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Abstract
Serverless computing has emerged as a widely-used paradigm for running services

in the cloud. In this model, developers organize applications as a set of functions

invoked on-demand in response to events, such as HTTP requests. Developers are

charged for CPU time and memory footprint during function execution, incentivising

them to reduce runtime and memory consumption. Furthermore, to avoid long start-

up delays, cloud providers keep recently-triggered instances idle (or warm) for some

time, anticipating future invocations. Consequently, a server may host thousands of

warm instances of various functions, their executions interleaved based on incoming

invocations.

This thesis investigates the workload characteristics of serverless and observes that:

(1) there is high interleaving among warm instances on a given server; (2) individual

warm functions are invoked relatively infrequently, often at intervals of seconds or

minutes; and (3) many function invocations complete within milliseconds. This in-

terleaved execution of rarely invoked functions leads to thrashing of each function’s

microarchitectural state between invocations. Meanwhile, the short execution time of

functions impedes the amortization of warming up on-chip microarchitectural state.

As a result, when a given memory-resident function is re-invoked, it commonly finds

its on-chip microarchitectural state completely cold due to thrashing by other func-

tions — a phenomenon we term lukewarm execution. Our analysis reveals that the

cold microarchitectural state severely affects CPU performance, with the main source

of degradation being the core front-end, comprising instruction delivery, branch iden-

tification via the BTB, and conditional branch prediction.

Based on our analysis, we propose two mechanisms to address performance degra-

dation due to lukewarm invocations. The first technique is Jukebox, a record-and-

replay instruction prefetcher specifically designed to mitigate the high cost of off-chip

instruction misses. We demonstrate that Jukebox’s simplistic design effectively elimi-

nates more than 95% of long-latency off-chip instruction misses.

The second technique is Ignite, which builds on Jukebox to offer a comprehensive

solution for restoring front-end microarchitectural state, including instructions, BTB,

and branch predictor state, via unified metadata. Ignite records an invocation’s control

flow graph in compressed format and uses that to restore the state of the front-end

structures the next time the function is invoked. Ignite significantly reduces instruction

misses, BTB misses, and branch mispredictions, resulting in an average performance

improvement of 43%.
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In summary, this thesis demonstrates that serverless systems present distinct work-

load characteristics that fail to match traditional CPU designs, severely impacting per-

formance. Two simple techniques can overcome these bottlenecks by preserving the

microarchitectural state across function invocations.
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Lay summary

In our increasingly digital world, the demand for data processing and computing

power is growing exponentially. Data centres, which provide massive computing facil-

ities to meet this demand, consume vast amounts of energy and contribute significantly

to global carbon emissions. Maximizing the utilization of existing hardware resources

is paramount for sustainability.

Serverless computing has emerged as a promising approach to enhance resource

management in data centres. By abstracting infrastructure management away from

developers and fully ceding it to cloud providers, serverless computing improves de-

veloper productivity and allows providers to optimize their systems for better utiliza-

tion. However, this model introduces a radical shift in workload characteristics that

misaligns with traditional server CPU designs.

This thesis investigates the performance implications of serverless workloads on

modern CPUs. It reveals that the transient nature of serverless functions, characterized

by short execution times and frequent switching between different functions, conflicts

with CPU designs optimized for long-running applications. Typically, CPUs undergo a

warm-up phase where they learn program behaviour to optimize execution. However,

serverless functions are often too short-lived to benefit from this warm-up process.

As a result, they frequently operate with a cold microarchitectural state, leading to

significant performance degradation and inefficiencies.

Through comprehensive analysis, this research identifies the key bottlenecks in

instruction delivery — the machinery that feeds the CPU with work. To overcome these

bottlenecks, two novel, lightweight techniques are proposed that effectively warm up

key components of the CPU. Both techniques demonstrate substantial performance

improvements while requiring minimal hardware complexity and integration effort,

ensuring that serverless computing can remain an efficient and sustainable model for

future data centres.
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Chapter 1

Introduction

Our world is increasingly digitized, with data becoming the new oil [42]. From health-

care to supply chains to transportation, all sectors rely heavily on data and computing,

with demand experiencing exponential growth [71]. Data centres play a crucial role by

providing massive computing and storage resources, and their demand is expected to

grow at a compound annual growth rate (CAGR) of 10.9% from 2023 to 2030 [59].

However, building and powering data centres has a severe environmental impact

and a large carbon footprint. Data centres consume enormous amounts of energy

— hundreds of terawatt-hours — exceeding the energy usage of entire countries like

Iran [82]. At their current growth rate, data centres are expected to consume more

than 2.5 times the energy in 2030 compared to 2024 [13]. Additionally, as technology

scaling slows down and producing chips in smaller technology nodes consumes more

energy and rare elements [52], the embodied carbon emission of servers and, corre-

spondingly, data centres increase and become the dominant factor [64, 65]. Most con-

cerning is that most of the energy and carbon spent on data centres goes wasted due to

improper resource planning and, as a result, low server utilization. A study by Google

on over 5,000 servers found utilization rates between 10-50% over six months [25].

Other studies confirm similar utilization rates, with an average utilization far below

50% [6, 60, 106]. Given that the information and communications technology (ICT)

ecosystem accounts for 2% of the global carbon footprint — on par with the aviation

industry [82] — and data centres are the second-largest growing factor within this sec-

tor, designing systems that maximize hardware resource utilization is of paramount

importance.

Problematically, efficient resource management is challenging and further exacer-

bated by the increasing complexity of modern online services. A typical online service
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2 Chapter 1. Introduction

comprises hundreds of components [54, 113], requiring a deep understanding of the

entire software and system stack to allocate compute resources optimally. This need

for expertise and time conflicts with developer productivity, which is critical for busi-

ness success [70]. A survey by Granulate shows that even with cloud infrastructures

and auto-scaling techniques, only 30-50% CPU utilization is achieved, and the lack

of manpower, budget constraints, and time-to-value being major obstacles to further

improving utilization [60].

Serverless computing emerged as a promising approach to simplifying the resource

management of online applications running in data centers while improving utilization.

In serverless, the underlying infrastructure required to run a large-scale service is ab-

stracted away from the developer and fully ceded to the cloud provider. Developers,

freed from the burden of configuring, maintaining, and planning their cloud resource

consumption, can focus on the core business logic and innovate their offerings. At the

same time, the cloud provider, equipped with knowledge and expertise about its infras-

tructure, can optimize its system stack and concentrate resources consumed by mul-

tiple customers, maximizing its data centre computing capacity. This way, serverless

bridges the gap between the need for efficient resource management and productivity,

providing a cost-effective solution for both the customer and the cloud provider. Not

surprisingly, serverless computing experiences one of the highest rates of adoption

of public cloud offerings — 9% increase in one year to 48% of organizations using

serverless in 2024 [48] — and is expected to grow at a CAGR of 22.2% from 2024 to

2032 [129].

1.1 The Problem: Serverless Doesn’t Fit Modern CPUs

Although highly attractive for developers and cloud providers, serverless computing

presents a radical shift in the cloud execution model accompanied by a likewise drastic

change in workload characteristics. Traditionally, monolithic or microservice-based

architectures are used to implement cloud applications in one or more virtual ma-

chines (VMs) that constantly occupy one of the cloud provider’s machines. On the

contrary, serverless applications are composed of many small, typically short-running,

stateless functions that are invoked sporadically on demand [36, 37, 80, 150]. In fact,

developers are incentivized to break down their applications into a collection of fine-

grained functions, allowing the provider to scale different parts of the business logic

independently, thus maximizing elasticity. Moreover, serverless providers, such as
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AWS Lambda and Google Cloud Functions, charge users for the amount of memory a

function consumes times the function’s execution time [11, 55], which further pushes

the developers toward leaner, short-running functions. For instance, studies show that

serverless functions tend to have short execution durations, as low as a millisecond or

less [36, 37], and memory footprints often in the range of 128–256MiB [36]. Likewise,

in the case of interactive services, for which serverless is a common implementation

model [44], the end-to-end latency must often meet an SLO target in the order of a few

tens of milliseconds [57]. To achieve this, the individual functions may be expected to

be complete in a millisecond or less [80, 154, 172].

Furthermore, to avoid the long delays of booting a new function instance, cloud

providers tend to keep recently-invoked instances alive (or warm, in serverless par-

lance) instead of shutting them down in anticipation of additional invocations to that in-

stance. Recent work has shown that Amazon, Google, and Microsoft all keep recently

invoked function instances warm for at least several minutes and up to an hour [163].

The combination of small memory footprints for many functions, long keep-alive in-

tervals enforced by cloud providers [163], and hundreds of gigabytes of memory in

a representative server results in thousands of warm function instances residing on a

typical cloud server [5]. The execution of these functions is interleaved in time based

on invocation traffic, with many warm functions experiencing invocation inter-arrival

rates measured in seconds or minutes [150] — an invocation rate that is relatively

infrequent compared to their run time.

Problematically, the microarchitecture of a CPU is designed and optimized for

long-running workloads. By taking advantage of spatial and temporal locality during

program execution, CPUs cache data and instructions close to the core to overcome the

high latency of memory accesses [69]. Furthermore, long execution times allow struc-

tures like branch predictors or prefetchers to learn the program’s control flow behaviour

and data access patterns, enabling highly accurate branch and prefetch predictions. To-

day, server-class CPUs are equipped with multi-megabyte caches, consuming most of

the chip real estate [3, 112, 131], as well as sophisticated branch predictors [3, 148]

and data prefetchers [61, 122, 125] all with the sole reason to collect data, instruc-

tions or information about the program behaviour the processor can use to optimize

instruction execution. However, when launching a new application, the CPU microar-

chitecture is cold, and it may take millions of instructions for the microarchitectural

structures to cache more data and instructions and learn the behaviour of the new ap-

plication until it finally reaches its peak performance. This phase is called warm-up
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and has been well-studied in the context of simulating workloads [33, 67, 93, 115].

For example, Yue et al. [105] found it takes 3-23M instructions to warm up a 1MiB

cache, while [115] showed the warm-up increases to more than 100M instructions as

the cache size grows. A similar study on branch predictors shows that it can take up

to 10M branch instructions to train a state-of-the-art branch predictor until it reaches

its peak performance [166]. In the cold state, the branch predictor has a misprediction

rate 10x higher compared to after training, which can result in performance degrada-

tion of up to 45% [166]. On top of hurting performance, inaccurate predictions — as

a result of the cold state — waste energy to correct predictions or trigger unnecessary

memory transactions [77]. Considering a typical IPC of around 1 instruction per cycle

found for modern server workloads [45, 79, 124], it can take up to 10-100M cycles

to warm up a cache and ∼50M cycles1 to warm up a branch predictor. With a typi-

cal CPU frequency of 2-3GHz [4, 14, 125], it can easily take tens of milliseconds to

warm up the microarchitecture. While the warm-up time is negligible for conventional

always-on cloud applications, where VMs stay alive for hours or days, it is significant

for serverless functions that run for milliseconds or even less.

The mismatch between CPU microarchitecture design goals and the workload char-

acteristics of serverless functions is not yet fully understood, and it can lead to high

inefficiencies in the execution of serverless functions. Considering the increasing scale

of serverless, already serving ”trillions of requests per month” [5], these inefficiencies

may result in performance degradation worth millions of dollars and a huge amount of

wasted energy. Therefore, this mismatch must be thoroughly understood and addressed

to ensure serverless computing is a sustainable solution for resource management chal-

lenges.

1.2 Our Approach

To ensure the sustainability of serverless computing as a solution for data centre re-

source management challenges, this thesis sets the following objectives:

1. Examine Performance Implications: Develop a comprehensive understanding

of the performance implications of serverless workload characteristics on modern

CPUs.

1Assuming that every fifth instruction is a branch [22]
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2. Understand Bottlenecks: Identify bottlenecks and offer insights into their exis-

tence and potential solutions.

3. Overcome Bottlenecks: Design and evaluate solutions to address bottlenecks

resulting from the mismatch in CPU designs and the serverless workload charac-

teristics.

4. Ensure Lightweightness: The proposed solutions must be lightweight, non-

disruptive, and easy to integrate with existing hardware and software to ensure

sustainability.

1.2.1 Understanding Serverless Workloads

To achieve objective 1., we examine a typical serverless scenario where a contemporary

Intel Xeon Ice Lake server is loaded with many interleaved executing functions. We

find that the large number of co-located functions with extremely short running times

(milliseconds or less) results in a high degree of interleaving and an unprecedented

frequency of context switching. Moreover, the relatively long inter-invocation intervals

(seconds to minutes) mean that hundreds to thousands of other functions may execute

between two invocations of a given function. As a result, a re-invoked function that

is live on a server may find its microarchitectural CPU state (including caches and in-

core structures) completely cold due to thrashing by interleaved invocations of other

functions. We term this phenomenon lukewarm execution.

Our analysis reveals that lukewarm executions of functions cause a performance

degradation of 2x or more compared to executions with a fully warmed-up microar-

chitectural state (i.e., back-to-back executions of the same function on the same core).

The reason for such high performance degradation is that the short running time of

the functions (typically on the order of a few milliseconds or less) means functions

will either never complete the warm-up phase or the execution time is insufficient to

amortize and benefit from warming up the microarchitectural structures.

Objective 2. In a detailed Top-Down performance analysis [170], we identify the

front-end (i.e., instruction delivery, branch identification, and branch prediction) as the

main culprit behind the poor performance on lukewarm invocations. Collectively, the

front-end is responsible for two-thirds of the performance degradation compared to

executions with a warm microarchitectural state. Specifically, we find that off-chip

misses for instructions are the major pain point, increasing the fetch latency by 45%
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Based on this finding, we examine the instruction and branch working sets across

multiple invocations of the same function and find a significant commonality: ??% of

all instruction cache blocks accessed by one invocation are also accessed by a sub-

sequent invocation. We further find that the instruction footprints of individual invo-

cations for the studied functions range from 300KiB to over 800KiB. With hundreds

or thousands of co-running warm function instances on a serverless host, keeping the

combined instruction footprints of all functions in processor caches becomes clearly

infeasible. The same observations are made for the branch working sets; the branch

predictor units (BPU) capacity can comfortably hold the working sets of a single func-

tion but is completely overwhelmed by the vast amount of interleaved functions.

1.2.2 Addressing Lukewarm Execution

Objective 3. Spurred by our observations, we strive for solutions to overcome the

performance degradation caused by lukewarm execution. However, we note that data

centre servers execute a variety of workloads from different clients and applications,

which might not be equally well-suited for the serverless model. Furthermore, server-

less is a relatively new paradigm in a rapidly changing software ecosystem. Thus,

while a highly tailored solution might achieve optimal results for serverless, it would

inevitably be suboptimal for other existing or future workloads. Since our primary

goal is to use hardware resources as efficiently and sustainably as possible while max-

imizing their utilization, we make it a key requirement for our solutions to be non-

disruptive, easy to integrate with existing hardware and software, and not inhibit the

generality of the CPU (Objective 4.).

In response, we present the following two highly effective lightweight techniques

that address lukewarm execution, ensure easy integration, and come at a small hard-

ware cost.

Jukebox The first technique is Jukebox, a record-and-replay instruction prefetcher

that targets the largest source of performance loss in lukewarm serverless function ex-

ecutions: off-chip instruction misses. It is based on the insight of high commonality in

the instruction working sets of individual invocations of the same function. Jukebox

records the instruction working set of a function upon its first invocation and replays it

upon subsequent invocations. The idea of a record-and-replay instruction prefetcher is

not new; indeed, prior works have proposed them for long-running server workloads by
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recording entire streams of instruction cache accesses or misses [46, 85, 86], requiring

over 200KB of on-chip storage for metadata. In contrast, Jukebox solves a different

problem: how to accelerate short-running tasks that have no microarchitectural state or

metadata on-chip. To accommodate thousands of warm functions, Jukebox stores its

metadata in main memory using simple spatiotemporal compression designed for high

coverage and low metadata redundancy. Our evaluation shows that 48KiB of metadata

(i.e., twelve OS pages) is sufficient for high efficacy; for a thousand warm function

instances, the required metadata cost is a mere 48MiB. Jukebox requires simple hard-

ware support and a negligible amount of on-chip state without modifications to the

processor caches. Our full-system simulation of Jukebox reveals that it speeds up the

execution of lukewarm functions by 17.8%, on average.

Ignite While Jukebox is highly effective in eliminating off-chip instruction misses

by restoring working sets into the L2, it leaves other microarchitectural structures in a

cold state. However, lukewarm execution creates various bottlenecks, predominantly

in the CPU front-end, including a high number of L1 instruction misses and branch

mispredictions. We find that even the state-of-the-art front-end prefetcher Boomerang

(which proactively fills the L1-I and the BTB) [96] cannot capitalize on Jukebox and

fails to reduce the high miss rate across all front-end structures, namely the L1-I (26

MPKI), BTB (13 MPKI), and the conditional branch predictor (21 MPKI). As a re-

sult, combining Jukebox with Boomerang provides only 20% speedup on average — a

disappointing 2.2% improvement than Jukebox alone (17.8%) — falling considerably

short of an ideal front-end that delivers a 61% average speed-up over an aggressive

next-line prefetcher.

We perform a root-cause analysis to understand why the state-of-the-art front-end

prefetching is performing so poorly and find that the cold microarchitectural state of

the BTB and the conditional branch predictor (CBP) is compromising prefetching per-

formance. Misses in the BTB and mispredictions of conditional branches constantly

drive the front-end (both demand and prefetch) off the correct path, resulting in poor

prefetching performance and frequent pipeline flushes. Moreover, the short execution

time of serverless functions does not allow the warm-up time of these structures to be

amortized.

Therefore, based on our findings and motivated by the results of Jukebox, we aim

even higher and propose a comprehensive restoration mechanism for front-end mi-

croarchitectural state targeting instructions, BTB, and CBP via unified metadata. The
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underlying insight behind Ignite is that the BTB working set provides an efficient way

of approximating a program’s (or container’s) control flow graph and can be used for

instruction, BTB, and CBP prefetching. Ignite capitalizes on this insight by monitor-

ing BTB insertions to create compressed control flow records that are stored in main

memory. When the same function is invoked again, the metadata is streamed from

memory and used to generate instruction prefetches and restore the state of the BTB

and the bimodal branch predictor. Ignite has low logic complexity, is easy to integrate

with existing front-end prefetchers, and seamlessly supports thousands of functions on

a server by virtue of having no metadata on-chip. Our evaluation of Ignite shows that

it improves performance by 43%, on average, and significantly reduces the miss rate

in all front-end structures compared to prior art.

