of the Saba library (§6), and
maps each PL to a queue in the switch port. The controller
configures each switch output port with a set of calculated
weights �̂� = {𝑤1, . . . ,𝑤𝑛} determined via Eq (2) and assigns
each weight to the corresponding queue, and each switch
services flows inside queues using the WFQ scheduling algo-
rithm. Note that this approach assumes that switches have
an unlimited number of queues, thus using an idealized one-
to-one mapping of applications to queues. However, existing

switches have a limited number of queues [10, 44]. We next
discuss how Saba addresses this issue.

5.3 Mapping Applications to Queues
While an ideal implementation of Saba should support a one-
to-one mapping between applications and queues, modern
network architectures support only a limited number of PLs
and queues. The number of PLs is determined by the Quality
of Service specification of network technology, whereas the
number of queues in NICs and switches varies across dif-
ferent hardware implementations. For instance, InfiniBand
and Ethernet support 16 and 8 PLs, respectively [10, 44], and
a typical datacenter-grade (InfiniBand or Ethernet) switch
supports 4-8 queues [6, 10, 44]. To overcome this limitation,
Saba performs two layers of mapping to first translate ap-
plications to queues by mapping applications to PLs and
secondly mapping PLs to queues.

5.3.1 Application-to-PLmapping. At the datacenter scale
with hundreds to thousands of running applications, a one-
to-one mapping between applications and PLs is infeasible
due to the limited number of PLs. To address this limitation,
Saba groups applications according to their bandwidth sen-
sitivity using the K-means clustering algorithm [40]. The
controller takes a set of registered applications and the coef-
ficients of their sensitivity models as input, creating 𝑆 groups
from them, where 𝑆 is the number of PLs. The centroid of
each group represents the sensitivity of that group. Saba as-
signs each group a PL and uses the sensitivity of the groups
in the PL-to-queue mapping.

5.3.2 PL-to-queuemapping. The controller needs tomap
PLs to queues to complete the application-to-queue trans-
lation. This task, however, is complicated by the fact that
flows in a given PL may share different links along their
paths, thus resulting in a different set of flows mapping to
the PL in different switches. Consequently, the weight of a
PL may vary across the switches. Additionally, the number
of queues in different switches varies as the capability of
switches is not necessarily the same. Thus, PL clustering
must be performed individually at each switch output port
to map PLs to queues.
To address this problem, Saba must maintain multiple

PL clusters and PL-to-queue mappings and choose the ap-
propriate mapping for each switch port at runtime. To this
end, Saba introduces a hierarchical approach: (1) to cluster
PLs, Saba uses a fast hierarchical clustering [45] scheme to
preserve the information of all possible combinations of PL
clustering hierarchically; (2) at runtime, Saba finds the best
clustering from the hierarchy for each switch output port
and uses it for bandwidth allocation. We next detail each of
these tasks.
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1. PL clustering: In the first level, the controller assigns
each PL to a separate cluster. The controller generates a new
cluster in each iteration by merging the two closest clusters
from the previous level. The coefficients of the model for the
new cluster are the coordinates of the euclidean midpoint
of the corresponding coefficients of the two clusters. The
controller repeats this step until the number of the remaining
clusters equals the minimum number of queues in switches.
2. Finding the best clustering: Assuming that a switch
supports 𝑄 per-port queues, given a set of PLs whose flows
pass through a switch output port, the controller finds the
best cluster at that port as follows:
(a) Start from level 1 of the hierarchy.
(b) In the current level, if all PLs are grouped into at most

𝑄 clusters, go to (c); otherwise, go to the next level and
repeat (b).

(c) Map each cluster of PLs to a queue.
Once PLs are mapped to queues, the controller assigns the
sum of the bandwidth allocated to applications (Eq 2) associ-
ated with each queue as the weight of that queue.

5.4 Centralized vs Distributed Controller
So far, the discussion has implicitly assumed a centralized
controller that maintains the global state of application-to-
PL and PL clustering operations, as well as the state of each
switch, including flows passing through the switch and the
current switch configuration. Such a centralized controller
updates the application-to-PL mapping and performs PL
clustering when a new application is registered or a run-
ning application is deregistered. Furthermore, every time
a connection is created or destroyed, the centralized con-
troller performs a new PL-to-queue mapping and updates
the configuration of switches on the path of that connec-
tion. Naturally, a centralized controller represents a single
point of failure. In addition, calculating the bandwidth for
every application at the scale of a large cluster or a data-
center may result in the centralized controller bottlenecking
performance.

An alternative to the centralized controller is a distributed
one. Eq 2 indicates that the bandwidth calculation for applica-
tions on a given output port is independent of other switches,
presenting an opportunity to distribute the controller’s logic.
In such a distributed design, each controller is responsible
for a group of switches and maintains the record of applica-
tions sending flows to the associated switches. In order to
enforce the bandwidth, the controllers fetch the application-
to-PL mapping and the PL clusters from a database. The
Saba library informs the closest controller when an appli-
cation requests a new connection. This controller performs
bandwidth allocation and enforcement while communicat-
ing with the next controller on the path of the connection to
inform it about the added connection. Each controller does
the same until all switches on the path of the new connection
are configured.

Interface Connection Mgr. Controller Switch

saba_app_register

saba_conn_create
connection

saba_conn_destroy

saba_app_deregister

app_register
PL

conn_create

conn_destroy
app_deregister
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Figure 7. High-level overview of interactions between the
software interface, the connection manager, the controller,
and a network switch.

As noted above, the distributed controller design requires
a database containing the outcomes of application-to-PL
mapping and PL clustering operations. The profiler updates
the database after performing the application-to-PL and PL
clustering operations whenever a new application is profiled.
Existing replication techniques can be used to replicate the
database to increase reliability, availability, and scalability. To
maximize performance, database instances can be co-located
with the controller nodes.

6 Saba Library
Applications that wish to be Saba-compliant must register
themselves at runtime via the Saba library and provide the
controller with information about their networking connec-
tions. This library consists of two components: the connec-
tion manager and the software interface.
Connection manager: The connection manager performs
two tasks: communicating with the controller and creating
connections. For a given application, the connectionmanager
communicates with the controller to register the application
and receives a PL from the controller. When the applica-
tion requests the creation of a connection, the connection
manager creates a new connection and assigns the PL to
the connection. The connection manager already possesses
the PL received during registration. Therefore, setting up
the connection does not introduce any additional overhead.
During data exchange (send or receive), packets from all con-
nections associated with the application carry the assigned
PL. When the application creates or destroys a connection,
the connection manager informs the controller about the
creation or destruction of the connection, leading to new
bandwidth allocations in the controller.
Software Interface: Saba features a simple software inter-
face to communicate with the controller. Figure 7 illustrates
the interactions between the interface, the controller, and a
given switch when each function from the interface is called.
An application requests registration at start time 1○. Saba
library informs the controller via the connection manager 2○.
In response to the registration request, the controller returns

8
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a PL (generated by the application-to-PL clustering) to the
connection manager to be used for future connections 3○.
In order to create a connection, the application sends a re-
quest 4○. In the Saba library, the connection manager uses
the acquired PL to create the connection and returns the
connection to the application. Meanwhile, the connection
manager informs the controller about the new connection 5○.
The controller considers the new connection and its associ-
ated PL for a new allocation 6○ and enforces the allocation
by updating the weights of the queues in the switches 7○.
Once the application no longer needs the connection, it de-
stroys the connection 8○. The connection manager informs
the controller about the finished connection 9○. This leads to
a new allocation 10○, and the controller updates the weights
of queues in the switches 11○. Before quitting, the application
requests for deregistration 12○, and the connection manager
informs the controller to deregister the application 13○.