1.3 Thesis Contributions

In summary, this dissertation demonstrates that:

Thesis Statement
Serverless presents distinct workload characteristics that fail to match the designs of

traditional CPUs. This mismatch creates severe bottlenecks, which can be overcome

by preserving the microarchitectural state across function invocations.

We support this statement by making the following contributions:

1. We evaluate serverless workload characteristics and reveal a severe perfor-

mance degradation by those workloads. The reason is the combination of ex-

tremely short execution time and, in contrast, long inter-invocation times of a

typical serverless function, which causes the CPU to obliterate the on-chip mi-

croarchitectural state between two invocations. The result is a 100-294% (162%

on average) performance loss compared to an optimal scenario with completely

warm microarchitectural structures.

2. We conduct a systematic Top-Down analysis to identify the sources of the per-

formance loss. While we found that a cold microarchitectural state affects effi-

cient instruction execution in multiple ways, the main bottlenecks are caused by

the processor front-end, which cannot fill the pipeline with instructions. Namely,

the main bottlenecks are off-chip instruction misses, BTB misses, and branch

mispredictions.
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3. We provide insights on the sources of performance degradation by analyzing the

instruction and branch working sets find individual serverless functions have

an extremely high commonality in their working sets which, in general, com-

fortably fit into the on-chip structures. However, the combined working set of

thousands of collocated, interleaved executing functions is orders of magnitude

larger than the on-chip structures can possibly hold.

4. We propose Jukebox, a record-and-replay instruction prefetcher accelerates

lukewarm function executions eliminating off-chip instruction misses. Jukebox

requires a small amount (32KiB) of metadata in main memory per function in-

stances (32MiB for a thousand functions) and provides 17.8% performance im-

provement on lukewarm invocations, on average.

5. We aim higher with Ignite, a comprehensive restoration technique that ex-

pands upon Jukebox and uses a unified set of metadata to warm up the entire

CPU front-end, including instruction cache, BTB, and branch predictor. Hereby,

Ignite improves performance by 43%, on average. Most importantly, while be-

ing highly effective, Ignite, as well as Jukebox, come at a small hardware cost

and are easy to integrate with existing hardware and software, ensuring the sus-

tainability of the solutions.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides the background

related to the work presented in this thesis. Chapter 3 presents a comprehensive char-

acterization of serverless functions running on a commodity cloud server and reveals

severe performance bottlenecks stemming from serverless functions’ drastically dif-

ferent workload characteristics compared to traditional cloud applications. We ad-

dress these performance degradations in chapters 4 and 5 by proposing two simple but

highly effective mechanisms that are based on the insight of high commonality in the

execution of serverless functions. Chapter 4 presents Jukebox, a lightweight technique

designed to overcome the largest source of performance degradation in serverless func-

tions, cold on-chip instruction state. In chapter 5 we expand upon Jukebox and present

a comprehensive solution for the cold CPU front-end. Finally, chapter 6 summarizes

our key findings and provides potential directions for future research.





Chapter 2

Background and Related Work

This chapter provides the background relevant to the dissertation. The first half briefly

overviews how complex online services are deployed in the cloud. We present the

challenges of conventional cloud execution models and how serverless computing ad-

dresses them. We then review the workload characteristics of serverless and what

distinguishes them from conventional workloads.

In the second half, we will provide an overview of the microarchitecture of modern

server CPUs and their key components. We will then discuss the main performance

bottlenecks in modern server CPUs and how they are addressed in conventional cloud

workloads.

2.1 Cloud Applications: from Monoliths to Serverless

2.1.1 Cloud Deployment Models

Modern online services, such as online shops, streaming platforms, or corporate web-

sites, have become highly complex and comprise an extensive number of features and

functionality. For example, Netflix, a popular streaming platform, reported in 2017 that

its streaming service comprises more than 700 individual components [66, 113]. While

traditionally, these services are implemented as monolithic applications running on pri-

vate servers, at the increasing complexity and scale, the cost and knowledge needed to

maintain the own hardware infrastructure becomes a significant concern [54].

The advent of cloud computing opened up an alternative deployment model where

services are deployed as virtual machines (VMs) on the infrastructure of a cloud

provider. Moving to the cloud relieves the customer from all tasks related to managing

11
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its physical hardware. The cloud provider takes care of buying, maintaining and

upgrading the hardware and ensuring high availability and reliability of their cloud

infrastructure. The cloud customer can focus on innovating the service and flexibly

scale it by adding or removing VMs as needed. The cloud provider can also allocate

resources more efficiently by consolidating services from different users on the same

hardware. This increases the overall hardware utilization, translating into lower

carbon emissions and lower costs for both the cloud provider and customer [138].

2.1.2 Microservices

While cloud computing relieves the cloud customer from hardware management tasks,

it does not solve the problem of steadily increasing functionality and complexity. In a

monolithic application, all features are tightly coupled, making it difficult to develop

and add new features [66, 137]. Furthermore, scaling up an entire resource-intensive

monolithic VM is expensive and inefficient, as the service may not be fully utilized at

all times [138].

To address this issue, the industry, led by major players such as Amazon, Twit-

ter, Netflix, Apple, and eBay, has moved towards a microservices architecture [31, 51,

102, 162]. In this architecture, services are decomposed into smaller, independent units

called microservices. Each microservice is responsible for a specific functionality and

communicates with other microservices over the network [51]. This allows teams of

developers to work independently on different functionality, making it easier to main-

tain, develop, and add new features [20]. It further improves the service’s resilience to

failures, as a failure in one microservice does not necessarily affect the entire applica-

tion [151]. Not surprisingly, microservices have become the prevailing architecture for

building large-scale online applications like Amazon, Uber, or Netflix [66, 133].

In a microservice architecture, each microservice is deployed in a separate VM

and can be scaled independently, providing more elasticity than monoliths. However,

scaling microservice on a per VM basis is still inefficient as the VMs may not always

be fully utilised, and the cloud customer must pay for all the enabled VMs even when

the service is idle [139]. Furthermore, due to the increased complexity, deploying and

scaling a large number of microservices and VMs is a complex and time-consuming

task, requiring expertise in the entire software and system stack, which is often not

affordable under budget constraints and time-to-market pressure [60]. As a result, a

significant fraction of cloud resources are wasted by idle VMs consuming energy and
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Figure 2.1: Cloud deployment models: monolithic, microservices, and serverless.

increasing the cost and carbon footprint of cloud providers [6].

2.1.3 Serverless Computing

To address the challenges of conventional cloud deployments, serverless computing,

also known as Function-as-a-Service (FaaS), has emerged as a popular paradigm [138].

In serverless computing, developers structure their applications as a set of stateless

functions, fully delegating the management of resources to the cloud provider [98].

Similar to lambda expressions, serverless functions are small pieces of code executed

in response to events such as HTTP requests, database updates, or timers. These func-

tions communicate via events and can be composed into workflows [21]. Functions

can be written in various programming languages, including Python, JavaScript, Java,

or Go, depending on the required functionality or the programmer’s preference [39].

Figure 2.1 illustrates the differences between three deployment models by a sim-

ple online shop example: monolithic, microservices, and serverless. In the monolithic

model, the entire application runs on a single VM. The microservices model decom-

poses the application into several independent services communicating over fixed net-

work connections. In the serverless model, the application is constructed of individual

functions, and communication happens via events. The outstanding features of server-

less are simplicity for the developer, extreme elasticity, and a unique cost model.

Simplicity The abstraction of event-based serverless functions allows developers to

focus on their primary expertise: writing code to innovate their services without wor-

rying about the underlying hardware or software infrastructure. The cloud provider

handles provisioning, scaling, and managing all resources needed to execute the func-

tions. To be more specific, in modern serverless runtimes such as AWS Lambda [143],
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Google Cloud Functions [30], or Azure Functions [23], developers only need to upload

their function code (packaged as a zip file or Linux container [144]), specify the trig-

ger event, and configure the function’s permissions. When an event occurs, the cloud

provider launches a function instance, schedules it on an available server in its fleet,

executes the function code, and shuts down the instance upon completion.

To ensure isolation, each function runs in its own container or VM. However, start-

ing a new function instance requires booting up a new container or VM, which can

take up to several seconds [164]. To mitigate this delay, cloud providers keep function

instances alive (warm in the serverless parlance) for a certain period after completion,

anticipating to reuse the instance for subsequent invocations [56, 114, 116]. This prac-

tice reduces cold-start latency and improves the responsiveness of functions.

The key point is that the cloud provider manages the entire function lifecycle, com-

pletely hiding it from the developer. The developer only pays for the time the function

is actively processing requests.

Elasticity The stateless nature of serverless functions is a crucial characteristic of the

serverless model. This means that functions do not carry any state between invocations,

and each invocation is independent of the previous one. All the information needed

to process an invocation is contained within the function image and the event input.

This statelessness enables rapid and independent scaling of functions, allowing the

cloud provider to create and shut down function instances at any time without affecting

the running application. Based on incoming request traffic, a function can be scaled

from zero to thousands of instances within seconds [10], making serverless highly

dynamic and suitable for spiky and unpredictable workloads [142]. Combining the

simplicity of severless with the stateless, event-driven model enables developers to

build highly scalable and responsive applications that can handle a large number of

concurrent requests within days [40, 43, 140].

Cost model Being event-driven presents a radical shift in the cloud execution model.

In traditional cloud deployments, the application is constantly running on a VM in-

stance, incurring a cost to the developer regardless of whether it is processing requests

— doing actual work — or is idle. In contrast, serverless functions consume cloud

resources only when needed. If a function is not processing requests, it is not running,

and the developer does pay. This makes serverless computing truly elastic and cost-

effective, as developers pay only for the time their function executes (i.e., per invoca-
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tion) and the memory consumed [94]. Similarly, cloud providers embrace the server-

less model as it enables more effective resource allocation without spending expensive

hardware resources on idle VMs. The cloud provider can consolidate functions from

many different users on the same hardware, increasing the hardware utilization and

reducing the cost for the cloud provider. Furthermore, managing the entire software

and hardware stack allows cloud providers to optimize the infrastructure for serverless

workloads, improving the performance and efficiency of overall data centres. AWS, for

example, introduced a light-way virtualization technology called Firecracker, specifi-

cally designed for serverless workloads to reduce the overhead of starting and stopping

VMs [5]. In addition, AWS advertises that lambda functions execute more efficiently

on their customized Graviton2 Arm-based processors than on x86 processors, translat-

ing into lower carbon emissions and lower cost for the cloud customer [141].

2.1.4 Serverless Workload Characteristics

Serverless functions are designed to execute fine-grained, short-running tasks [80,

150]. In fact, to take full advantage of the serverless model, developers are incentivized

to increase granularity by breaking their applications into a collection of fine-grained

functions, thus maximizing elasticity and allowing different parts of the application’s

business logic to scale independently. As a result, most functions in serverless pro-

duction deployments are short-running with small memory footprints [36, 37, 38]. For

instance, 67% of Lambda@Edge functions complete within 20ms [37]. The demand

for short functions continues to increase; for example, one AWS Lambda study shows

that the median function duration became 2× shorter in 2020 compared to the me-

dian duration in 2019 [37]. In response to this trend, AWS Lambda decreased the

billing granularity from 100ms to 1ms [11]. Moreover, serverless providers, such as

AWS Lambda and Google Cloud Functions, charge users for the maximum amount of

memory each of their functions consumes [11, 55], further pushing developers toward

leaner, finer-grained functions. Both AWS Lambda and Azure Functions demonstrate

that over 70% of their functions have small memory footprints, allocating less than

300MB of memory [36, 150].

Despite the short running time of many function instances and their small memory

footprints, cold-booting a function is a long-latency operation that can take hundreds

of milliseconds in today’s clouds [163, 164]. To avoid this latency in the critical path

of a function invocation, cloud providers tend to keep idle function instances alive (or
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warm, in serverless parlance) for 5-60 minutes in anticipation of additional invocations

to that instance [107, 108, 109, 163]. Although keeping function instances warm comes

at a cost for the providers because users are billed only for the actual processing time

of individual invocations, all major providers deploy this performance optimization as

it enables users to meet SLO targets, thus boosting the attractiveness of their serverless

offerings [57, 80, 154, 172].

With providers keeping function instances warm for 5-60 minutes, approximately

20-40% of all deployed functions have a warm instance when a request arrives, accord-

ing to the study of Azure Functions [150]. The same study shows that fewer than 5%

of all invocations have an inter-arrival time (IAT) of under a second. Thus, the IAT of

a vast majority of invocations to warm instances lies in the range of 1 second to a few

minutes – an invocation rate that is relatively infrequent compared to their run time.

The combination of small memory footprints for many functions, long keep-alive

intervals enforced by cloud providers [163], and hundreds of gigabytes of memory in

a representative server allow cloud providers to collocate thousands of warm function

instances on a typical cloud server [5] The execution of these functions is interleaved

in time based on invocation traffic, achieving high density and resource utilization at a

server level.

2.1.5 Prior Work on Serverless Characteristics

Modern processors are sophisticated designs highly optimized for the workload char-

acteristics of applications they typically execute to extract more performance. A shift

in workload characteristics inevitably has as consequence that current designs might

not be equally well suited for future workloads. Serverless presents such a shift in

workload characteristics, and its implications must be understood.

While a lot of work was done to understand the characteristics of conventional

cloud workloads [45, 51, 119], to date, little work has tried to understand the microar-

chitectural implications of serverless programming. Shahrad et al. [149] examined the

execution of five serverless functions, identifying issues such as high cold-start latency,

high variability in execution time, and performance overheads due to containerization.

The work observed that short-running functions experienced much higher variability

in execution time than long-running tasks but did not attempt to understand the sources

of variability other than high branch mispredictions.

The goal of this thesis is to bridge the missing gap and provide a deep understand-



2.2. The Server in Serverless 17

Front-End

Instruction
Fetch Decode

Instruction
Cache

Instruction
TLB

BPU

BTB CBP

Back-End

Sc
he

du
le

r

ALU

Load/Store

R
et

ire

Data 
Cache Data TLB

Memory Subsystem

Branch

Figure 2.2: CPU pipeline

ing of how serverless functions perform on modern hardware.

2.2 The Server in Serverless

The term serverless stems from the illusion provided to developers freed up from hard-

ware management tasks and alludes that no server hardware is needed. However, in

fact, serverless functions are executed in large data centres on powerful servers. At

its heart, each server features hundreds of gigabytes of memory and a highly sophisti-

cated CPU to store and process data. A simplified view of the architecture of a modern

high-performance CPU is depicted in Figure 2.2, which can conceptually be divided

into two halves: the front-end and the back-end.

CPU Pipeline The CPU front-end is responsible for fetching program instructions

from memory and decoding them into hardware operations (micro-ops). After decod-

ing, the micro-ops are passed to the back-end, which comprises various functional units

for different types of operations and a register file to store intermediate results. Since

different operations require different functional units and may take varying amounts

of time to execute, the back-end of a modern CPU is designed to execute multiple

instructions in parallel and out of order to maximize performance and resource utiliza-

tion. To achieve this, the scheduler monitors micro-ops dependencies and schedules
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them for execution as soon as all dependencies are resolved and the required functional

unit is available. Once the micro-ops are executed, the results are written back into the

register file, and the next dependent micro-ops are scheduled for execution.

In an optimal scenario, the CPU executes a constant flow of instructions, and the

pipeline never comes at a hold. However, due to limited resources and the increasing

gap between processor and memory speed, the CPU has various bottlenecks, manifest-

ing as pipeline stalls. Specifically, whenever the back-end runs out of functional units

or must wait for the required data to arrive from memory, it stalls the pipeline as no

more instruction can be consumed. Correspondingly, the front-end stalls the pipeline

if it cannot fetch and decode instructions fast enough from memory.

To mitigate these stalls, the pipeline is augmented with a wide range of microarchi-

tectural structures based on three key concepts: caching, prefetching, and speculative

execution.

Caching Instruction and data caches exploit spatial and temporal locality in mem-

ory access patterns by storing larger blocks (known as cache lines) of recently used

memory in fast-access on-chip memory (SRAM) close to the pipeline. Future access

to the same block can then be served from the fast SRAM, avoiding going again to

the slow off-chip memory, reducing memory access latency from hundreds of cycles

to a few [69]. Similarly, the translation look-aside buffer (TLB) keeps recent virtual-

to-physical address translations at the core, avoiding the need for translation for every

request. Since larger structures always come at the cost of increased access latency, the

first-level caches and TLBs are backed up by multiple levels of progressively larger and

slower structures that balance size and latency.

Prefetching Caches can mitigate the memory latency for subsequent accesses to a

cache line once it’s cached, but not for the very first access. To avoid paying the cost for

the first access, prefetchers observe memory requests to train an internal model of the

currently running process’s access patterns. This model anticipates future accesses and

brings the data into upper-level caches before it is needed. Accurate prefetching can

eliminate memory latency for the first access, extend the perceived capacity of caches,

and provide the illusion of large and fast memory. Prefetching remains an active field

of research, with many techniques and optimizations proposed for instruction [128,

132], data [118], and translation [165]
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Speculative Execution While caching and prefetching address long memory laten-

cies, speculation addresses pipeline hazards by performing work that might not be

needed beforehand [134]. The most widely adopted speculative technique is branch

prediction, which addresses control flow hazards by predicting branch instructions’

direction and target address. If the prediction is wrong, the result will be rolled back

by flushing the pipeline and resetting the frond-end on the correct path before ex-

ecution can continue [8]. Branch prediction is a fundamental technique to unlock

performance in modern pipelined processors. It is performed in a dedicated structure

called the branch predictor unit (BPU), which includes various predictors specialized

for different types of branches, such as conditional branches, indirect branches, or re-

turns. Since over 80% of branches in typical workloads are conditional [22], the most

relevant predictor is the conditional branch predictor (CBP). The CBP learns control

flow dynamics by correlating branch directions with the history of previously executed

branches. Modern CBPs can detect correlations across hundreds of branches using

partial pattern-matching algorithms, achieving accuracies exceeding 99% [3, 125, 145,

146, 147, 148].