7 Implementation
This section provides the details of the implementation of
the three components of Saba, offline profiler, controller, and
Saba library. While we have implemented Saba on top of
an InfiniBand architecture, our design does not make any
assumptions about the underlying network layers; e.g., our
implementation can be easily ported to Ethernet networks.

7.1 Profiler
The profiler executes the application multiple times on a set
of dedicated nodes; in each run, it adjusts the amount of net-
work bandwidth available to the application and measures
the application’s completion time. Our current implementa-
tion considers the following percentages of link bandwidth:
5%, 10%, 25%, 50%, 75% 90% and 100%, which are enforced by
a token bucket [35] rate limiter in the InfiniBand driver [46].

7.2 Controller
Path Detection: As explained in §5, the controller receives
information about the sources and destinations of each con-
nection from the Saba library. Saba leverages the infiniband-
diags package provided by OpenFabric [46] and gets the
forwarding tables of switches in the network to detect the
path of each connection.
Weight Calculation: Saba uses Sequential Least Squares
Programming (SLSQP) algorithm from NLopt library [28]
to solve the optimization problem in Eq 2 and calculate the
weights for the flows passing through a given port.
Bandwidth Enforcement: As explained in §5.2, the con-
troller requires the following from the network to enforce
bandwidth: i) service differentiation and ii) per-port queues
in switches with the WFQ scheduling policy. InfiniBand sup-
ports service differentiation in its transport protocol and

features per-port queues. Further, InfiniBand switches im-
plement a Weighted Round Robin scheduling discipline to
approximate WFQ.
InfiniBand offers service differentiation by introducing

two concepts: Service Levels and Virtual Lanes [10].
Service Levels (SLs): InfiniBand supports 16 priority levels,
called Service Levels (SLs). SLs are exposed to the developer
and can be used to create connections. Once a connection
has been created using an SL, the header of packets from the
connection will carry the SL through the network.
Virtual Lanes (VLs): InfiniBand divides a physical link into
different logical communication links, called Virtual Lanes
(VLs), and allocates a queue for each VL at the output ports of
switches and NICs. For each VL, InfiniBand provides buffer-
ing, flow-control, and congestion management. Switches and
NICs handle packets inside VLs in each scheduling turn ac-
cording to a table that maps SLs with their associated weights
to VLs. This table is configurable at every switch and NIC by
the datacenter operator. With the current InfiniBand specifi-
cation, each switch or NIC must support between 2 and 16
VLs [10].

Saba uses SLs to differentiate applications and enforces
bandwidth by dynamically setting the VLs’ weights at switches.

7.3 Saba Library
The connection manager, implemented with just 350 LOC,
uses RPC operations for all control-plane activities. The con-
nection manager creates the low-level InfiniBand connec-
tions using ibverbs library and assigns SLs to them. In order
to register workloads and communicate with the controller,
we add Saba API to the Spark and Flink frameworks. To do so,
we modified the existing job submission and RDMA-enabled
shufflemanager [43] in Spark to invoke Saba’s interface func-
tions. The individual workloads required no modification to
support Saba.

8 Evaluation
We evaluate Saba using experiments on (1) a 32-server Infini-
Band testbed with a suite of workloads and (2) a simulated
1,944-server cluster with a set of synthetic workloads.

8.1 Methodology
The main goal of the experiments is to evaluate the impact
of Saba on the performance of workloads as compared to a
baseline implementing max-min fairness.
Baseline: We use InfiniBand as our baseline, which approx-
imates max-min fairness for each queue in its end-to-end
congestion management via Forward Explicit Congestion
Notification [3, 54]. In the simulation experiments, we also
implemented an idealized version ofmax-min fairness, which
provides an upper bound on the performance achievable by
any congestion-control protocol targeting max-min fairness.

9
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Table 1. Dataset size of workloads in profiling.

Workload Dataset Size

1○

LR (Logistic Regression) 10k samples
RF (Random Forest) 20k samples
GBT (Gradient Boosted Trees) 1k samples
SVM (Support Vector Machine) 150k samples

2○ NW (NWeight) # of graph edges: 4250M

3○ NI (Nutch Indexing) 100G samples
PR (PageRank) 50M pages

4○ SQL (Join) Two Tables
# of records: 5G & 120M

5○ WC (WordCount) 300GB
Sort 280GB

Metric:Our metric of interest is speedup, defined as the ratio
of the performance of a given workload on the Saba-enabled
network to the performance of the workload on the baseline
system. Throughout this section, the average speedup reports
the geometric mean of the results.
Testbed: We conduct our experiments on a cluster of 32
servers. Each server runs Ubuntu 18.04 and is equipped
with two 8-core Intel Xeon E5-2650v2 (Ivy Bridge) CPUs
at 2.60GHz. Each CPU has 20 MB of L3 cache and two hard-
ware threads per core, though we disable SMT in our ex-
periments. Each server has 64 GB of system memory and a
single-port 56Gb InfiniBand NIC (ConnectX-3) connected on
socket 0. NICs are interconnected via a Mellanox SX6036G
InfiniBand switch, which supports 9 VLs. We use 8 VLs for
Saba-compliant applications.We also use an additional server
to run the centralized controller. At profiling time, the same
server runs the profiler. In all experiments, we reserve 100%
of the link capacity to be managed by Saba (i.e., 𝐶𝑆𝑎𝑏𝑎 =
100%).

On the application side, we use the Spark and Flink frame-
works. We use ten workloads from Intel’s industry bench-
marks [26] running on top of Spark and Flink. These work-
loads include Machine Learning 1○, Graph 2○, Websearch 3○,
SQL 4○, and Micro 5○ benchmarks. The workloads and the
evaluated dataset sizes are summarized in Table 1.
Simulation: To assess Saba at a larger scale, we implement it
in Mellanox’s InfiniBand simulator based on OMNeT++ [42].
We configure the simulator to support 56Gbps link capacity
per port to match our hardware testbed. Each port supports
16 VLs, each with a dedicated queue. We simulate a repre-
sentative network configuration with a Spine-Leaf topology
and three levels of switches [50]: 54 spine, 102 leaf, and 108
top-of-rack switches. Each top-of-rack switch connects 18
servers, for a total of 1,944 servers in the network. Similar
to our testbed setup, we set 𝐶𝑆𝑎𝑏𝑎 to 100%.
We generate 20 distinct synthetic workloads in the sim-

ulator. Each workload emulates the computation and com-
munication stages, which is a common pattern in parallel
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Figure 8. Testbed results. (a) shows the speedup of work-
loads with Saba over the baseline. (b) plots the CDF of the
average speedup of 500 cluster setups.
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Figure 9. Impact of dataset size (a), the number of nodes (b),
and degree of polynomial (c) on speedup of workloads.

frameworks such as Spark and Flink. The amount of com-
putation, communication, and the number of stages varies
across the workloads to emulate varying degrees of band-
width sensitivity. In the simulation, each server runs one
workload. In a topology with 1,944 servers, each of the 20
workloads has 97 instances, which are randomly distributed
across the network.
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8.2 Main results
In this section, we evaluate the performance of Saba in an en-
vironment with uneven distribution of traffic on each node,
which mimics realistic scenarios in private datacenters. To
create such an environment, we generate 500 cluster setups.
In each cluster setup, 16 jobs are randomly selected by draw-
ing, with replacement, from the set of workloads listed in
Table 1. All workloads are profiled in advance with the de-
gree of polynomial of 3 as described in §4.1. The dataset size
of each job is randomly selected from 0.1x, 1x, and 10x of the
dataset used by the profiler. The number of instances of a
job is also randomly selected from 0.5x to 4x of the number
of nodes used by the profiler (8 nodes). On each server, one
core is assigned to each job, and memory is equally parti-
tioned among all workloads. Instances of jobs are randomly
distributed among servers with two constraints: 1) at most
one instance of a given job is assigned to a server, and 2)
each server accommodates at most 16 jobs. For each cluster
setup, we run all jobs together two times, once with Saba
managing the bandwidth of jobs and once with the baseline,
and we measure the completion time for each job.
Figure 8a displays the average speedup over the base-