In a modern CPU, the front-end comprises several stages, taking multiple cycles

until instructions are decoded and identified as branches. For example, in Arm’s Neo-

verse N1 server chip, this process takes about six cycles [49]. This causes two chal-

lenges. First, if the branch predictor predicts a branch, it takes multiple cycles until the

branch target is decoded from the instruction, and the front-end doesn’t know where

to continue. Second, it is not even known if the current instruction address (PC) is

a branch, and a prediction should be made. To avoid wasting these fetch-to-decode

cycles and overcome the two challenges, the front end maintains the targets of recently

taken branches in a cache-like structure called the branch target buffer (BTB). Fur-

thermore, by indexing the BTB with the current fetch PC, a hit will tell the front-end

that the current address contains a branch, and a prediction should be made. Note that

the BTB contains only branches that have been taken at least once [74]. Therefore,

a BTB miss could also mean a branch that has never been taken. In most cases, this

is not problematic because the front end only needs to know when to stop fetching

sequentially and redirect to another location.

Essentially, the BTB comprises a mapping of control flow discontinuities, which

the front-end uses to determine when to redirect fetching. This insight, combined with

the high accuracy of the branch predictor, led researchers to decouple the BPU from the

fetch unit, let it run ahead, and use it as a highly efficient instruction prefetcher [128]
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making the BTB a key component for modern processors [3].

2.2.1 The Importance of Microarchitectural State

Caching, prefetching, and speculation are not directly involved in executing instruc-

tions, but they are crucial for achieving high performance and efficiency. In essence,

microarchitectural structures implementing these mechanisms consist of fast-access

memory that maintains various types of microarchitectural state, comprising informa-

tion about the currently executing program and logic to access it. For caches, this state

consists of raw data and instructions, while for the BPU and prefetchers, it includes

metadata (i.e., profile information) on control flow and memory access behaviour.

More on-chip state storage equates to higher performance, hence modern microproces-

sors devote most chip area to storing microarchitectural state [3, 111, 112, 130, 155].

For example, Intel reports that 70% of the transistors in their Itanium processor are

spent on the L3 cache [155]. Similarly, IBM revealed that over 30% of a single z15

core area is dedicated to the L2 cache, with another 12% allocated to the BPU [3].

Devoting a significant portion of chip area to storing microarchitectural state is jus-

tified by its immense effect on performance, particularly evident when execution tran-

sitions to a new application. In such cases, the microarchitecture starts with no stored

information about the new application or is ”cold” in microarchitecture terms. The

CPU must first learn the new application’s behaviour and cache sufficient information

before achieving high performance. With multi-megabyte caches [14] and hundreds of

kilobytes of BPU states [3, 61], a modern server processor can acquire runtime infor-

mation over millions of instructions, significantly boosting performance. For example,

a study on the effect of a cold branch predictor state shows that over the course of

10 million branch instructions (approximately 50 million instructions, assuming every

fifth instruction is a branch [22]) following a context switch, a state-of-the-art branch

predictor increases its accuracy by more than 10x, delivering 45% higher performance

than when the branch predictor is cold [166].

This design is suited for traditional workloads, such as VMs running always-on

online applications [51], where the microarchitecture remains in a warm state. The

application benefits from the performance boost delivered by the warmed microarchi-

tecture, making the warm-up time negligible. However, in a serverless environment

where function execution times can be as low as a millisecond, the time required to

warm up the microarchitecture is substantial and may even exceed the function’s ex-
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ecution time. Considering the previous branch predictor example and a typical CPU

running at 2-3 GHz [4, 14, 125], it can take tens of milliseconds to fully warm up

the microarchitecture. Consequently, for serverless functions, the CPU might not have

sufficient time to reach peak performance. In chapter 3, we delve deeper into the im-

plications of a cold microarchitecture on the performance of serverless functions.

2.3 Front-End Bottleneck in Servers

The pipelines of modern server CPU’s are highly complex, keep hundreds of instruc-

tions in-flight and feature massive caches and branch predictors to maximize perfor-

mance and efficiency [14, 168]. A particular and well-known challenge for server

workloads is the so-called front-end bottleneck [86, 88, 95, 96]. The root cause of

the bottleneck lies in the deeply-layered software stacks with multi-megabyte instruc-

tion working sets and commensurately large control flow state [83]. For an individual

server workload, the instruction footprint typically fits into the on-chip last-level cache

(LLC) but easily overwhelms per-core private front-end structures, namely the L1 in-

struction cache (L1-I), BTB and CBP [96, 100]. As a result, the front-end is unable to

sustain a constantly high supply of new instructions to feed the back-end efficiently.

A significant body of research has studied microarchitectural techniques for over-

coming the front-end bottleneck in servers. The state-of-the-art in this space can be

classified into two broad categories: temporal streaming and fetch-directed prefetch-

ing.

Temporal streaming [47] leverages the fact that control flow in server applications

is recurrent, leading to repeating sequences of instructions and BTB accesses. These

sequences can be recorded and subsequently prefetched, with prefetching initiated

upon an access (or miss) to a triggering instruction. Temporal streaming has first been

shown to be highly effective in mitigating instruction misses, with the most recent de-

sign, PIF, achieving almost perfect coverage [46]. Demonstrating its effectiveness for

instructions, temporal streaming has been extended to BTB prefetching [27]. The most

recent work in this area, called Confluence [86], proposes to unify instruction and BTB

prefetching by exploiting the insight that the branch target can be predecoded from the

instruction block that is prefetched into the L1-I. This allows Confluence to prefetch

instruction cache blocks, predecode the prefetched blocks on their entry to the L1-I to

extract branches and install the extracted branches and their targets into the BTB. In
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effect, Confluence enables a BTB prefetcher with no additional metadata beyond that

necessary for temporal instruction streaming.

The main downside of temporal streaming is its high storage cost, with hundreds of

kilobytes of metadata required for high miss coverage. Prior work studying individual

server applications has shown that the overhead can be ameliorated by virtualizing

the metadata into the LLC [27, 86]. However, metadata virtualization is hampered

by workload colocation because each colocated workload requires LLC capacity to

store the metadata for the instruction prefetcher. Serverless functions exacerbate this

problem due to their high colocation density and, thus, prohibitive on-chip metadata

costs.

Fetch-Directed Prefetching. The central motivation behind fetch-directed prefetch-

ing (FDP) is to leverage the high accuracy of modern branch predictors to identify

future control flow and prefetch the predicted instruction cache blocks into the L1-

I [128]. FDP decouples the branch predictor from instruction fetch through a Fetch

Target Queue (FTQ), which stores predicted targets to be consumed by the prefetcher

and allows the branch predictor to run ahead of the fetch stream. Compared to temporal

streaming, FDP enjoys very low implementation complexity and requires no metadata,

which makes it extremely attractive for industry adoption. Essentially, all recent server

CPUs have implemented FDP [3, 50, 61, 74, 76, 122].

Alas, the strength of FDP, which is its low cost and complexity, is also its weakness,

since its efficacy is limited by BPUs ability to keep the branch working set in its BTB

and CBP. Recent work has shown that for traditional server workloads, the BTB is par-

ticularly important as it helps identify upcoming branches and detect discontinuities in

the control flow [95, 96]. By detecting the discontinuities (with the help of the branch

predictor for conditional branches), FDP can predict upcoming non-sequential cache

blocks and prefetch them into the L1-I. Perhaps not surprisingly, recent server CPUs

have considerably beefed up their BTB configurations; for instance, the upcoming In-

tel Sapphire Rapids CPU features a 12 K entry BTB, more than doubling the capacity

over the 5 K entry BTB in the preceding Ice Lake architecture [14, 168].

To further reduce FDP’s dependence on BTB capacity, recent research in FDP has

focused on BTB prefetching. Thus, Boomerang [96] proposes detecting BTB misses in

FDP through the use of a basic-block-oriented BTB, and resolving them by retrieving

the missing branches from target cache blocks. BTB prefetching not only improves

the efficacy of FDP, but also reduces pipeline flushes stemming from BTB misses.
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Notably, published results indicate that Boomerang and Confluence achieve similar

performance gains on traditional server workloads, but the lower complexity of FDP

has made it the preferred choice for front-end mitigation in recent server CPUs [3, 61,

76, 122].

2.4 Conclusion

Cloud deployment models are highly attractive to online businesses because they shift

the responsibility of managing computing resources to the cloud provider. Serverless

computing, a rapidly emerging model, exemplifies this shift. In serverless computing,

the cloud provider handles the full lifecycle of running code in the cloud. The simplic-

ity, high elasticity, and the pay-as-you-go cost model of serverless make it particularly

appealing to customers.

Despite its appeal, serverless represents a radical change in the execution model,

resulting in unique workload characteristics: extremely short execution times, small

memory footprints, and long inter-arrival times. These characteristics contrast sharply

with those of constantly running VMs in traditional monolithic or microservice-based

applications. However, server CPUs are optimized for traditional workloads and per-

form best with long-running applications where the microarchitecture remains warm,

significantly boosting performance. Understanding the mismatch between serverless

workload characteristics and CPU design is critical for serverless computing to ensure

it is an efficient and sustainable cloud execution model. The next chapter aims to fill

this gap by comprehensively studying the performance of serverless functions on a

modern cloud server.





Chapter 3

Characterizing Serverless Workloads

Serverless has emerged as a new and popular cloud execution model that promises to

relieve developers of infrastructure maintenance costs. In the serverless model, ap-

plications are implemented as a graph of fine-grained, stateless functions that run on-

demand in response to invocations. The stateless and fine-grained nature of functions

enables extremely high elasticity for applications. Functions run only when there is

demand, which reduces costs for developers and enables cloud providers to achieve

high resource utilization of their expensive hardware.

While serverless is highly attractive to both developers and cloud providers, its

workload characteristics, with short execution times, small memory footprints, and rel-

atively infrequent invocations, fundamentally diverge from traditional workload char-

acteristics. Since modern hardware is designed and optimized for traditional work-

loads, this chapter explores the following question:

What are the effects of serverless workload characteristics on the CPU

microarchitecture?

We answer this question by performing an extensive characterization of a rich set

of serverless functions on a modern commodity server. We find that the distinct work-

load characteristics of serverless functions have a severe impact on CPU performance

compared to traditional workloads. Through a root cause analysis, we discover that the

high degree of function interleaving results in the microarchitectural state being oblit-

erated between consecutive invocations of the same function. This cold microarchi-

tecture state has detrimental effects on performance. The CPU front-end is especially

affected by an increased number of branch mispredictions and long off-chip instruction

25
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misses, preventing it from efficiently feeding the processor pipeline with instructions.

We further evaluate the working sets of serverless functions and show that while on-

chip microarchitectural structures can hold the working set of a single function, they

are overwhelmed by maintaining the working sets from hundreds of constantly inter-

leaved executing functions. Finally, we present that executing multiple invocations

of the same function is highly common, with most accessed instruction blocks and

branches being the same across all invocations.

3.1 Methodology

Workloads In our experiments, we use a large set of short-running serverless func-

tions, developed to work with a number of runtimes (namely, Python, NodeJS and Go),

as listed in Table 3.1. The functions were adopted from the Hotel Reservation applica-

tion from the DeathStarBench suite of microservices [51], Google’s Online Boutique

application [58], AWS’ authentication serverless functions [12], and AES encryption

application from FunctionBench [91, 92]. Similarly to vHive [164], the state-of-the-

art serverless experimentation framework, each function is deployed as a handle of a

gRPC [63] server, which represents a function instance. Each function is deployed in

a separate container.1.

Several functions in our workload are written in NodeJS, a language that utilizes

just-in-time (JIT) compilation for code optimization. In order to avoid performance

noise induced by the JIT engine to ensure stable and reproducible results, we invoke

each JIT’ed function 20 000 times before starting measurements [167]. We empirically

found that for our functions more invocations do not trigger further code optimization.

Setup: The measurements are performed on a r650 server node in the CloudLab

cluster at Clemson University, South Carolina [161]. The r650 instances implement

a 3rd Gen. Intel Xeon Ice Lake (dual socket 36-core Intel Xeon Platinum 8360Y)

running at 2.4 GHz [72]. Each core features a private 32 KiB L1-I cache, a 48 KiB L1-

D and 1.25 MiB L2 cache. All cores share a 54 MiB L3 cache per NUMA node and

can access 256 GiB DDR4 DRAM. SMT is disabled as done in production [5, 160].

The machine runs Ubuntu 20.04 with Linux kernel version v5.4 and Docker version

20.10 as container host. The function container instance is pinned to a core isolated

from the OS scheduler. A client for driving the invocations is pinned to other cores.

1All function codes have been released and made available for the research community at https:
//github.com/ease-lab/vSwarm

https://github.com/ease-lab/vSwarm
https://github.com/ease-lab/vSwarm
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Function Abbreviation Function Abbreviation

Hotel Reservation [51] Online Boutique [58]

Geo Geo-G Currency Curr-N

Profile Prof-G Email Email-P

Rate Rate-G Payment Pay-N

Recommendation RecH-G ProductCatalog ProdL-G

User User-G Shipping Ship-G

Other [12, 91, 92] Recommendation RecO-P

Authentication Auth-P/N/G

Fibonacci Fib-P/N/G

AES encryption AES-P/N/G

Table 3.1: Serverless functions and their language runtimes (legend – P: Python, N:

NodeJS, G: Go).

Before measuring, the function is invoked 20 000 times to warm up the runtimes of

function containers.

After warming the function container instance, we collect PMU performance

counters using Linux perf [87] for both user and kernel space from 500 consecutive

invocations. The effect of interleaving with other functions is modeled by using

stress-ng [32] as a stressor to thrash microarchitectural state of the core running the

function container.

3.2 Serverless Functions on a Cloud Server

As discussed in Section 2.1.4, many serverless functions have modest memory foot-

prints and are kept warm for a number of minutes by the cloud provider to reduce

the incidence of cold boots. With typical cloud servers today configured with hun-

dreds of gigabytes of main memory [159], a thousand or more instances of warm

functions may be resident on a server [9].The warm instances tend to stay memory-

resident as providers disable swapping to avoid the associated performance and se-

curity issues [160]. Meanwhile, many functions have short execution times of a few

milliseconds or less, with invocations that are rare compared to their processing time.

The combination of these trends results in a high degree of function interleaving.

Simplistically assuming a server with instances of functions whose invocation process-
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Figure 3.1: Effect of request inter-arrival time on the CPI of a given function on a high-

occupancy server. CPI is normalized to back-to-back invocations.

ing time is 1ms with a 1s inter-arrival time (IAT) for each instance, a thousand unre-

lated invocations will be interleaved between two invocations of the same function. In

fact, function execution time may vary and their inter-arrival time distribution is not

uniform, but with thousands of function instances kept warm on a host and typical

inter-arrival times of seconds to minutes, a huge degree of interleaving is likely.

The problem that stems from such extensive interleaving is that a new invocation

to a warm function instance is likely to find its on-chip microarchitectural state largely

obliterated. Thus, a function instance that is warm from a runtime’s perspective (i.e.,

has its state fully loaded in memory) faces a cold CPU, requiring the instance to fill all

of the microarchitectural structures both in the core and throughout the cache hierarchy

– a phenomenon we refer to as a lukewarm invocation. Lukewarm invocations pose a

particularly acute problem for serverless functions with invocations times in the range

of milliseconds, since the short execution times do not offer the opportunity to amortize

the latency needed to warm up microarchitectural structures over a long execution

period.

To illustrate the problem of lukewarm execution, we start our characterization by

studying the performance of our set of serverless functions, running on the evaluated

Ice-lake server. Multiple instances of many functions are kept warm on the server.

Clients send invocation requests to the various instances maintaining a stable load on

the server (around 50% of peak CPU load). In each experiment, one function instance

is selected as a function-under-test (FUT). The invocation IAT for the FUT is fixed

for the duration of the experiment. For each invocation, we sample a set of perfor-

mance counters using perf. We then repeat the experiment with a different IAT for the

FUT. Each experiment with IATs lower than 100ms was run for 3 minutes while the
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experiments with 100ms or longer IATs – for 10 minutes.

Figure 3.1 represents the cycles per instruction (CPI) for two representative FUTs:

an authentication function written in Python and an AES encryption function written

in NodeJS. For this experiment, we choose functions written in different languages to

highlight the language-independent nature of the behavior. The figure clearly shows

that increasing the invocation IAT tends to increase the CPI. The number of cycles

spent per invocation of an authentication function increases by more than 2x and sta-

bilizes at a 270% higher CPI with IAT of over 1 second. With the same IAT, the AES

encryption function requires 150% more cycles per instruction compared to back-to-

back execution. The reason why the CPI grows as the invocation IAT is increased is

that the execution of numerous other instances between two invocations of the FUT

thrashes all of the microarchitectural state on the CPU core where the FUT executes

and throughout the cache hierarchy. Thus, when a new invocation to a FUT arrives

after a long IAT, the FUT experiences a lukewarm execution, with poor performance.

3.3 Top-Down Analysis of Lukewarm Executions

To gain a deeper understanding of the sources of performance loss in lukewarm ex-

ecutions, we study each of the 20 functions in our suite (Table 3.1) in two configu-

rations. In the first configuration, the FUT is invoked repeatedly on the same core

on an otherwise idle server – this yields the lowest possible execution time for the

studied function as each invocation after the first one enjoys a fully warmed-up mi-

croarchitectural state and caches. We refer to this as the back-to-back execution. In the

second configuration, we model the effect of interleaving with other functions, using

stress-ng [32] as a stressor that runs between FUT invocations on the same core. The

stressor thrashes caches and the core’s microarchitectural state and achieves a similar

performance degradation to that of combining a high degree of interleaving with high

IAT (Section 3.2) in a tractable amount of time and a high degree of reproducibility.

Figure 3.2 plots cycles per instructions (CPI) for back-to-back invocations of the

same function instance compared to interleaved invocations. As the figure shows, ag-

gressive interleaving (modeled by the stressor in this experiment) has a detrimental

effect on all functions, increasing the CPI (i.e., degrade performance) by 100-294%

(162% on average) as compared to back-to-back invocations.

To identify the sources of performance degradation due to interleaving, we use

performance counters to break down execution cycles into four categories: retiring,
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Figure 3.2: CPI analysis of serverless functions for interleaved execution (shaded) vs.

back-to-back execution (solid) on an Intel Ice Lake CPU.

instruction fetch stalls (cache and TLB misses for instructions), bad speculation (BTB

misses and mispredictions of conditional branches) and back-end stalls (cache and

TLB misses for data). Our classification roughly follows the Intel Top-Down method-

ology [170]. The first category, retiring, is the only “good” one, representing cycles

where useful work was completed. The three other categories are characterized by

pipeline stalls that impede efficient execution 2. Because the branch predictor unit

(BPU), composed of the branch target buffer (BTB) and the conditional branch pre-

dictor (CBP), works together with the fetch unit to steer control flow and deliver in-

structions to the pipeline, we refer to fetch stalls and bad speculation collectively as

front-end stalls.