line for each workload. As the figure shows, Saba improves
the average performance across workloads by 1.88× com-
pared to the baseline. The largest performance improvement
is observed on workloads with high bandwidth sensitivity.
E.g., the performance of RF is increased by 3.9×, and LR by
3.6×. For 2 (out of 10) workloads that have low sensitivity
to network bandwidth (Sort and PR), their performance is
slightly degraded by 5% and 1% over the baseline, respec-
tively. The reason for the performance drop is that Saba
distributes the bandwidth in favor of bandwidth-sensitive
workloads.With this objective, workloads that are highly sen-
sitive to bandwidth get larger shares of network bandwidth,
while workloads with low sensitivity receive smaller shares.
Such an approach significantly improves the performance
of bandwidth-sensitive workloads as well as the overall per-
formance of all workloads. However, this redistribution of
bandwidth may lead to mild performance degradation for
some workloads, as demonstrated by our results.
Figure 8b shows the CDF of the average speedup of 500

cluster setups. As the figure shows, the average speedup
ranges from 0.94× to 2.92×. In only 2 (out of 500) cluster
setups, Saba results in a performance slowdown compared
to the baseline.

8.3 Sensitivity studies
In §4.2, we observed that the degree of polynomial, dataset
size, and the number of nodes impact the accuracy of sensi-
tivity models. In this section, we evaluate the impact of these
parameters on the performance of Saba. In all scenarios, all
workloads are profiled in advance (§4.1). In studies 1 and 2,

the degree of polynomial (𝑘) used by the profiler is 3. We
vary the degree of polynomial in study 3.
1) Impact of dataset size:As described in §4.2, the accuracy
of the sensitivity models declines as the difference in dataset
size at profiling and runtime increases. We compare the
performance of Saba across various dataset sizes, ranging
from 0.1x to 10x the size of the datasets used in the profiling
phase. To this end, we create a homogeneous setup in which
the number of nodes is the same number of nodes used in
the profiling phase (8 nodes) and all nodes run all workloads
together. We run one instance of each workload on every
server with a core assigned to each workload and memory
equally partitioned among all workloads.
Results are shown in Figure 9a. As the figure shows, the

applications benefit the most (1.54× speedup) when the run-
time dataset size matches the dataset size in the profiling (1x).
However, even when datasets are ten times smaller (0.1x) or
larger (10x), Saba is still able to obtain performance improve-
ment across workloads. When the workloads use the 0.1x
and 10x datasets, Saba improves the average performance
by 1.33× and 1.40×, respectively, compared to the baseline.
2) Impact of number of nodes: Similar to dataset size,
the accuracy of a sensitivity model decreases as the number
of nodes running a distributed application at runtime drifts
from the number of nodes in the profiling phase (explained in
§4.2). We compare the performance of Saba across a number
of nodes, ranging from 0.5x to 4x the number of nodes used
by the profiler (8 nodes). Similar to study 1, we run one
instance of each workload on every server. In this study,
workloads use datasets of the same size as in the profiling.

As Figure 9b shows, Saba achieves a 1.42× average speedup
over baseline when the number of nodes is reduced to half.
Increasing the number of nodes to 2x and 3x compared to
the profiling results in 1.34× and 1.26× average speedup,
respectively. When increasing the number of nodes to 4x
compared to profiling, we observe that Saba gains only 1.09×
average speedup; however, workloads such as SQL, NW,
and NI experience 8%, 6%, and 3% drop in their respective
performance. This result was expected as §4.2 explained that
when the number of nodes at runtime is 4x, the accuracy
of sensitivity models significantly drops. We conclude that
when the number of nodes used in deployment exceeds the
number in the profiling configuration by over 3x, the benefits
of Saba significantly diminish.
3) Impact of degree of polynomial: As explained in §4.2,
the degree of polynomial plays an important role in the accu-
racy of the sensitivity models. We compare the performance
of Saba while varying the degree of polynomial used by the
profiler from 1 to 3. Similar to study 2, we run one instance
of each workload on every server. In this study, workloads
use datasets of the same size as in the profiling phase and
the number of nodes is the same number of nodes used in
the profiling phase (8 nodes).