As Figure 3.2 shows, the performance degradation under interleaved executions is

caused by a significant increase in stall cycles across all stall categories. By far, the

largest increase is observed in front-end stalls. Collectively, front-end stalls increase by

130-490% (215% on average), which corresponds to two-thirds of the overall perfor-

mance degradation. These results reveal lukewarm invocations of serverless functions

result in poor microarchitectural efficiency largely due to the front-end bottleneck.

Next, we focus on the front-end stall cycles to understand the source(s) of the

bottleneck. We break up fetch-bound stall cycles into two categories: fetch latency and

fetch bandwidth. Note that our categorization differs slightly from Top-Down in that

front-end stalls include fetch bound and bad speculation. Figure 3.3 isolates the portion

of the CPI due to front-end stalls from Figure 3.2 and breaks down the stall cycles into

bad speculation, fetch latency, and fetch bandwidth, putting the front-end performance

2In Top-Down, a stall cycle is defined as a CPU cycle in which the pipeline cannot make progress
because at least one architectural component is fully utilized and cannot take additional work. However,
we note that in an out-of-order architecture, other components can often make progress in the shadow
of a pipeline stall. Furthermore, stalls can overlap with each other as well as with retiring [170].
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Figure 3.3: CPI analysis of the front-end stall cycles. The striped portions show the

back-to-back execution, solid portions show the additional cycles due to interleaving.

Normalized to the front-end portion of the CPI for the back-to-back execution in Fig-

ure 3.2.
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Figure 3.4: Average CPI in the interleaved setup normalized to the average CPI in the

back-to-back execution. The striped part represents CPI in the back-to-back execution,

the solid part — the extra CPI observed in the interleaved setup. Rest includes all other

cycle categories except the front-end stall.

problem into focus. The graph shows that the vast majority of front-end stall cycles

in both back-to-back and interleaved executions are due to fetch latency. On average,

fetch bandwidth is responsible for only 5.7% of the additional stall cycles caused by

interleaving, while bad speculation and fetch latency cause 30.2% and 64.1% of the

additional stalls, respectively.

Figure 3.4 focuses on the front-end related stalls portion of the Mean bar for the

interleaved execution from Figure 3.2. To identify the source of the extra stall cycles

in the interleaved setup, the CPI stack in Figure 3.4 is normalized to the back-to-back

execution. Our key observation is that with function interleaving, most of the extra stall

cycles occur due to front-end inefficiencies. More specifically, the figures clearly point

out fetch latency and bad speculation as key performance bottlenecks in the execution

of serverless functions, responsible for, on average, 45% and 22% of all extra stall

cycles in the interleaved setup, respectively.

In the remaining chapter, we drill down further into the largest source of stalls
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Figure 3.5: MPKI breakdowns of instruction cache and level two and three cache. The

striped bars (on the left in each pair of bars): back-to-back execution, solid bars: inter-

leaved execution.

(fetch latency) to understand its root causes. However, in chapter 5, we revisit front-

end stalls and present a holistic analysis of the front-end bottlenecks.

3.4 The Story of Cache Misses

To identify what causes the additional fetch latency stalls, we examine instruction

misses throughout the cache hierarchy and compare them to data misses. Figure 3.5

presents the for all three cache levels the MPKI breakdown. For brevity, the results for

the L1 data cache are omitted. Noting that L1-I misses are consistently high in both

back-to-back and interleaved executions, 80 and 111 MPKI respectively, we focus our

study on L2 and L3 caches. Figure 3.5b shows the L2 MPKI for both instruction and
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data references. We make several observations. First, we note that misses for instruc-

tions are more frequent than misses for data, which suggests that the instruction work-

ing set is larger than the data working set. Given that the in-order front-end can not

overlap processing of instruction cache misses while the out-of-order back-end often

can hide some of the latency of data cache misses, it is not surprising that the front-end

is a more significant contributor to total stall cycles than the back-end (Figure 3.2).

Second, the miss rates for back-to-back execution are with on average 15 MPKI, sig-

nificantly lower than for the interleaved execution (avg. 49 MPKI). It shows that with-

out other functions thrashing microarchitectural state, the Skylake core’s 1.25MiB L2

cache can, at least partially, cache most of the combined instruction and data working

sets. Meanwhile, in the interleaved setup, L2 miss rates are expected to be high due to

the cold cache in the wake of interleaving.

We next shift our attention to the LLC (i.e., L3 cache), whose MPKI is shown

in Figure 3.5c. The striking trend in the figure is that back-to-back executions have

no LLC misses for instructions and very few misses for data, which is explained by

the fact the working sets of the studied functions easily fit in the 54MB LLC of the

evaluated server and that the back-to-back invocation pattern facilitates LLC residency.

Meanwhile, the LLC misses for interleaved executions exceeds on average 20 MPKI,

with several functions experiencing MPKIs in excess of 70. The majority of the misses

are for instructions, which explains the high fraction of front-end related stall cycles in

in the interleaved setup: each L1-I miss to the main memory leaves the core front-end

starved of instructions for an extended period of time.

3.5 Severless Working Set Characteristics

Having identified long-latency misses for instructions as a key performance bottleneck

in executing serverless functions, we examine the working sets of individual invoca-

tions of our suite to better understand why serverless workloads put such high pressure

on the CPU front-end. For this analysis, we use the gem5 simulator [26, 103] to run the

same set of serverless functions as in the hardware experiments (Section 3.3). We de-

veloped and open-sourced the vSwarm-µ framework [97], which enables us to run the

entire software stack (including containerized function, Docker, OS, full gRPC stack)

as used for our hardware characterization in gem5’s full-system mode. Details of our

simulation and workload setup can be found in Section 4.2.

Starting from a checkpoint, we trace the execution of 25 consecutive invocations
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Figure 3.6: Working sets of serverless functions for CPU front-end structures.

and record instruction cache accesses at cache block granularity and allocations in the

BTB. We remove repeating addresses to identify the instruction working set and the

branch working set. Note that never-taken branches do not consume BTB (and BPU)

capacity [3, 4]. Therefore, the BTB working set, which contains branches that are

taken at least once, represents the branch working set.

3.5.1 Working Set Size

Figure 3.6 presents the average instruction working set (a) and branch working set (b)

accumulated during one function invocation. Error bars indicate the range of recorded

values for each function. The graphs show that despite their short execution times,

serverless functions execute large amounts of code and a large number of unique

branches relative to the 32 KiB instruction cache and 5K entry BTB found in Intel’s

Ice Lake server [72]. A single function invocation touches between 240–570 KiB of

code memory and accumulates branch working sets ranging from 5.5K BTB entries

(AES-G) to almost 13K BTB entries (Pay-N), with notably low variance for the vast

majority of functions.

Our findings show that the front-end microarchitectural state required by a single

serverless function may fit within existing CPU front-end structures. However, with

thousands of functions interleaving their executions on a single server, a CPU is unable



3.5. Severless Working Set Characteristics 35

AES-P
Auth-PFib-P

Email-P
RecO-P

AES-N
Auth-NFib-N

Curr-NPay-NAES-G
Auth-GFib-G

Geo-G
Prof-G

Rate-G
RecH-G

Res-G
User-G

Ship-G
Mean

0.7

0.8

0.9

1.0

Ja
cc

ar
d 

in
de

x

(a) Instruction working set similarity

AES-P
Auth-PFib-P

Email-P
RecO-P

AES-N
Auth-NFib-N

Curr-NPay-NAES-G
Auth-GFib-G

Geo-G
Prof-G

Rate-G
RecH-G

Res-G
User-G

Ship-G
Mean

0.7

0.8

0.9

1.0

Ja
cc

ar
d 

in
de

x

(b) BTB working set similarity

Figure 3.7: Working set similarities as distribution of Jaccard indices calculated from

the 25 function invocations. The Jaccard index ranges from 0 (nothing in common) to 1

(identical), a higher value suggests that record and replay to be more likely to prefetch

that function.

to retain the front-end microarchitectural state across invocations, which explains the

observed front-end bottleneck under interleaved execution.

3.5.2 Working Set Commonality

Lastly, we study the commonality in the instruction and branch working sets across

invocations. For this study, we compare the working sets (in terms of cache block or

branch addresses, respectively) of each invocation with that of each other 24 invoca-

tions for a total of 253 pair comparisons. For each pair of invocations, we compute

commonality as the Jaccard index [75], which is defined as the ratio between the inter-

section and the union of unique cache block or branch addresses that belong to working

set of the pair of invocations, respectively.

Figure 3.7 presents the results of the commonality study for the instruction and

BTB working sets. For all but one function (Rate-G), the mean instruction working

set commonality among the 253 compared pairs of invocations exceeds 95%. Their

commonality distributions range above 85%, with 3/4 of them not even falling below
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90%. Only two functions show outliers in their 253 compared pairs, with their working

sets having a commonality of less than 85%. Similar trends can be observed for the

branch working sets; on average, 97% of the accessed branches are the same across

invocations.

The results reveal that executing multiple invocations of the same function is highly

common, resulting in almost exactly the same branches and cache blocks being ac-

cessed in every invocation. This high commonality can be explained by the fact that

serverless functions execute a substantial amount of code to process the incoming re-

quest, traverse the communication fabric (in our case, gRPC), and execute kernel and

runtime functionalities (Python, Node.js, or Go) before reaching the actual function

code. This functionality is identical across invocations and mostly independent of the

function input data.

3.6 Conclusion

In this chapter, we characterized serverless functions and demonstrate that their unique

workload characteristics pose a particular challenge for modern CPUs. Many server-

less functions have small memory footprints, short execution times and comparatively

long IATs. Thousands of such function instances may run simultaneously on a cloud

server, resulting in a very high degree of interleaving between two invocations of

the same function. The interleaving obliterates on-chip microarchitectural state of

the functions, resulting in a lukewarm execution with cold caches and a cold core.

Lukewarm executions carry an average performance penalty of 162% compared to an

execution with a fully warmed microarchitectural state. The single biggest source of

performance overhead in a lukewarm execution is the core front-end, particularly fetch

latency, which constitutes 64.1% of all additional stall cycles, on average.

Frequent L2 and LLC misses for instructions are a key contributor to the high

fetch latency. The high on-chip miss rates for instructions in interleaved invocations of

serverless functions can be explained by the large instruction footprints of individual

invocations, commonly in the range of 240 KiB to over 550 KiB. At the same time,

there exits high commonality in the instruction footprints of different invocations of

the same function.

The high commonality reveals opportunities to address lukewarm execution, as it

suggests that preserving the microarchitectural state across invocations can be an effec-

tive solution. The following two chapters present techniques that exploit this inside to
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overcome performance degradation due to lukewarm execution. In chapter 4, we focus

on overcoming the largest pain point, off-chip instruction misses, and in chapter 5, we

present a holistic approach to warm up all front-end structures comprehensively.





Chapter 4

Jukebox: Preserving

Microarchitectural State

Our characterization in chapter 3 demonstrates that the distinct workload character-

istics of serverless functions result in severe performance degradation exceeding 2x.

Aggressive function interleaving, caused by the short execution time of serverless

functions combined with long Inter-Arrival Times (IATs), leads to an unprecedented

frequency of context switches. The microarchitectural state, critical for achieving high

efficiency, is obliterated between consecutive invocations of the same function, which

we call lukewarm execution.

The working set study in Section 3.5 reveals a key insight: high commonality in ex-

ecuting serverless functions across invocations. This commonality suggests an oppor-

tunity – preserving the microarchitectural state (e.g., from caches, branch predictors)

across invocations could effectively eliminate the performance bottlenecks. However,

the same study also shows that while on-chip microarchitectural structures can hold

the working set of a single function, they are orders of magnitude too small to accom-

modate the combined working sets of hundreds or thousands of interleaved executing

functions1. Therefore, scaling up microarchitectural structures or attempting to store

working sets on-chip would incur prohibitive costs in expensive chip area, which may

not benefit other workloads. Thus, to overcome lukewarm execution, a lightweight

mechanism is needed to preserve microarchitectural state across function invocations

without requiring invasive hardware modifications or excessive on-chip area costs.

The Top-Down analysis in Section 3.3 reveals that the dominant source of perfor-

1While modern CPUs feature massive last-level caches, the size per core has remained relatively
constant as core count has increased significantly [72]. More cores allow running more functions on the
same machine, offsetting the increased LLC capacity.
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mance degradation in serverless workloads is increased fetch latency, solely responsi-

ble for 45% of the additional stall cycles (Figure 3.4). This increase in fetch latency can

be attributed to the absence of instructions on-chip, causing a high number of costly

LLC misses, each stalling the front end for hundreds of cycles until memory responds.

In response, we present in the remaining chapter Jukebox, a technique to overcome

long off-chip instruction misses in serverless workloads. The key features of Jukebox

are its simplicity and effectiveness, eliminating 93.3% of off-chip instruction misses

with low metadata cost and design complexity.

4.1 Jukebox Overview

Jukebox is an instruction prefetcher specifically designed to accelerate lukewarm ex-

ecutions of serverless functions. Based on the insights from Section 3.5.2 Jukebox

exploits the insight of high commonality of instruction blocks across invocations by

recording the working set of one invocation and replaying it whenever a new invoca-

tion to the same instance arrives.

Compared to state-of-the-art instruction prefetchers [15, 46, 85, 96] which target

the L1-I, a unique feature of Jukebox is that it prefetches into the L2. This choice is mo-

tivated by two observations. First, the instruction footprints of individual invocations

of the containerized functions generally stay within 600KB, a value much higher than

a typical L1-I capacity of 32–64KB. However, such instruction footprints fit comfort-

ably within the L2 capacities of today’s server processors, including Intel Skylake and

later [2, 14, 72], Amazon Graviton 2 and 3 [110, 158], and the AMD Zen 4 [121], all

of which have L2 caches of 1MB. Secondly, prefetching into the large L2 significantly

simplifies the prefetcher’s design. With a small cache as a prefetch target, it is essen-

tial that prefetches arrive just in time to avoid being evicted (if they arrive too early) or

not being useful (if late). With L2 as the prefetch target, an aggressive prefetcher can

simply fill it at the start of execution and expect instructions to not be evicted in the

duration of a short-running function. Prefetching into the L2 does sacrifice some per-

formance compared to prefetching into the L1-I; however, since the latency of an L2

hit is approximately 10 cycles, while an LLC hit is typically over 30 cycles and an LLC

miss is hundreds of cycles, the bulk of the opportunity in reducing stalls in a serverless

environment comes from avoiding L2 misses. While Jukebox replays prefetches into

the L2, its record logic sits at the L1-I, which enables recording of virtual addresses of

instruction cache misses. Operating on virtual addresses is essential for the prefetcher
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to work well with the virtual memory subsystem and not be impacted by, for instance,

page migrations due to memory compaction [81].

We next discuss details of Jukebox, whose operation consists of two distinct

phases: record and replay. The record phase begins as soon as the container running

the function has been launched. The replay phase is triggered when the OS resumes

the process of a function that has been suspended waiting for new invocations. Both

record and replay phases are initiated by the OS initializing a pair of dedicated

registers with a pointer to the memory region for Jukebox’s metadata, similar to how

the OS initializes the CR3 register holding the pointer to the root of the page table of

a process.

4.1.1 Record

Jukebox records the stream of L2 misses for instructions using a spatio-temporal en-

coding that provides for a compact metadata footprint and facilitates timely prefetch-

ing. The main component tracking addresses to record is the Code Region Reference

Buffer (CRRB), a small fully-associative FIFO structure that is accessed using the vir-

tual address of a code region. Each CRRB entry contains a pointer to a memory region

(region pointer) and an access vector holding one bit per cache line within that re-

gion. The least significant bits of the pointer used to address individual bytes within

the region are not included in a CRRB entry. The region pointer can address fixed-

sized regions with size chosen at design time. We study a Jukebox configuration with

a CRRB entry comprising of a 38-bit region pointer and a 16-bit access vector (assum-

ing 48-bit virtual addresses and 64B cache lines), for a total of 54 bits per entry (see

Section 4.3.1 for an analysis of preferred code region size).

Recording logic is outlined in Figure 4.1. Upon an L1-I miss, the request is for-

warded to the L2 as usual. On an L2 hit, the Jukebox record mechanism takes no

action, effectively filtering all L2 hits. If there was a miss in the L2, it is recorded by

Jukebox when the miss finally returns to the L1-I. This is done by generating a lookup

into the CRRB, where the virtual address of the corresponding code region is checked

against the existing entries 1 . The code region virtual address is generated by tak-

ing the most significant bits of the missed block’s virtual address corresponding to a

CRRB pointer (38 bits for the studied Jukebox design). If a matching entry is found,

the prefetcher sets the nth bit in the access vector of the found entry where n is the off-

set of the cache line within the code region. Otherwise, the oldest entry in the CRRB
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Figure 4.1: Jukebox record

is evicted 2 , and a new entry is allocated with the nth bit set 3 . The evicted entry is

written to memory, optionally bypassing the cache hierarchy since on-chip reuse of the

metadata is not expected.

An entry evicted from the CRRB cannot be modified; thus, if an L2 instruction miss

occurs to a region whose corresponding entry has already been pushed to memory, a

new entry for the same region is created in the CRRB. As a result, a given code region

might appear multiple times in the trace recorded by Jukebox. The effect of this design

choice is that it increases the metadata footprint of Jukebox but simplifies the design,

since evicted entries do not need to be brought back from memory.

There are two possible options for determining whether an L1-I miss also missed

in the L2. The first option is to propagate the result of the L2 tag check back to the

L1-I using a dedicated 1-bit signal. The second option is to measure the delay of an

outstanding L1-I request and compare that to the expected L2 hit latency (e.g., using a

timer at the L1-I MSHR [84].) Jukebox can work equally with either of these options.

The FIFO order of the entries in the recorded metadata directly encodes the tempo-

ral order of accesses at the chosen granularity. That is, the first metadata entry written

to memory will encode the addresses of the cache lines in the first code region accessed

after the function was invoked. This organization allows Jukebox to prefetch the en-

tries in approximately the same order they are likely to be accessed, thus improving

timeliness at replay time.

Note that because the recording is done in a region-based manner, the replay stream

will first prefetch all of the indicated cache blocks from one code region before moving

on to the next region. As a result, some reordering of individual cache blocks will

happen at prefetch time compared to recording. However, recording at the region
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granularity enables a small metadata footprint, makes better use of address translation

resources (a single lookup for all the blocks in a region), and reduces the number of

DRAM activations due to spatial locality within a page.