11



EuroSys ’23, May 8–12, 2023, Rome, Italy M.R. Siavash Katebzadeh, Paolo Costa, and Boris Grot

Figure 9c displays the impact of the degree of polynomial
on the performance of Saba. As expected, Saba benefits from
more accurate sensitivity models. Some workloads benefit
from the higher degrees of polynomial. For instance, when
the sensitivity model of the SQL workload is generated us-
ing second- and third-degree polynomial, SQL experiences
1.03× and 1.22× improvement, respectively, over the baseline.
Overall, with the first- and second-degree polynomial, Saba
achieves 1.27× and 1.42× average speedup, respectively.

8.4 Simulation Results
To study the performance at a larger scale, we expand the
deployment size by using the simulator and running the set
of synthetic workloads as explained in §8.1.
Profiling:We calculate the bandwidth sensitivity of work-
loads by profiling them. For each of the simulated workloads,
the profiler deploys instances of the workload on a rack-scale
simulated system with 18 nodes (thus mimicking a real de-
ployment). The profiler uses the third-degree polynomial in
the following studies to generate a sensitivity model for each
workload. In all studies, Saba uses a centralized controller,
except for study 7.
4) Saba vs. Ideal Max-Min Fairness:
Ideal max-min fairness: In the ideal implementation of max-
min fairness, each workload is assigned to a dedicated queue,
and packets from queues are serviced using the Round-Robin
algorithm. In this scheme, in each turn, the scheduler in the
switch selects a queue and chooses the packet at the head of
the queue. Assuming that all packets have the same size if
such a scheme transmits one packet in each turn, it achieves
the upper bound of max-min fairness [24].
We evaluate the performance of synthetic workloads at

a large scale with ideal max-min fairness and compare that
with Saba. We run all workloads together in the simulation.
Similar to §8.2, Saba uses 8 per-port queues in the switches.
Figure 10 presents the results. As the figure shows, al-

most all workloads achieve higher performance using Saba
compared to using ideal max-min fairness. The maximum
speedup achieved by a workload is 1.79×; while the perfor-
mance of two workloads is penalized by 3%. The average
speedup across workloads for Saba and ideal max-min fair-
ness is 1.27× and 1.14×, respectively. This shows that per-
flow max-min fairness is inherently unable to directly target
the application-level performance, as it tries to achieve band-
width fairness at the flow level, but ignores the fact that some
workloads are more sensitive than others. In contrast, Saba
allocates the bandwidth of each network link based on the
bandwidth sensitivity of the workloads using it. Thus, work-
loads with higher sensitivity get more bandwidth and see a
performance improvement over max-min fair allocation.
5) Saba vs. Homa: In this study, we compare Saba against
the recently-proposed Homa [44], which is considered the
state-of-the-art networking protocol designed for datacen-
ters. Similar to Saba, Homa leverages the priority queues

available in network switches. Homa prioritizes short flows
to achieve optimal flow-level completion time.We useHoma’s
OMNet++ simulator with the same topology and set of syn-
thetic workloads described in §8.1.
As Figure 10 shows, Homa achieves 1.12× speedup over