The record phase is triggered by the OS by programming a pair of architecturally-

exposed registers containing the base and limit of the metadata storage. The limit

register is optional and lets the OS control the amount of metadata stored per function

instance process.

4.1.2 Replay

The replay phase in Jukebox is triggered by the OS upon receiving a new function

invocation. The OS triggers the replay by programming a pair of base and limit regis-

ters, similarly to how recording is triggered. The replay can be triggered by the OS’s

scheduler whenever the function instance thread is assigned to a core to process an

invocation.

The replay phase is outlined in Figure 4.2. The prefetch engine starts the replay

phase by issuing sequential reads starting from the beginning of the metadata region

1 , reading the metadata in the same order it was written to memory. This enables

prefetching of instruction cache blocks in the same temporal order as was recorded,

albeit at page granularity.

The metadata entries are prefetched into a small FIFO inside the prefetch logic.

Once the metadata entry is returned from memory, the prefetcher passes the base ad-

dress of the code region to the I-TLB 2 , triggering address translation like a normal

code request. This serves two purposes: first, it ensures that Jukebox does not rely
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on physical addresses that may change as a consequence of normal OS activity such

as paging or memory compaction. Second, it effectively pre-populates the TLB with

translations for code pages. As soon as the physical base address of the code region

is known, using the information from the entry’s access vector, the prefetch engine

reconstructs full addresses of each of the accessed cache lines within the code region,

and enqueues them in the L2 prefetch queue 3 .

Once prefetch requests for all of the cache blocks encoded in an entry’s access

vector have been launched, the entry is retired from the FIFO. The next set of entries

is fetched using a single 64B cache line read once the equivalent of 64B of data have

been consumed from the FIFO.

4.1.3 Discussion

4.1.3.1 Metadata Memory Management

Upon a function instance’s start (i.e., first invocation received by the host), the OS

allocates two memory regions for the function instance process, each of which is con-

tiguous in the physical space. These regions are used for bookkeeping of the Jukebox

metadata of the function instance process. The OS associates the physical addresses of

the two buffers with the PID of the function instance process. For example, in Linux,

the addresses of the buffers can be stored in task struct. Upon an invocation of a

function, as part of assigning the function instance process to a core for execution, the

scheduler consults the instance’s task struct and writes addresses of the buffers to

the registers that define where the Jukebox metadata is written (at record) and where

the metadata is fetched from (at replay). Once the invocation completes and the func-

tion instance process is descheduled, the values of buffer pointers are saved in the

task struct. A subsequent invocation received by the same instance thus replays

the metadata from the memory region written by the previous invocation. Operating

with the metadata buffers using physical addresses avoids the need for address transla-

tion while fetching/recording metadata, which (1) improves the timeliness of Jukebox

prefetches and (2) does not cause contention for TLBs and hardware page walkers.

4.1.3.2 Hardware Overhead

Jukebox relies heavily on existing microarchitectural mechanisms for instruction

prefetching, resulting in negligible hardware overhead. Jukebox requires a set of

architecturally exposed registers to encode the boundaries of buffers for recording
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and replaying metadata (4x48-bit registers for the start address and size of the record

and replay trace). Additionally, it requires logic for the CRRB that supports fully

associative search and FIFO replacement policy. Since short functions do not exhibit

distant code reuse, a buffer of just 16 entries allows for high metadata compression

(16 entries x 54 bits = 864 bits).

For creating and reading the trace, the record and replay logic comprises two 32-bit

counters to stop upon reaching the trace limit. Finally, since the metadata is written

and read in chunks of a whole cache line, two 512-bit buffers are needed to cache one

cache line of metadata for the record and replay logic. The total hardware overhead

of Jukebox is 2144 bits plus simple control logic, which corresponds to 0.81% of the

32KiB Ice Lake L1-I cache or approximately 0.0021% of the chip area of one Ice lake

core2.

4.1.3.3 Virtualization

Under virtualization, the guest OS triggers Jukebox record and replay. Jukebox meta-

data is stored in guest physical memory, i.e., as a part of the virtual machine state.

Hence, in addition to lukewarm execution, Jukebox can accelerate the lengthy cold

boots of serverless instances provided that a function snapshotting technique [41, 152,

164] is used and that the Jukebox metadata has been recorded before taking the snap-

shot.

4.1.3.4 Enabling Jukebox

Jukebox can be enabled for a particular thread upon its creation, similar to choos-

ing a thread’s scheduling priority by setting the corresponding attribute of the created

thread [117]. For example, when the serverless runtime of a function instance starts a

gRPC/HTTP server with a number of worker threads (or when spawning them at run

time), it can enable Jukebox by setting the corresponding attribute before making a

pthread create [101] system call.

4.1.3.5 Generality

While Jukebox is particularly beneficial for lukewarm functions, it can accelerate start-

up times for any memory-resident thread.

2Approximated base on annotated die shot photos of the Ice lake core https://en.wikichip.org/
wiki/intel/microarchitectures/ice lake (client)

https://en.wikichip.org/wiki/intel/microarchitectures/ice_lake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/ice_lake_(client)
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Core

Architecture: Ice lake-like, ISA: x86-64, dual-core, Freq.: 2.6 GHz

Fetch BW 16 bytes / cycle

BP Unit BP: 64 KiB L-TAGE [145] + 5 KiB Bimodal

BTB: 12 K entries, 6-way, 12 b tag, 48 b target

Back-end ROB: 353 entries, LSQ: 128 load + 72 store, Scheduler: 160

entries, RF: 280 Int+ 224 FP

Memory Hierarchy

L1-I Cache 32 KiB, 64 B line, 8-way, 1 cycle3, private, LRU, 10 MSHRs

L1-D Cache 48 KiB, 64 B line, 12-way, 4 cycles, private, LRU, 10 MSHRs

L2 Cache 1.25 MiB, 20-way, 13 cycles, private, LRU, 32 MSHRs

LLC 8 MiB, 16-way, 50 cycles, shared, non-inclusive, 32 MSHRs

Memory DDR4 2400 MHz, 14 ns RCD, 14 ns RP, 14 ns CL

Jukebox CRRB: 16 entries, Region size: 1KiB, 48KiB metadata size

(24KiB record + 24KiB replay)

Table 4.1: Parameters of the simulated processor.

4.2 Methodology

4.2.1 Simulation Infrastructure

To evaluate Jukebox, we use gem5 v22.0.0.1 [26, 53, 103], a cycle-approximate full-

system simulator configured to model the Intel Xeon Ice-Lake CPU used in the hard-

ware studies in chapter 3. Considering industry trends toward much larger branch

target buffers (BTBs) than in the recent past, we enlarge the BTB from 5 K entries in

Ice Lake to 12 K entries as found in the latest Intel Xeon Sapphire Rapids CPU [14].

We find that overall trends and conclusions are not affected by this choice. Table 4.1

summarizes the modeled CPU parameters.

We run an identical software stack in simulation as we do on real hardware, i.e.,

the same OS and the same containers running gRPC servers. Before performing the

measurements, we boot the system in functional mode (KVM core) and execute 20 000

invocations of each function, at which point we create a checkpoint of the system state.

3Since gem5 does not support a micro-op cache, the L1-I cache is configured with the micro-op
cache latency, instead of the L1-I cache latency as described in [62].
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These checkpoints form the common starting state for all subsequent experiments. For

the experiments, we switch to the detailed Out-of-Order core model and simulate 25

invocations in a cycle-approximate timing mode. To avoid interference from the client

driving the functions, we create a two-machine simulation setup. The first machine

runs the test client, which sends requests via gem5’s Ethernet model to the second

machine running the function. To simulate the effect of interleaving, we flush the

microarchitectural structures of the simulated Ice Lake CPU and overwrite the branch

predictor with a random state between two invocations4.

4.2.2 Workloads

We evaluate Jukebox on the 20 serverless functions used in chapter 3 for our hardware

characterizations and are listed in Table 3.1. We run the same software stack and func-

tion images (Ubuntu 20.04 with Linux kernel v5.4 and Docker v20.10 as the container

host) in full end-to-end full-system simulations as used on the real hardware.

4.3 Evaluation

4.3.1 Parameterizing Jukebox

Recall from Section 4.1.1 that Jukebox uses a spatio-temporal encoding that exploits

locality in code accesses by organizing its metadata as a sequence of entries, each

corresponding to a spatial region. Each entry contains the upper bits of the address

of the region and a bit vector, with one bit per cache line. Larger regions require a

longer bit vector but may allow for fewer entries given sufficiently high spatial locality

in the code. The entries are created in the CRRB, which coalesces accesses to the same

region before the entry is written to the in-memory metadata storage. A larger CRRB

may allow more accesses to the same region to be coalesced before an entry is evicted,

resulting in a smaller metadata footprint at the cost of more on-chip storage and higher

access energy.

To find the preferred code region size and CRRB size, we measure the size of the

metadata required to store all of the entries produced by the Jukebox recording logic

while a function executes. We do this for a range of code region sizes, from 128B to

8KiB, and three different CRRB buffer sizes: 8, 16 and 32 entries.

4Configurations and guidance on how to set up gem5 to run containerized serverless workloads are
made available at https://github.com/ease-lab/vSwarm-u

https://github.com/ease-lab/vSwarm-u
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Figure 4.4: Speedup with Jukebox as a function of the size of its metadata storage

compared to the baseline without Jukebox.

Figure 4.3 presents the results of the study. For the majority of the workloads, the

metadata size reaches a minimum with the code region size of 1KiB — irrespective

of the CRRB size — resulting in 10.8KiB to 31.5KiB metadata storage for an 8-entry

CRRB. The two other CRRB sizes reveal very similar trends and modest sensitivity to

the size of the CRRB. With a 16-entry CRRB, the metadata size is reduced by 6.4%,

and for a 32-entry CRRB, by another 5.4%.

We next study the impact of limiting the size of Jukebox’s metadata storage on its

efficiency. Since we found in Figure 4.3 the most space-efficient code region size to

be 1KB, we use this configuration and a 16-entry CRRB for this sensitivity study. Fig-

ure 4.4 shows the speedup Jukebox is achieved when constrained to various metadata

storage capacities. In Figure 4.4, we plot only one representative function for each of

the three implementation languages 5 together with the average across all 20 functions

in our evaluation suite.

The figure shows that workloads with large working sets, e.g. Pay-N, tend to be

more sensitive to the limited metadata size than workloads with small working sets, e.g.

5We found that the language in which the function is written is the single biggest determinant of a
given function’s runtime and Jukebox’s efficacy.
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Figure 4.5: Performance results on the Skylake-like configuration.

ProdL-N. This is expected given that the metadata represents a compressed form of a

function’s working set. Note that Jukebox is designed to seamlessly extend to dynamic

metadata sizes. For that a metadata size field needs to be added in the bookkeeping

mechanism described in Section 4.1.3.1. When scheduling a thread, the OS sets up

the size of the metadata of a function instance and assigns the addresses for record

and replay metadata storage. We use the same size of metadata storage for all our

workloads in further experiments.

As Figure 4.4 shows, on average, there is a little gain with increasing metadata

storage beyond 24KiB. Thus, unless stated otherwise, we use a Jukebox configuration

with 24KiB metadata storage, 1KiB code-region size, and 16-entry CRRB in the rest

of the evaluation.

4.3.2 Performance

Figure 4.5 presents the main result of the evaluation. We compare three configurations:

(1) the baseline, which represents a high degree of function interleaving; (2) Jukebox

applied to the baseline setup; and (3) a perfect I-cache (Inf L1-I), which draws the

maximum opportunity without any instruction misses. The baseline (1) is modelled by

flushing all microarchitectural states in-between function invocations. For (3), we use

an infinite-sized L1-I cache that maintains the complete instruction footprint a function

accumulates over all simulated invocations.

The performance of the three evaluated configurations is shown in Figure 4.5 with

the results normalized to the baseline. We find the maximum opportunity without

any instruction misses boosts the performance of the studied functions by 34% on

average (45% max on Auth-G). Jukebox delivers consistent speedups that correlates

with the opportunity; that is, functions that have a larger difference in performance
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between Perfect I-cache and the baseline enjoy larger speedups (e.g., Auth-G: 29.5%

speedup with Jukebox), while the opposite is true for functions with a small difference

between Perfect I-cache and the baseline (e.g., AES-P: 6.2% speedup with Jukebox).

On average, Jukebox speeds up interleaved executions by 17.8%.

4.3.3 Miss Coverage

We next study Jukebox’s ability to cover instruction misses. Since Jukebox prefetches

into the L2 cache, we present fractions of L2 instruction misses in the baseline that are

(1) covered, (2) not covered, and (3) overpredicted (i.e., prefetched but not referenced)

by Jukebox.

Figure 4.6a shows the result of this study. One can see that coverage correlates with

the choice of a programming language; benchmarks that are written in Go show high

Jukebox coverage (90–97%) while those written in Python and NodeJS exhibit lower

coverage (79–96%). This can be explained by the fact that for the majority of the Go

benchmarks, metadata fits into Jukebox’s metadata storage, which is not the case for

all Python and NodeJS benchmarks (see Figure 4.3). Across all benchmarks Jukebox

covers 93.3% of L2 instruction misses on average.

Furthermore, the figure shows that Jukebox induces few wrong prefetches with an

overprediction rate of just 5% (max. 7.3%). This result is anticipated by the high

commonality in instruction footprints across invocations (Section 3.5.2). The high

accuracy of Jukebox’s prefetches affirm its record and replay approach to be highly

effective in delivering the relevant instruction blocks on chip.

4.3.4 Memory Bandwidth

Figure 4.6b plots memory bandwidth usage of Jukebox normalized to the baseline.

Memory bandwidth includes all requests issued to memory, which includes both in-

struction and data, demand and prefetches. Note that Jukebox does not change the

amount of bandwidth consumed for correct timely prefetches. Overheads lie in over-

predicted (i.e. unused) prefetches as well as metadata traffic associated with recording

and replaying. Jukebox introduces a modest memory bandwidth overhead of 7.3%

on average and 10.3% in the worst case. The overhead comprises 45% of Jukebox’s

metadata and 54% overpredicted traffic.

We observe that the memory bandwidth increase correlates well with the com-

monality of the instruction working sets across invocations for a certain workload (see
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Figure 4.6: (a) Fractions of L2 instruction misses covered and overpredicted by Juke-

box. (b) Memory bandwidth overhead by Jukebox. Both graphs are normalized to the

number of L2 misses in the baseline).

Figure 3.7 in Section 3.5.2. For example, Go workloads tend to lower commonality,

resulting in more prefetches being useless, reflected in the higher overpredicted frac-

tion for those workloads. RecO-P has with 99.2% the highest commonality and also

shows the smallest fraction of overpredicted prefetches. Outliers with a lower com-

monality, such as Auth-P, Auth-N, Geo-G, or RecH-G, present the highest number of

useless prefetches.

4.3.5 Comparison to a State-of-the-Art Instruction Prefetcher

In this section, we compare Jukebox to a state-of-the-art instruction prefetcher, called

PIF [46]. Recall from Section 2.3 PIF is a temporal streaming-based prefetcher, which

works by recording and replaying the sequences of retired instruction addresses.

Recording all instruction addresses allows PIF to be independent of variations in

L1-I cache content and application’s control flow, thus achieving good prefetch

accuracy. To enable replay of instruction streams, PIF requires an index, which uses
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an instruction address to find the most recent recorded stream that starts with that

address.

By using the same parameters as in [46], we configure PIF with a 49KB index,

164KB of stream metadata storage, and an unrealistic single-cycle lookup latency for

each of these components. Because PIF was designed for long-running traditional

server workloads, it does not save its state across function invocations. To understand

the best possible performance of PIF, we simulate another design, PIF-ideal, with an

unlimited index and unlimited metadata storage that persist across function invoca-

tions.

Figure 4.7 plots the results of this study. We find that PIF delivers 2.4% speedup on

average (5.6% max) while PIF-ideal boosts performance by 2.6% (5.8% max). Mean-

while, Jukebox with metadata size limited to 24KiB provides a 17.8% speedup, on

average – a significant improvement over PIF and PIF-ideal. The reason for PIF’s rel-

atively poor efficacy can be explained by the fact that whenever the recorded stream

differs from the actual access stream of the core, PIF stops prefetching and re-indexes

to find the correct stream. Re-indexing prevents PIF from running far enough ahead of

the core to cover the long latency of a main memory access.

The big picture is that PIF was designed to reduce L1-I misses for accesses ex-

pected to hit in the L2 or L3 caches. In contrast, lukewarm functions have instruction

footprints in main memory, requiring a prefetcher to hide the associated high latency

effectively. PIF must stop and re-index any time the actual control flow diverges from

the prefetch stream. In contrast, Jukebox prefetches all instruction blocks recorded

in its metadata without synchronizing with the core. By doing such bulk prefetching,

Jukebox sacrifices the ability to prefetch into the small L1-I but achieves high instruc-

tion miss coverage in the L2 and L3.

The last bar shows the combined strengths of both designs — Jukebox’s bulk off-

chip prefetching and PIF’s highly accurate L1 prefetching. Surprisingly, PIF achieves
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only a small improvement of 2.9% over Jukebox on average, leaving a large gap to

a perfect L1-I. We explore this behavior in the following chapter and find that the

cold state of the branch predictor results in a high number of mispredictions, causing

frequent resets of PIF which hurts its efficacy.

4.3.6 Jukebox with a Smaller L2 Cache

A key feature of Jukebox is its decoupling from the core, unlocking aggressive off-chip

prefetching and drastically reducing the design complexity. In fact, Jukebox’s aggres-

siveness in replaying instructions into the L2 is only limited by the speed at which the

trace can be read, and prefetches can be issued. This design point is highly effective

for the Ice-Lake core because the instruction working sets of our serverless functions

with a size of 240–570 KiB fit comfortably into its 1.25MiB L2 cache. While 1.25MiB

is a standard cache size for modern server CPU’s [2, 14, 121, 158, 168] Jukebox can

be implemented on machines featuring smaller L2 caches where the working sets do

not fit entirely. To understand Jukebox’s efficiency in such a scenario, we model the

same configuration as before, except we reduced the size of the L2 cache to 256KiB,

representing the size of an Intel Broadwell CPU.

Figure 4.8 shows for both configurations the performance improvements of Juke-

box as well as miss reduction for the L2 and L3 cache. Across our suite of serverless

functions, we find that Jukebox delivers an average speedup of 12% on the 256KiB

configuration. Noting that the speed-up is smaller than the 17.8% achieved on 1.25MiB

L2 cache, we examine the cache miss rates for instructions in the two simulated plat-

forms.