the baseline. Saba outperforms Homa by an additional 15%.
The reason that bandwidth-sensitive workloads benefit from
Saba more than Homa is the fact that Homa differentiates
flows based on their size. E.g., in this setup, Homa assigns
all flows longer than a certain size (10KB) to the same pri-
ority queue, without differentiating their associated work-
loads; thus, Homa does not allocate bandwidth in favor of
bandwidth-sensitive workloads and the application-level per-
formance of workloads is ignored. Saba, however, differenti-
ates workloads at runtime based on their application-level
sensitivity to bandwidth, resulting in improved performance.
6) Saba vs. Sincronia: To bridge the gap between flow-
based bandwidth allocation schemes and application-level
bandwidth requirements, a networking abstraction, called
coflow, has been proposed recently [15]. Coflow represents
a collection of related flows to convey application-specific
communication requirements. In this study, we compare Saba
against Sincronia[2], which is the state-of-the-art clairvoy-
ant coflow scheduler. Sincronia tries to minimize the coflow
completion time by ordering all unfinished coflows and as-
signing priority levels to the flows according to their coflow
order. Sincronia requires flow sizes to be known a priori.
While such a requirement is not feasible in datacenters [63],
it provides Sincronia with near-optimal coflow completion
time. To enforce the allocated rates, Sincronia leverages the
underlying priority-enabled transport layer.
As Figure 10 shows, Sincronia achieves 1.19× speedup

over the baseline. Saba outperforms Sincronia by an addi-
tional 8%. Indeed, the coflow abstraction allows workloads
to more accurately express their bandwidth requirements to
the network fabric; however, it does not take the sensitivity
of workloads into account and the overall application-level
performance of workloads is ignored. In addition, Sincro-
nia, like other coflow-based approaches, needs applications
to be modified and invoke coflow API [15]; Saba, however,
requires no modification to applications.
7) Centralized vs. Distributed: In this study, we evaluate
the impact of the centralized versus distributed controller
on Saba’s performance. We repeat Study 4 with the dis-
tributed controller. As explained in §5.4, in Saba, with the
distributed controller, the profiler performs the application-
to-PLs and hierarchical clustering operations offline. Thus,
the controller may not have the most accurate mappings,
leading to a trade-off between performance and scalability.
As Figure 11a demonstrates, Saba with the distributed

controller is able to achieve a 1.23× speedup over the baseline,
falling just 4% short of Saba with the centralized controller.
We conclude that using the distributed controller slightly
reduces the effectiveness of Saba while improving scalability.
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Figure 11. (a) the average speedup with centralized versus
distributed controllers. (b) impact of the number of queues
on the performance of Saba.

8) Impact of number of queues: The number of queues per
output port varies among switches used in today’s datacen-
ters. 8 queues are common, though more capable switches
may support 16 queues per port [44]. We study the impact
of the number of queues in network switches on the perfor-
mance of Saba. To do so, we repeat study 4 and use switch
configurations with 2, 4, 8, and 16 queues per port. We also
study a configuration with unlimited queues, where each
workload is assigned to a dedicated queue; this configuration
provides an upper bound on Saba’s performance.
Figure 11b plots the results of the study. Compared to

the baseline, Saba delivers a 1.12× average performance im-
provement with just 2 queues at each output port. With 8
queues, Saba achieves a speedup of 1.27×, approaching the
ideal speedup of 1.33× with an unlimited number of queues.
This result shows that 8 queues, which is common in today’s
datacenter switches, is sufficient for Saba to achieve close to
its optimal performance.

8.5 Overhead of the controller
In study 3, we observed that modeling the bandwidth sensi-
tivity of workloads with higher degrees of polynomial results
in higher performance. In this study, we investigate the added
overhead by higher degrees of polynomial in bandwidth cal-
culation on a large scale in the simulator. To this end, we
evaluate the calculation time of a centralized controller, i.e.,
the time the controller takes to compute the bandwidth share
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Figure 12. The overhead of a centralized controller.