We observe that Jukebox’s performance improvement is smaller with a 256KiB L2

— 12% on average — than with a 1.25MiB L2 cache. This difference can be explained

by the number of L2 misses shown in the centre graph. While Jukebox can eliminate
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almost all instruction misses for the 1.25MiB L2 (96.5% on average), it covers only

82.4% of the instruction misses with a 256KiB L2. Jukebox is too aggressive and

evicts its own prefetches before they are consumed. Furthermore, with the smaller L2

cache, instructions compete with data, resulting in a high incidence of conflict misses,

as indicated by the higher number of data misses for the 256KiB configuration.

While the graph shows Jukebox is less effective with a small L2, it remains highly

effective at eliminating off-chip misses for instructions. These are the crucial misses to

cover due to their excessively high latency. As shown in the right graph of Figure 4.8

reduces off-chip misses by 97.1% and 92.7% on average for the 256KiB and 1.25MiB

L2 cache configuration, respectively.

To summarize, Jukebox is most effective in CPUs with a large L2, which have

featured in recent server processors [2, 121, 158], yet also provides a tangible benefit

in CPUs with a smaller L2.

4.4 Related Work

Context switches: Prior works examine the problem of fine-grained context

switches in highly-consolidated virtual machines [35, 171]. These works focus

on a setting where a single virtual machine occupies the entire CPU for multiple

milliseconds, followed by a context switch to another VM. The problem solved in

these works is restoring the entire multi-megabyte LLC state via prefetching by

saving the address footprint of the LLC to main memory upon a context switch. The

proposed designs suffer from large metadata overheads for high coverage and high

bandwidth overheads associated with indiscriminate restoration of the entire LLC

(in some cases more than doubling the amount of memory traffic compared to the

no-prefetch baseline [35, 171]).

In contrast, Jukebox targets on-chip instruction misses by prefetching directly into

the L2 cache using a minimal amount of metadata. Due to high instruction common-

ality across invocations of a given serverless function instance, Jukebox achieves high

accuracy with low overprediction. While both Jukebox and prior works save prefetcher

metadata in main memory, prior works save physical addresses, which are the only

ones available at the LLC; in contrast, Jukebox saves virtual addresses, which makes

Jukebox naturally compatible with a modern virtual memory manager that can move

pages in memory (e.g., for memory compaction purposes).

Jevdjic et al. [78] record spatial footprints of data pages to reduce off-chip band-
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width pressure for aggressive data prefetching. While Jukebox also uses the idea of

footprints, it targets instruction prefetching with low metadata cost.

Ahn et al. also examines fine-grained context switches for virtualized systems and

proposes a context-preservation technique that controls the LLC capacity available for

each virtual machine, to preserve LLC working set across context switches [7]. Zhu

et al. examine event-driven server-side applications and identify L1-I misses to be a

major performance bottleneck [173]. The authors observe that instruction working sets

of the studied applications fit in the LLC and propose a specialized cache replacement

policy to preserve an instruction working in the LLC and augment it with a tempo-

ral prefetcher in the L1-I cache. Both of these techniques target settings where the

instruction working set fits in the LLC, which is not the case for serverless functions

with infrequent invocations and a huge degree of interleaving.

Sojkovic et al. [156] show that context switches are a main source of high tail

latency in microservices and propose accelerating the context switch with hardware

support. However, this work only replaces software instructions to store and restore the

register file on a context switch and does not help with the cold microarchitectural state

a context switch entails. Jukebox addresses cold microarchitectural state for instruction

of serverless function and thus orthogonal to the proposed technique of [156].

Prefetching: There is a long history of works in instruction prefetching for server

workloads. These papers fall into one of two categories: temporal streaming and BTB-

directed. The former category records entire traces of instruction cache accesses or

misses at the cache block granularity, resulting in metadata size of hundreds of kilo-

bytes and requiring a complex indexing mechanism to find the correct metadata when

the actual execution diverges from the recorded trace [46, 47, 85]. To store the meta-

data, existing temporal streaming proposals either use dedicated on-chip storage [46]

or virtualize the metadata into the LLC [85]. In contrast, Jukebox uses aggressive

filtering and spatial encoding, resulting in low metadata costs, does not require any

indexing, prefetches into the L2 to further simplify the prefetcher design, and stores its

metadata in memory to support thousands of warm functions.

The second category uses the BTB together with the branch predictor to iden-

tify upcoming control flow discontinuities to drive the instruction prefetch engine [96,

128]. This approach relies on a fully warmed-up BTB and branch predictor, which —

as we will show in the next chapter — makes it fundamentally at odds with lukewarm

executions that have to contend with a cold core.
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4.5 Conclusion

The sharply contrasting workload characteristics of serverless functions present new

challenges for modern CPUs. The cold microarchitectural state, resulting from short

execution times and infrequent invocations, causes a severe front-end bottleneck.

In this chapter, we took the first step to overcome lukewarm execution and ad-

dressed long off-chip instruction misses — the dominant source of performance degra-

dation in serverless workloads. We proposed Jukebox, a record-and-replay prefetcher

specifically designed to accelerate lukewarm invocations. Jukebox exploits instruction

commonality across invocations by recording the working set of a serverless function

and storing the record in memory. When consecutive invocations occur, Jukebox uses

the records to restore the working set into the L2 cache. The high commonality in

the instruction working sets of serverless functions makes Jukebox highly effective

in covering long off-chip instruction misses with a low metadata cost and low design

complexity.

While Jukebox is simple and effective, it restores working sets only into the L2

cache and leaves other microarchitectural structures in a cold state. As our charac-

terization (chapter 3) showed, lukewarm execution creates various bottlenecks, pre-

dominantly in the CPU front-end, including a high number of L1 instruction misses

and branch mispredictions. Therefore, in the next chapter, we explore the remaining

front-end bottlenecks holistically to provide a comprehensive solution for lukewarm

front-ends.



Chapter 5

Warming Up a Cold Front-End with

Ignite

Our results from Section 3.3 show the biggest bottlenecks of lukewarm execution are in

the core front-end, particularly long off-chip instruction misses adversely hurt perfor-

mance. While Jukebox — presented in the previous chapter — effectively eliminates

off-chip instruction misses by prefetching instruction working sets in the L2 cache, it

leaves other structures cold (including L1 instruction cache, BTB, and branch predic-

tor). Therefore, in this chapter, we explore the following question:

Can existing front-end prefetchers capitalize upon Jukebox and warm up the

remaining structures to overcome the lukewarm front-end?

To answer this question we evaluate the state-of-the-art front-end prefetcher

Boomerang, which proactively fills the L1-I and the BTB [96], and combine it with

Jukebox. We find Boomerang provides only a small speedup over Jukebox as it

fails to reduce the high miss rate across all front-end structures, namely the L1-I

(26 MPKI), BTB (13 MPKI) and the conditional branch predictor (21 MPKI). As

a result Boomerang falls considerably short of an ideal front-end that delivers 61%

average speed-up over an aggressive next-line prefetcher.

We perform a root-cause analysis to understand why the state-of-the-art in front-

end prefetching is performing so poorly and find that the cold microarchitectural state

of the BTB and the conditional branch predictor (CBP) is compromising prefetching

performance. Misses in the BTB and mispredictions of conditional branches constantly

drive the front-end (both demand and prefetch) off the correct path, resulting in poor

57
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prefetching performance and frequent pipeline flushes. Moreover, the short execution

time of serverless functions does not allow the warm-up time of these structures to be

amortized.

To overcome the cold front-end challenge of lukewarm invocations, we propose

Ignite, a comprehensive restoration mechanism for front-end microarchitectural state

targeting instructions, BTB and CBP via unified metadata. The underlying insight

behind Ignite is that the BTB working set provides an efficient way of approximating

a program’s (or container’s) control flow graph and can be used for instruction, BTB

and CBP prefetching. Ignite capitalizes on this insight by monitoring BTB insertions

to create compressed control flow records that are stored in main memory. When

the same function is invoked again, the metadata is streamed from memory and used

to generate instruction prefetches and restore the state of the BTB and the bimodal

branch predictor. Ignite has low logic complexity, is easy to integrate with existing

front-end prefetchers, and seamlessly supports thousands of functions on a server by

virtue of having no metadata on-chip. Our evaluation of Ignite shows that it improves

performance by 43%, on average, and significantly reduces the miss rate in all front-

end structures as compared to prior art.

In short, this chapter makes the following contributions:

• We show that combining Jukebox with the state-of-the-art front-end prefetcher

Boomerang [96] improves performance by only 20%, on average, as compared

to 61% with an ideal front-end. Cold BPU state is to blame.

• We introduce Ignite, a record-and-replay restoration mechanism that uses a uni-

fied control flow representation recorded during one invocation of the function

to prefetch instructions and restore the BPU’s state upon the next invocation.

• We demonstrate that Ignite improves performance by 43%, on average, by pro-

viding a significant reduction in L1-I, BTB and CBP MPKI.

5.1 Front-End Prefetching on Lukewarm Invocations

In this section we study the performance of state-of-the-art microarchitectural front-

end prefetchers on lukewarm invocations. We evaluate Jukebox, which mitigates off-

chip misses for instructions for serverless, and Boomerang [96], a unified FDP in-

struction and BTB prefetcher. For clarity of exposition, we do not show results for a
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Figure 5.1: Performance, L1-I MPKI and BPU MPKI for various front-end configurations

on lukewarm invocations.

temporal streaming prefetcher in this section, but note that our findings fully extend to

that class of designs, which is demonstrated in Section 5.4.5. The same gem5 setup

and Ice-Lake CPU model used throughout the work (outlined in Section 4.2.1) is used

to evaluate the prefetchers in detailed cycle-accurate simulations.

5.1.1 Big Picture Results

Figure 5.1 presents a competitive comparison of the following front-end configu-

rations: Next-line (NL) represents our baseline and features an aggressive next-line

prefetcher that triggers prefetches on a miss to the L1-I and also on hits to prefetched

lines; Jukebox; Boomerang; and Boomerang+JB which combines Boomerang with

Jukebox. By combining Jukebox and Boomerang, we relieve Boomerang from hiding

the high latency of off-chip misses as Jukebox prefetches these accesses, thus making

Boomerang more effective at prefetching into the L1-I and BTB. We also consider

an Ideal front-end configuration that features a perfect L1-I, perfect BTB, and a

pre-trained CBP.

The first graph in Figure 5.1 shows the speed-up of the various techniques, normal-

ized to NL. Results are averaged across all 20 serverless functions in our benchmark

suite. We observe that Boomerang delivers an average speed-up of 12%. It is outper-

formed by Jukebox (16% average speed-up), despite the fact that Jukebox prefetches

only into the L2 while Boomerang prefetches into the L1-I and the BTB. This indicates

that FDP struggles to hide the latency of off-chip misses. Combining Boomerang with

Jukebox (Boomerang+JB) increases speed-up to an average of 20% — a rather modest

improvement compared to an ideal front-end that delivers an average performance gain

of 61%.

To understand the reasons for the underwhelming performance of existing front-
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end prefetchers, we first examine their ability to cover L1 misses for instructions. The

expectation is that Boomerang, particularly when combined with Jukebox, should be

able to cover the majority of L1-I misses. The middle graph in Figure 5.1 indicates

that this is not the case. Compared to the next-line prefetcher, whose L1-I miss rate

is 37 MPKI, both Boomerang and Boomerang+JB do reduce the miss rate in the L1-I,

but with L1-I MPKI of 24 and 26, respectively, both techniques fail to shield the core

front-end from instruction misses.

Next, we examine the BPU by focusing on the BTB miss rate and the CBP mis-

prediction rate. As shown in the last graph of Figure 5.1, both rates are high, with the

average BPU miss rate exceeding 30 MPKI for both Boomerang and Boomerang+JB1.

We note that while both variants of Boomerang reduce the BTB miss rate as com-

pared to NL, which is expected since Boomerang prefetches into the BTB, the rate

of conditional branch mispredictions increases as compared to NL. We examine this

phenomenon in the following section.

Take-away: The state-of-the-art front-end prefetching ensemble falls considerably

short of an ideal front-end when faced with lukewarm serverless function invocations,

exposing the core to high L1-I, BTB, and CBP MPKI.

5.1.2 Cold uArch State in Focus

We hypothesize that the reason for the poor performance of Boomerang-enabled

front-end configurations is the cold BPU state owing to lukewarm invocations. While

Boomerang prefetches into the BTB, it does not help with the CBP. Moreover, our

results show that when faced with lukewarm invocations, Boomerang’s prefetch

effectiveness into the BTB is limited, with average BTB MPKI of 13 (Figure 5.1).

The BPU plays a two-fold role in achieving high front-end performance. The first

role is on the prefetching side, where the BPU identifies upcoming branches and their

targets via the BTB and, in the case of conditional branches, predicts whether they

are taken. Branches that are not present in the BTB or for which the CBP is unable

to make an accurate prediction steer the prefetcher onto the wrong path, subsequently

resulting in uncovered misses for instructions. The second role of the BPU is in avoid-

1One may wonder why Boomerang+JB has a higher L1-I and BPU miss rate than Boomerang. The
reason is that Boomerang+JB is more effective in covering front-end misses (thanks to the Jukebox
component), which allows its front-end to go faster than in Boomerang; however, many of the fetched
instructions are on the wrong path (due to the high BTB and CBP miss rate). Thus, Boomerang+JB
fetches more instructions but also experiences more L1-I and BPU misses/mispredictions as compared
to Boomerang.
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Figure 5.2: Sensitivity to BPU state

ing pipeline resets since every mispredicted or unidentified branch requires a front-end

resteer, entailing a pipeline flush and a reset of the fetch PC.

To understand the effect of the cold vs warm microarchitectural state of the BPU,

we study the following Boomerang configurations. The baseline is Boomerang+JB, as

presented in the previous section. Next, we evaluate the same configuration but with

a warm BTB, whereby the BTB state at the end of one invocation is preserved for the

next invocation of that function. Finally, we add a configuration that combines a warm

BTB and warm CBP (i.e., both the BTB and CBP are preserved across two invocations

of a function).

The results of the study are shown in Figure 5.2, which presents speedup over

NL. The figure shows that preserving the microarchitectural state of the BPU across

invocations of a function brings a significant performance benefit. A warm BTB helps

increase overall performance by 4.2% over a cold front-end. Preserving the CBP across

invocations, in addition to the BTB, provides an additional 10% performance gain,

bringing performance within 42% of an ideal front-end.

The L1-I and BPU MPKI rates corroborate the performance story. Preserving the

BPU state across invocations helps keep the front-end prefetcher on the correct execu-

tion path, delivering marked reductions in L1-I and BPU MPKI. With a warm BTB,

L1-I misses reduce by 15% while the BPU MPKI reduces by 26%, predominantly

stemming from a 50% reduction in BTB misses. When the CBP is also kept warm (to-

gether with the BTB), L1-I misses reduce by a further 18% and the BPU MPKI drops

by a further 42%.

Take-away: Cold BPU state arising from lukewarm invocations is responsible for poor

front-end performance on lukewarm invocations, even in the presence of a state-of-the-

art front-end prefetching ensemble.
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5.1.3 Effect of the Cold Branch Predictor

Finally, we focus on the large number of branch mispredictions and the implications of

a cold CBP on the front-end machinery. First, we seek to understand the relative im-

portance of CBP’s components in the context of cold vs warm microarchitectural state.

We model a high-end CBP configuration comprised of 64 KiB L-TAGE and 5 KiB

bimodal (BIM) base predictor2. Our baseline is Boomerang+JB with a warm BTB and

a cold CBP, which corresponds to the second (green) bar from the left in Figure 5.2.

Next, we consider the same configuration but with a warm BIM component; note that

the TAGE component is cold. Finally, we consider a configuration with a warm BPU;

i.e., when both BIM and TAGE are kept warm across invocations of a given function.

Results of the study are shown in Figure 5.3. We observe that keeping only the

BIM warm decreases the CBP mispredictions from 19.3 to 14.5 MPKI, resulting in

a performance improvement of 6.4%, on average. If the TAGE component is also

kept warm, CBP accuracy improves further, leading to 10 MPKI and another 4.5%

performance gain.

The question arises as to why the BIM has such high relevance for serverless func-

tion despite consuming less than 1/10 of the overall CBP size.

We hypothesize that many executed branches are highly biased towards one di-

rection and therefore easy to predict by the BIM. However, as the BIM is cold, those

branches are mispredicted during their initial dynamic execution. To validate our hy-

pothesis, we analyze when mispredictions occur during individual function invoca-

tions. If a miss happens during the first execution of a branch, we count it as initial

miss. All other misses are counted as subsequent miss. Figure 5.4 shows the corre-

sponding split of initial and subsequent CBP mispredictions for Boomerang+JB with

a warm BTB (cold CBP). We find 12-49% (33% on average) of the mispredictions are

caused by branches executed for the first time during an invocation. The results indi-

2The actual CBP configuration in Ice Lake has not been made public.
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cate that a significant faction of branches is simple to predict once the CBP is aware of

them, corroborating our hypothesis.

The presence of a large number of initial CBP mispredictions reveals a crucial in-

sight to understand Boomerang’s poor performance. Two conditions must be met to

allow a branch to be speculatively taken: the CBP must predict taken, and the BTB

must hold the corresponding target. Otherwise, the branch is not taken. Thus, com-

bining a warm BTB with a cold CBP presents two problematic situations. If the CBP

is incorrect and predicts not-taken for a taken branch, Boomerang’s BTB filling mech-

anism did not help eliminating the branch misprediction. Conversely, if the branch

is not taken but the CBP predicts taken, BTB filling was counterproductive since not

identifying the branch in the first place (by not placing it into the BTB) would have

prevented the misspeculation.

Take-away: Keeping only the BIM warm across invocations achieves 51% of the

potential, in both MPKI and performance, compared to keeping the entire CBP (which

includes the much-larger TAGE component) warm. The BIM’s high relevance is due

to many initial mispredictions, which compromise the existing BTB filling techniques.

5.1.4 Putting it all Together

Our findings show that cold microarchitectural state due to lukewarm invocations re-

sults in a critical front-end bottleneck even in the presence of state-of-the-art front-end

prefetchers. With instructions on-chip, a unified front-end prefetcher filling the L1-I

and the BTB fails to achieve a significant MPKI reduction in these structures. Our

analysis reveals that the cold BPU state is to blame, with frequent BTB misses and

branch mispredictions leading to a high incidence of fetches and prefetches on the

wrong path.
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Effectively tackling the cold front-end requires having instructions on-chip and the

BPU initialized so as to identify branches and predict conditional ones. An important

finding is that initializing only the BIM component of the CBP, which is much smaller

and simpler than TAGE, achieves 51% of the benefit of initializing the entire CBP

(BIM+TAGE).

While we demonstrate in the previous chapter that Jukebox is effective for avoiding

off-chip misses for instructions, it does not address the cold microarchitectural state in

the BPU, which impedes existing front-end prefetchers from attaining high efficacy.

What is needed is a light-weight mechanism to not only deliver instructions on-chip,

but to also restore the branch working set into the BTB and the CBP upon function

invocation.

5.2 IGNITE

We introduce Ignite, a comprehensive solution for restoring the front-end microarchi-

tectural state. At the heart of Ignite is a compact and unified representation of the

front-end microarchitectural working set spanning instructions, BTB and CBP. Ignite

operates by recording the observed working set during the execution of a given server-

less function, then restoring it upon re-invocating that function again. We use the term

restoration to differentiate Ignite from traditional prefetchers that continuously moni-

tor the current process and reactively prefetch at fine granularity (e.g., a cache block or

a page) triggered by a particular address, stride, or PC. In contrast, Ignite uncondition-

ally restores the entire recorded instruction, BTB, and partial CBP working set at the

start of an invocation. Such bulk restoration is essential for enabling a rapid warm-up

of the core front-end.

In simplest terms, Ignite records control flow discontinuities as a single stream of

metadata. Control flow discontinuities arise when the sequential flow of instructions is

interrupted by a taken branch (conditional, unconditional, function call/return). Each

record in Ignite’s stream represents a discontinuity in otherwise sequential code, and

is comprised of a branch PC, branch type, and a target. The records form a chain of

control flow, where the target of one branch is the start of a contiguous block of code

ended by the next taken branch, identified by the next record in the stream.

The stream described above is comprehensive, recording every observed taken

branch, which allows the address of every executed instruction to be trivially deter-

mined. However, such a trace is highly redundant due to recurrent control flow (e.g.,
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Figure 5.5: Ignite architecture overview. Blue shows new structures and metadata.

loops and functions with multiple callers), thereby incurring significant metadata stor-

age costs. We exploit two insights to make unified front-end metadata practical.

Our first insight is that the BTB working set (which may exceed the actual capacity

of the BTB) provides a complete and non-redundant representation of the control flow

graph of the program. Ignite leverages this insight to minimize metadata redundancy

and storage costs by only recording BTB insertions. Given a recorded BTB working

set, it is trivial to reconstruct the working set of instruction cache blocks by chaining

branch PCs and their target addresses. But what about the CBP?

Our second insight is that modern CPUs create new BTB entries (i.e., insert

branches into the BTB) only when a taken branch is committed [3, 76]. Thus, the

mere fact that a BTB entry is created for a conditional branch implies that the branch

was taken. Ignite uses this insight at replay time to initialize the BIM to ’taken’ for

each conditional branch encountered in its metadata. Note that Ignite does not restore

TAGE, whose size and complexity would considerably encumber Ignite’s design.

Thus, Ignite opts for simplicity and low metadata cost in exchange for a modest loss

in branch prediction accuracy (Section 5.1.3).

Figure 5.5 provides an overview of Ignite. At record time, Ignite simply monitors

BTB insertions and writes the entries to a dedicated region of memory. At replay time,

Ignite reads the stream from the beginning and uses it to restore instructions, BTB and

BIM as follows. The branch PC is used to prefetch the corresponding instruction block

into the L2 cache. Each stream entry directly corresponds to a BTB entry and can be

inserted into the BTB as such. For conditional branches (identified via the branch type

field), the BIM entry corresponding to that PC is initialized as taken.

Ignite naturally integrates with FDP (e.g., FDIP [128] or Boomerang [96]), thereby
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allowing effective instruction prefetch from the lower levels of the cache hierarchy into

the L1-I. Ignite’s metadata is stored in main memory, thus naturally scaling with the

number of active serverless functions. Ignite has low microarchitectural complexity:

its record logic needs to monitor only BTB insertions as it uses the same informa-

tion for its metadata as the BTB entry being created, while the replay logic reads the

recorded stream in sequential order and, for each entry, issues an instruction prefetch

and inserts BTB and BIM entries. Thus, Ignite enables high front-end miss coverage,

high scalability and low integration complexity.

Ignite was designed in the context of serverless functions. However, the approach

is applicable in other contexts where frequent switching between threads hurts per-

formance [166, 173] due to cold microarchitectural state. For example, Ignite could

be beneficial in modern mobile applications that are characterized by frequent context

switches or cases where microarchitectural state needs to be flushed at context switches

for security reasons [166].

5.2.1 Record

The record logic of Ignite is responsible for recording the front-end working set by

capturing BTB entries at the point of their creation and storing them into a dedicated,

per-container, memory region. The recorded working set needs to satisfy three re-

quirements to be useful at the replay stage. First, it needs to accurately capture the

branch working set. Second, it must be recorded in the order of expected reuse to en-

sure timely instruction prefetching. Third, it needs have low redundancy to minimize

memory bandwidth and storage requirements.

As noted in chapter 5, the BTB in modern processors only inserts taken branches.

Furthermore, as a cold BTB can be expected when recording starts (see Section 3.5),

every new taken branch will result in a BTB entry being allocated. This means that

we can use BTB allocation events to record new branches as they are encountered by

the front-end. With an unbounded BTB, the resulting trace would contain a complete

record of unique branches and their targets in the order that they were first executed

(i.e., in the order we expect them to be executed in the future). In practice — with

a finite BTB — a branch may be evicted and, later, re-inserted, resulting in a small

degree of redundancy in the recorded trace.

Metadata compression: A naive way of storing branches and their targets would

be to store the branch PC and the target PC. Assuming 48 bit virtual addresses, such a
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format would use at least 96 bit of storage per entry. This is clearly wasteful. We can

use two important observations to compress records. First, most branches tend to be

local, for example, inside a method call. This implies that the target can be encoded

as a small delta from the PC of the branch instruction [19, 153]. Second, the distance

to the next branch from the target of the previous branch tends to be small, indicating

that a delta (from the previous target) can be used instead of the full branch PC.

To compute the deltas, Ignite stores the last-inserted BTB entry in a dedicated

register. When a new entry is BTB created, simple logic computes the delta from the

target of the previous BTB entry to the branch PC of the newly created entry. Similarly,

a delta is computed from the new branch PC to its target. Once an Ignite metadata entry

is formed, the register is updated with the content of the newly-created BTB entry.

Ignite uses a fixed-size delta for the branch PC and another delta for the target to

simplify record and replay logic3. When computed deltas exceed the pre-determined

size, the full PC is used. A single bit in each metadata entry specifies the format of the

entry with respect to whether deltas or full addresses are used. Figure 5.6 visualizes

the creation of metadata entry and its format.

5.2.2 Replay

The purpose of the replay phase is to deliver instructions into the L2 cache and to

prime the BTB and CBP to enable efficient speculation. Priming the BTB and CBP

has two complementary benefits: it reduces front-end stalls for demand accesses due

to more accurate prefetches by FDP, and it reduces pipeline flushes due to BTB misses

and branch mispredictions. Meanwhile, prefetching of instruction into the L2 reduces

3We empirically found 7 bits for branch PC delta and 21 bits for target delta to achieve the highest
compression. Correspondingly the size of one Ignite entry is either 97 bits (full PC + target + type bit)
or 29 bits (delta PC + target delta + type bit)
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the risk of long-latency instruction misses that cannot be hidden by FDP alone.

Ignite sequentially reads the metadata trace created in the record phase and, for

each metadata record, performs the following actions. First, if the record uses delta-

encoded branch and target fields, it expands them. Using the full-length fields, it cre-

ates a BTB entry and inserts it into the BTB. If the entry corresponds to a conditional

branch, it sets the appropriate BIM entry to ’weakly taken’. In parallel with the BPU

insertion, the replay logic uses the MMU to translate the address of the branch PC com-

prised in the entry and issues a prefetch to the L2 cache for the corresponding cache

block. Note that the act of address translation populates the I-TLB, hence effectively

serving as an I-TLB prefetcher.

Prefetch throttling: To avoid thrashing the BTB, Ignite throttles the replay rate.

For workloads with large branch working sets, this effectively increases the reach of

the BTB beyond its natural size. We implement throttling by tracking the number

of restored BTB entries that have not been accessed by the core front-end either for

demand fetch or for prefetching. The tracking itself is implemented using a dedicated

per-entry restore-bit in the BTB that gets set when a BTB entry is inserted by Ignite and

cleared when the entry is accessed or evicted. A counter keeps track of the total number

of restored BTB entries that have not been touched; the counter is incremented when

an entry is restored and decremented whenever a restored entry is first accessed or

evicted without having ever been used. Prefetching is throttling whenever the number

of unaccessed restored entries exceeds a predetermined threshold.

Divergence at replay time: In the unlikely event that a function’s behavior

changes substantially between two invocations (i.e., from record to replay), Ignite may

fail to accurately capture the branch working set. In such cases, Ignite behaves similar

to a system without Ignite since BTB and CBP lookups would fail to capture the new

behavior in both cases. While we have not observed such cases in our studies, they

could be mitigated by running record and replay simultaneously (see Section 5.2.3) to

capture a branch working set that evolves between invocations.

5.2.3 Operating System Interface

Ignite integrates with the operating system to manage memory and to trigger record and

replay when a function invoked. These two components of Ignite have an independent

set of control registers to set the base address and size of the metadata region and to

activate recording or replay. This interface is, in fact, identical to Jukebox, which is
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described in more detail in Section 4.1.3.

When a new function starts, the operating system allocates a contiguous region of

memory for metadata. It then points Ignite’s record component to the metadata region

using its base and size registers. Once the metadata region has been configured, the

operating system enables recording by setting a control bit and launches the function.

On subsequent invocations of the function, the operating system configures the replay

mechanism with a pointer to the recorded metadata and its size. It then sets a control

bit to activate replay as soon as a function has been scheduled on a core. Note that

by starting replay together with the function, Ignite loses the opportunity to cover

misses at the very start of a function’s execution. However, Ignite rapidly establishes

a sufficient prefetch distance because the CPU stalls every time an instruction cache

miss is encountered, while Ignite’s prefetching does not.

Since replay and record are independent components, an operating system may

choose to double-buffer metadata and activate both replay and record at the same time.

Doing so increases metadata bandwidth and storage requirements but lets Ignite react

to changes in the branch working set. Note that recording can be done at the same time

as replaying. In that case, Ignite has to record BTB misses, and BTB hits on restored

entries, i.e., usefully restored entries. It uses the restore bit to determine whether an

entry was restored by Ignite or a normal BTB hit.

5.2.3.1 Hardware Overhead

Ignite reuses most of the hardware components from Jukebox (detailed in Sec-

tion 4.1.3.2) and adds additional logic to restore BPU microarchitectural state.

Specifically, it uses the same four architecturally exposed 48-bit registers to allow the

OS to manage Ignite, two 32-bit counters to stop upon reaching the trace limit, and

two 512-bit buffers needed to cache one cache line of metadata for the record and

replay logic. Ignite does not need the CRRB from Jukebox. Instead, it uses two 96-bit

registers to maintain the last metadata entry required to compute the deltas for the

branch PC and target for compressing the metadata.

The most costly part of Ignite is the additional restore bit added to each BTB en-

try, which is used for throttling replay. For the 12K-entry Ice Lake BTB, the restore

bits incur an additional 1.5KiB of hardware4, corresponding to approximately a 1.5%

4As modern BTB typically have multiple levels, some metadata used to transfer and replace entries
between levels is likely already available and could be used for Ignite. However, we consider the worst
case where none of this information is available.
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increase in BTB area (assuming a 48-bit target, 12-bit tag, 2-bit type, and 4 bits for

validity and replacement information) and accounting for 90.4% of Ignite’s overall

hardware cost of 1.66KiB. While this is less than 0.013% of the Ice Lake core area5,

it suggests exploring less resource-intensive throttling mechanisms. Some ideas de-

signed for prefetch throttling [68] might be useful for Ignite to make it even more

lightweight.

To restore entries into the BTB and the CBP, Ignite must access both structures

in parallel to the normal fetch operations. One approach is adding a second port to

the BTB and CBP, enabling simultaneous access but introducing significant area and

energy overhead [174]6. Alternatively, Ignite can use the existing ports and arbitrate

accesses to both structures. Specifically, whenever the fetch engine stalls and does

not access the BTB or CBP, Ignite can use the normal port to place entries into both

structures. This approach introduces minimal hardware overhead at the cost of poten-

tially delayed restorations, which could impact prefetch distance. However, since the

front end is completely cold upon function start and instructions must be fetched from

memory, inducing hundreds of stall cycles, we argue that these stalls provide sufficient

time for Ignite to restore the microarchitectural state. We leave a detailed analysis of

this trade-off for future research.

5.2.4 Security Aspects

Ignite records microarchitectural state as metadata into main memory, raising the ques-

tion of whether this opens up security vulnerabilities. Ignite and its metadata are man-

aged by the host OS, which already has visibility into application state, including mi-

croarchitectural state. For instance, most recent CPUs offer features like Intel’s last

branch record register (LBR), Intel’s processor trace (Intel-PT) [73] or Arm’s branch

record register (BRB) [17] that allow collecting application traces.

As Ignite injects branch targets into the BTB, a malicious VM can use Ignite to

create a speculative side channel and extract information from other VMs. However,

as it is already possible to inject arbitrary branch targets into the BTB [16] Ignite does

not increase the attack surface. Additionally, Ignite is compatible with side channel

mitigations like Arm’s BTB tagging feature (FEAT CSV2) [16]. In a CPU featuring

5Approximated base on annotated die shot photos of the Ice lake core https://en.wikichip.org/
wiki/intel/microarchitectures/ice lake (client)

6As modern BTBs are often already multiported [3, 123] to transfer information between different
BTB levels, Ignite could piggy-back the existing mechanism. However, we consider the worst case with
only one port available.

https://en.wikichip.org/wiki/intel/microarchitectures/ice_lake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/ice_lake_(client)
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BTB tagging, Ignite would use the currently running VM ID to tag restored BTB en-

tries. In that way, replayed entries from a malicious VM are not executable by other

VMs.

5.3 Methodology

We evaluate Ignite on the same 20 distinct serverless functions and the same gem5

setup used throughout the work. For details on the workloads, we refer to Section 4.2.2

and for the gem5 configuration and simulator parameters to Section 4.2.1. Once con-

figured with the parameters of the Intel Ice-Lake server CPU we evaluate the following

prefetcher configurations:

Baseline (NL): Next-line prefetching for instructions and stride prefetching for data.

Used in all configurations below.

FDP: We implement the decoupled front-end (FDP) in gem5’s out-of-order CPU fol-

lowing industry reports [74]7. FTQ: 32 entries; branch predictor bandwidth is double

the fetch width [122]; branch predictor uses taken-only history [3, 4].

Boomerang: FDP augmented with the BTB filling mechanism as described in [96].

6-cycle pre-decode latency, 16-entry BTB prefetch buffer.

Confluence: 8 K entry index and a 32 K entry history buffer [86]. Instead of modeling

virtualized metadata in the LLC, we use dedicated structures for index and history

buffers with an LLC-like look-up latency of 50 cycles [1].

Jukebox: 16-entry CRRB and a region size of 1 KiB. For both record and replay,

metadata is limited to 16 KiB each (32 KiB in total). Prefetched instruction blocks

land in L2.

Ignite: 21 bits to encode branch PC (i.e., source) delta, 7 bits to encode target delta.

Replay throttled when >1 K restored BTB entries have not been accessed. Maximum

metadata size: 120 KiB. Our implementation is on top of FDP, but could equally be

used with Boomerang.

7The gem5 implementation of FDP has been released and made available for the research community
at https://github.com/dhschall/gem5-fdp/

https://github.com/dhschall/gem5-fdp/
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Figure 5.7: Performance results over next-line prefetcher.

5.4 Evaluation

5.4.1 Performance Analysis

We first study the performance of the various front-end prefetchers under luke-

warm invocations. We evaluate Boomerang, Boomerang augmented with Jukebox

(Boomerang+JB), and Ignite. Because Ignite restores only the BIM component of the

CBP, we also consider a variant of Ignite that restores the TAGE component as well

(Ignite+TAGE). Note that the latter configuration may not be feasible, as there is no

known mechanism to efficiently save and restore TAGE context [166], but it is useful

for understanding the opportunity in restoring TAGE.

Figure 5.7 presents the results of the evaluation, normalized to our Baseline (NL).

As reported in Section 5.1.1, Boomerang improves performance over NL by 3-16%

(12% on average). For Boomerang+JB, the improvement increases to 20%, on average,

over NL.

Ignite achieves a 21-62% (43% on average) speed-up over NL, an improvement

of 3.6x over Boomerang and 2.2x over Boomerang+JB. The highest speed-ups are

observed on functions written in NodeJS, which tend to be branch-heavy (refer to

Figure 3.6b) and thus have a high dependence on the BPU. Ignite improves the perfor-

mance of these applications by 50-62%. Ignite+TAGE improves performance by 50%,

on average, covering roughly half of the performance difference between Ignite and the

Ideal front-end. We observe Ignite outperform Jukebox by 2.4x despite both address-

ing lukewarm function invocation. Jukebox prefetches only the instruction working set

into the L2 to cover off-chip misses for instructions but leaves the remaining front-end

completely cold. Ignite prefetches into the L1-I, BTB and BIM. Thus, Ignites covers

misses in multiple front-end structures that are ignored by Jukebox.
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Figure 5.8: Ignites miss coverage (a) and detailed initial miss coverage (b). The initial

missed coverage shows Ignite in the front and Boomerang+JB (warm BTB) in the back.

5.4.2 Miss Coverage and Accuracy

We next study Ignite’s ability in covering front-end misses for instructions, branch

targets and branch direction predictions. As before, we consider Boomerang,

Boomerang+JB, Ignite, and Ignite+TAGE.

L1-I miss coverage: Figure 5.8a, left, shows MPKI for the various front-end

prefetchers. Ignite reduces L1-I misses by about 2x as compared to Boomerang and

Boomerang+JB. There are two reasons for Ignite’s strong performance. The primary

reason is a much lower BPU MPKI (discussed below) owing to Ignite’s effective BPU

restoration. This allows the front-end prefetcher (FDP) to stay on the correct path, thus

achieving higher coverage than Boomerang and Boomerang+JB. The second reason is

that Ignite covers more off-chip misses for instructions than Boomerang.