of applications for all switches. We generate 30,000 scenarios,
in which the size of the active application set varies from 1
to 1,000. In each scenario, 32 instances of each application
are randomly distributed among nodes.
Figure 12 displays the CDF of measured calculation time

with various sizes of active application sets (|𝐴|). The result
shows that for sets of applications with sizes up to 250, the
calculation time of the controller at 99th percentile is 0.09𝑠 ,
0.16𝑠 , and 0.31𝑠 for 𝑘 = 1, 𝑘 = 2 and 𝑘 = 3, respectively. By
increasing the size of applications set up to 1,000, the calcu-
lation time of the controller at 99th is 0.43𝑠 , 0.72𝑠 , and 1.13𝑠
for 𝑘 = 1, 𝑘 = 2 and 𝑘 = 3, respectively. Despite the higher
accuracy achieved by sensitivity models with higher degrees
of polynomial, the increased overhead in bandwidth calcu-
lation reduces the responsiveness of the controller. While
the degree of polynomial must be carefully tuned according
to the number of applications in the deployment of Saba,
the calculation time of the controller even with 𝑘 = 3 is
negligible as compared to the runtime of workloads. To put
the calculation time in perspective, the studied workloads
take from several minutes to hours to finish their job, while
in an extreme case, the calculation time of a centralized con-
troller for 1,000 applications takes 1.13 seconds. Moreover,
the datacenter operator can distribute the controller, or use
a multi-threaded implementation of the controller and run
it on multiple cores or accelerators such as FPGAs to reduce
the calculation time.
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9 Related Work
Datacenter bandwidth allocation protocols:Mainstream
proposals for bandwidth allocation in datacenter networks
can be broadly classified into two categories. In the first one,
there are protocols like DCTCP [5], NDP [25], and Swift [31]
that aim to achieve max-min fairness while keeping low
queue utilization. In the second one, there are solutions like
Homa [44], pFabric [6], pHost [19], and Sincronia [2] that
explicitly target reducing flow completion time as the pri-
mary metric, possibly using policies such as shortest-flow-
first [6, 44]. However, as we discussed in §2.2, they all op-
timize for network-level metrics and ignore the impact of
bandwidth sensitivity for different applications, which can
result in poor aggregate application performance. In contrast,
Saba estimates the impact of bandwidth on applications and
leverages this information to distribute network bandwidth
and achieve shorter application completion times.
Application-aware bandwidth allocation: There have
been a few attempts to use the application-level network
demands in bandwidth allocation, many of which are special-
ized for specific types of applications and require software
modification. Coflow [2, 14–16] introduces a new network
abstraction and network API for data-parallel applications.
AppSch [36] relies on a priori knowledge of the flow size of
all flows in applications and allocates paths for their flows.
Saba requires no modification to applications and no prior
knowledge of flow size. Rajasekaran et al. observe that un-
fairly (unequally) sharing the network among ML jobs could
lead to shorter training time due to the on-off pattern of
DNN training [49]. In contrast, Saba does not make any as-
sumption about the specific pattern of communication and
computation, and proposes a general methodology to allo-
cate bandwidth across a heterogeneous set of workloads.
Performance prediction: Performance prediction through
application modeling has been explored in recent works.
Ernest [56] models the structure of machine learning jobs
to predict their performance; Saba, however, does not make
any assumptions about the internal structure of applications.
CherryPick [4] builds performance models and leverages
information of history jobs, aiming at finding a cloud con-
figuration (CPU, memory, number of nodes, etc) for a single
application that minimizes the cost of executing the applica-
tion. Saba focuses on bandwidth allocation for co-running
applications that share the network.

10 Conclusion
In this paper, we demonstrate the shortcomings in bandwidth
allocation approaches that are based on max-min fairness or
shortest-flow first on a per-flow basis. We show that such
allocation schemes do not efficiently utilize the network in
shared environments like datacenters, as they are unable
to identify the bandwidth demands of applications. We in-
troduce Saba, an application-aware bandwidth allocation

scheme, which determines the sensitivity of applications to
bandwidth, and allocates bandwidth to applications accord-
ing to their bandwidth sensitivity. Our evaluation shows
that Saba improves the performance of co-located workloads
compared to existing and ideal implementations of max-min
fairness.
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