BTB miss coverage: The center graph in Figure 5.8a shows Ignite’s efficacy in

restoring branches into the BTB. We observe Ignite is highly effective at eradicat-

ing BTB misses. Boomerang achieves a BTB miss rate of 11 MPKI (13 MPKI for

Boomerang+JB). Meanwhile, Ignite achieves a BTB miss rate of 1.9 MPKI — an im-

provement of over 5x versus prior front-end prefetchers.

Branch miss coverage: As shown in Figure 5.8a, right, Ignite reduces the inci-
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Figure 5.9: Ignites accuracy in restoring microarchitectural state.

dence of branch mispredictions by nearly half versus other front-end prefetchers —

from 19 MPKI or more to just over 10 MPKI. Preserving in addition to Ignite the full

TAGE prediction tables (Ignite+TAGE bar) reduce CBP mispredictions to 6.6 MPKI.

As Ignite’s primary objective is to eliminate initial branch mispredictions, we ana-

lyze its efficacy in more detail. As done in Section 5.1.3, we split initial and subsequent

mispredictions for Ignite and show the results Figure 5.8b. For ease of comparison, the

previous results (Figure 5.4) are plotted in the background. We observe Ignite is effec-

tive in covering 67% of the initial mispredictions.

Restore accuracy: Ignite places microarchitectural state into the L2 cache, BTB

and CBP possibly evicting valuable state. Therefore, we evaluate Ignite’s accuracy

in Figure 5.9 where we show for each of the three restored structures the fraction of

misses covered, not covered and overpredicted. For L2 and BTB, overpredicted means

entries that were installed by Ignite but never used, and for the CBP, mispredictions

which the BIM causes because Ignite initialized an entry incorrectly.

We find Ignite has high accuracy in restoring state. On average, only 1.4% of

Ignite’s L2 instruction prefetches and 3.9% of BTB entries that Ignite restores are

not useful. Furthermore, Ignite induces only 6.2% additional mispredictions (while

eliminating 46% of the mispredictions of Boomerang+JB). The high accuracy stems

from the high commonality in the execution of serverless functions.

5.4.3 Memory Bandwidth

We analyze the amount of memory bandwidth consumed by the various front-end

prefetchers. We consider four sources of memory bandwidth usage: useful instruc-

tions, useless instructions, record metadata (i.e., metadata streamed to memory), and

replay metadata (metadata streamed from memory). We study the worst-case memory

usage, where record and replay happen simultaneously. Note that instruction cache

blocks include both demand requests and prefetches both on correct and misspecu-

lated paths.
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Figure 5.10 compares memory bandwidth for NL prefetcher, Boomerang,

Boomerang+JB and Ignite. We observe that 25% of the overall instruction traffic

with the next-line prefetcher is useless and is fetched while the front-end is on the

wrong path, which happens due to the cold state of the BPU. Boomerang employs

fetch-directed prefetching; however, owing to the cold BPU, Boomerang (and the

underlying FDP mechanism) exacerbates wrong-path instruction fetches. As shown

in the second bar of Figure 5.10, Boomerang more than doubles useless instruction

fetches, which translates to an overall increase in traffic for instructions by 41% over

the next-line prefetcher. Boomerang+JB further increases the memory traffic by an

additional 10% over Boomerang. The reason for the increase is that Jukebox helps

cover more off-chip misses for instructions, allowing the front-end to run faster than

without Jukebox, thus fetching more instructions per unit time. However, due to the

cold BPU, most of these are on the wrong execution path. Thus, Boomerang+JB

generates even more useless fetch and prefetch requests to memory than Boomerang.

Finally, by restoring the content of the BPU, Ignite dramatically reduces wrong-

path instruction accesses. As a result, Ignite uses 24% less memory bandwidth for

instructions than Boomerang (29% less than Boomerang+JB). However, the reduc-

tion in useless memory bandwidth is partially negated by Ignite’s metadata traffic.

Nonetheless, even with both record and replay metadata traffic accounted for, Ignite

requires 8.6% less memory bandwidth than Boomerang and 17% less bandwidth than

Boomerang+JB.

5.4.4 Sensitivity to Bimodal Initialization

We evaluate different BIM initialization policies for Ignite. As our baseline, we use

Ignite to restore only L2 and BTB state but not to initialize the BIM. Next, we com-

pare our baseline against an upper bound that fully preserves the BIM state from the

previous invocation. Finally, we compare two configurations in which we initialize
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BIM entries together with inserting branches into the BTB to a weakly not-taken state

(wNT) and a weakly taken (wT) state8. The latter policy — initializing inserted entries

to wT — is used by Ignite.

In Figure 5.11, we show speedup (over NL) and the BPU MKPI. We observe that

using Ignite to restore only L2 and BTB state results in a speedup of 35%. Preserving

the entire BIM state across invocations gains a further 5.5% speedup and a 25% MPKI

reduction, underscoring the importance of a warm BIM state.

The evaluation of different initialization policies reveals that resetting BIM entries

to weakly not-taken degrades the performance by 3% as compared to a baseline that

does not initialize the BIM at all. In contrast, resetting BIM entries to weakly taken

results in a 6% performance boost. The results correlate with our observation from

Section 5.1.3 that restoring BTB entries is only effective if the CBP predicts taken. As

Ignite fills only branches taken in the last invocation, it must initialize BIM entries as

weakly taken.

Finally, we notice that using a weakly taken policy for Ignite achieves similar per-

formance as preserving the BIM state. In fact, in some cases, the weakly taken initial-

ization policy slightly outperforms preserving the BIM. The reason why Ignite’s BIM

initialization policy may, at times, outperform preserving the BIM across invocations

is that the BIM’s state at the end of an invocation reflects the effect of the last execu-

tion(s) of a given branch. In contrast, Ignite records the first execution of a branch.

Ignite’s strategy favors branches whose behavior differs between first and last execu-

tion (e.g., branches associated with predicates guarding a loop). Overall, the study

validates Ignite’s design by showing the importance of initializing the BIM state and

demonstrating that weakly taken is the right initialization policy.

8We also evaluated strongly taken/not-taken policies but found no significant differences compared
to weakly taken/not-taken
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5.4.5 Temporal Streaming Prefetchers

So far, we have only considered FDP-based front-end prefetchers. We now examine

temporal streaming prefetching (Section 2.3) and demonstrate that the observations

made throughout the paper, including the effect of cold microarchitectural state on

front-end performance, apply to this class of prefetchers as well. We further show

that Ignite is compatible with this class of prefetchers, making the observations behind

Ignite general.

We consider Confluence [86], a state-of-the-art unified temporal streaming

prefetcher discussed in Section 2.3. Confluence uses dedicated metadata to drive

instruction prefetching into the L1-I, where it relies on instruction pre-decoders to

extract branches and insert them into the BTB. See Section 5.3 for configuration

parameters of Confluence.

We evaluate Confluence, Confluence together with Ignite (Confluence+Ignite), and

FDP with Ignite (FDP+Ignite); the latter is the configuration evaluated elsewhere in

this section under the name ’Ignite’. Results are presented in Figure 5.12.

As the figure shows, the general trends presented for Boomerang (an FDP-style

prefetcher) in Figure 5.1 hold for Confluence. Specifically, Confluence delivers only

a small performance improvement over NL due to high L1-I and BPU MPKI. Al-

though Confluence does not rely on fetch-directed prefetching, it is nonetheless highly

sensitive to branch mispredictions, since they require Confluence to re-index and re-

initiate prefetching from a different stream than the one that was being followed. We

thus conclude that the same limitation found in Section 5.1.3 for Boomerang applies

to Confluence. While Confluence delivers branch targets to the BPU, the cold CBP

hinders the BTB filling mechanism to become effective.

The figure further demonstrates that Confluences pairs well with Ignite, which

helps avoid off-chip misses for instructions and restores the state of the BTB and the

BIM. As a result, Confluence+Ignite enjoys a 28% reduction in L1-I misses and 50%

reduction in BPU misses as compared to Confluence.

Finally, we note that FDP+Ignite achieves somewhat better performance than Con-

fluence+Ignite, which we attribute to the fact that Confluence requires more training

time to form sufficiently-long streams, whereas FDP trains faster, especially with Ig-

nite restoring the BPU.
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Figure 5.12: Evaluation of Temporal Streaming Prefetchers

5.5 Related Work

Serverless: Little work has been done on understanding microarchitectural implica-

tions of serverless computing. In one previous study, Shahrad et al. [149] analyzed the

performance of five serverless functions and identified problems including high cold-

start latency and high variability in execution time. The work noted a high incidence

of branch mispredictions upon a function cold start but did not propose a mitigation.

Mitigating Context switches: Prior research has tackled the issue of context

switches in virtualised systems and proposed techniques to preserve LLC state across

context switches. Ahn et al.[7] control LLC capacities available for individual virtual

machines while others leverage record-and-replay to prefetch the entire LLC state

upon context switch [35, 171]. The focus of those works is only on preserving LLC

state. Vougioukas et al. address cold branch predictor states due to flushes upon

context switches in order to avoid side-channel attacks [166]. The work proposes a

small specialized predictor that can be quickly restored on a context switch, along

with a buffer that allows retaining the state of that predictor for a small number of

concurrently active applications. In contrast, Ignite proposes a unified restoration

mechanism for the entire core front-end including the CBP. Notably, Ignite requires

no modifications to the branch predictor organization and does not need to store any

metadata on-chip.

Software techniques: Recent work has proposed specialized instructions to prefetch

code [22, 89, 104], BTB entries [88] or branch prediction hints [90]. Each of these

techniques requires architectural support and increases code size. Furthermore, prior

techniques address instruction misses, BTB misses or branch mispredictions individ-

ually. Our work holistically addresses all sources of front-end misses with no code

or ISA modification. Other techniques leverage profile information to optimize code

layout [29, 120, 124]. But doing so does not help with BTB misses or branch mispre-
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dictions.

5.6 Conclusion

Lukewarm invocations compromise performance of serverless functions due to cold

microarchitectural state, particularly in the core front-end. Meanwhile, existing front-

end prefetchers show limited effectiveness on lukewarm invocations because the cold

BPU throws both fetch and prefetch streams off the correct path. In response, this

chapter introduces Ignite, a comprehensive mechanism for restoring front-end microar-

chitectural state recorded during a previous invocation of a given function. To the best

of our knowledge, Ignite is the first approach to restore instructions, BTB and CBP

state using unified metadata. Ignite is enabled by the insight that the BTB working

set provides a good approximation of a program’s control flow graph. Ignite records

this working set and uses it to restore the front-end metadata. A detailed evaluation

of Ignite shows that it outperforms state-of-the-art prefetchers and delivers significant

performance gains on lukewarm invocations by reducing the front-end MPKI.





Chapter 6

Conclusions and Future Work

Serverless computing has emerged as a promising cloud execution model to bridge the

gap between efficient resource management and ease of use for developers. Despite its

potential to improve energy efficiency and reduce the carbon footprint of data centres

through enhanced resource utilization, serverless computing represents a significant

shift in how code is executed in the cloud. Characterized by short execution times,

small memory footprints, and long inter-arrival times, serverless workloads differ fun-

damentally from traditional cloud workloads. The implications of these characteristics

for CPU performance are not yet fully understood.

To address this knowledge gap and ensure the sustainability of serverless com-

puting as an efficient cloud execution model, we revisit the objectives outlined in the

introduction of this dissertation:

1. Examine Performance Implications: Develop a comprehensive understanding

of the performance implications of serverless workload characteristics on modern

CPUs.

2. Understand Bottlenecks: Identify bottlenecks and offer insights into their exis-

tence and potential solutions.

3. Overcome Bottlenecks: Design and evaluate solutions to address bottlenecks

resulting from the mismatch in CPU designs and the serverless workload charac-

teristics.

4. Ensure Lightweightness: The proposed solutions must be lightweight, non-

disruptive, and easy to integrate with existing hardware and software to ensure

sustainability.

In the remainder of this chapter, we summarize how the contributions of this thesis

81
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address these objectives and conclude with a discussion of limitations and future work.

6.1 Summary of Contributions

6.1.1 Understanding Serverless Workloads

To address the first two objectives, we examined in chapter 3 a typical serverless sce-

nario using an Intel Xeon Ice Lake server with numerous interleaved executing func-

tions. The large number of co-located functions, with extremely short execution times,

results in a high degree of interleaving and frequent context switching. Due to long

intervals between invocations, functions often find their CPU microarchitectural state

cold, a phenomenon we term lukewarm execution. This leads to a performance degra-

dation of 2x or more compared to warm executions. A detailed Top-Down analy-

sis identified the CPU front-end (i.e., instruction delivery, branch identification, and

branch prediction) as the primary source of performance degradation, with a signifi-

cant pain point being a high number of off-chip instruction misses.

We examined the instruction and branch working sets of functions and found sig-

nificant commonality across invocations and a modest footprint, explaining the 2x per-

formance difference between interleaved and non-interleaved scenarios. While high

commonality provides high performance and efficiency for a single function — in-

struction and branch working sets are small enough to fit within fast on-chip structures

— the combined working sets of hundreds of functions overwhelm the capacity of pro-

cessor caches and branch predictor units by orders of magnitude. This results in many

off-chip instruction misses, BTB misses, and a high branch misprediction rate, causing

severe performance degradation.

6.1.2 Addressing Lukewarm Execution

In addressing the third and fourth objectives, we proposed in chapters 4 and 5 two

lightweight techniques to mitigate the performance degradation of lukewarm serverless

function execution:

Jukebox This technique addresses the largest source of performance degradation,

off-chip instruction misses, by exploiting the high commonality of instruction working

sets across function invocations. Jukebox records instruction working sets during one

invocation and uses the records to issue prefetches during subsequent invocations. Its
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key features of (1) recording and replaying instructions into the L2 cache, (2) stor-

ing records in the main memory, and (3) being decoupled from the core make Juke-

box a simple and lightweight solution. Despite its lean design, Jukebox covers more

than 90% of L2 instruction misses and shows a 17.8% average speed-up for lukewarm

serverless functions with minimal hardware overhead and a small metadata cost.

Ignite: Building on Jukebox, Ignite provides a comprehensive solution to mitigate

all remaining front-end inefficiencies caused by lukewarm execution, including high

numbers of L1 instruction misses, BTB misses, and branch mispredictions. Ignite

introduces a unified metadata format to densely store the control flow of a serverless

function in memory. This metadata is used during subsequent invocations to restore the

entire front-end state, including the BTB, CBP, and instruction cache. Ignite achieves

a 43% average performance improvement and significantly reduces miss rates across

all front-end structures compared to previous approaches, with low hardware cost and

complexity.

6.2 Future Work

Jukebox and Ignite are lightweight, simple, and highly effective mechanisms for re-

moving inefficiencies in lukewarm serverless function execution. However, several

opportunities for future work could further improve the performance of serverless

workloads:

6.2.1 Addressing Back-End Inefficiencies

While our characterization in chapter 3 highlights the CPU front-end as the main bot-

tleneck for serverless workloads, the back-end also shows a significant increase in stall

cycles — 171% compared to the non-interleaved scenario. Figure 3.5c reveals that

data, in addition to instructions, experiences as well a high number of off-chip misses.

Moreover, as Jukebox and Ignite mitigate front-end inefficiencies, an imbalance in the

CPU pipeline is created, making back-end stalls more severe.

To fully address performance degradation due to lukewarm execution, future work

could explore mechanisms to mitigate back-end inefficiencies. While conducting ex-

periments for this dissertation, we found that — despite different inputs — not only

instruction accesses but also data accesses have a high commonality across invoca-
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tions 1. This is likely because a large portion of execution time is spent in the commu-

nication and runtime layers (e.g., Python or NodeJS), which remain consistent across

invocations. Thus, a record-and-replay mechanism similar to Jukebox could mitigate

off-chip data misses.

An open question is whether Ignite could be extended to address back-end inef-

ficiencies. Ignite’s metadata could be expanded to include data addresses, but this

would require two separate recording logics — one for the BTB and another for the

L1-D cache.

Another consideration is the potential security concerns of a simple record-and-

replay mechanism. Since input data is typically not scrubbed between invocations,

replaying data from a previous invocation might leak sensitive information. Future

work could explore mechanisms to secure the metadata.

6.2.2 Software Approach

Despite their lean designs, Jukebox and Ignite are hardware-based solutions that re-

quire additions to the CPU microarchitecture, increasing design complexity and the

carbon footprint of the chip. Future work could explore software-based solutions,

which would benefit from faster adoption and greater flexibility. Recent CPU genera-

tions already feature software prefetch instructions for both data and instructions [18,

73], making recording the working set efficiently the main challenge.

One approach could be to use hardware tracing mechanisms, such as Intel’s last

branch records (LBR) [73] or Arm’s branch record buffer (BRB) [17], to record the

control flow of a function. A post-processing tool could then extract the unique work-

ing set and store it in a compact format. Since tracing and post-processing add over-

head, recording should be done only when the working set changes significantly, such

as after JIT recompilations.

Serverless providers could integrate this feature transparently into their runtime

environments by monitoring performance counters to trigger recording and post-

processing when an increased number of off-chip misses are detected. Before or

during function invocation, the runtime can spawn a helper thread that uses software

prefetch instructions [22, 89, 104] to load the working sets into the L2 cache.

1The results of data access commonality are not shown in this thesis as it exceeds its scope.
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6.2.3 Accelerate Context Switches

Although Jukebox and Ignite are specifically designed for serverless workloads, they

could also benefit other workloads that experience high context switch rates. For ex-

ample, these techniques may be promising for asynchronous or event-based program-

ming models increasingly supported in languages such as Go [28], Python [126], or

C++ [34].

However, key questions remain: (1) How much commonality exists between

switching in and out of a context? (2) How should partially evicted working sets be

handled?

Jukebox and Ignite are effective for serverless because the same functionality is ex-

ecuted during each invocation. In scenarios where the OS multiplexes multiple threads

onto the same core, a thread’s execution is paused when replaced by another thread

and continues once switched back. It’s unclear how much of the working set present

before the switch is needed after the switch, and thus, a record-and-replay mechanism

might not yield performance gains.

Due to the high degree of interleaving in serverless, the working set is typically

cold upon every invocation, allowing Jukebox and Ignite to use simple logic to effi-

ciently record the full working set of a serverless function. If these techniques are

used to accelerate other applications, the degree of interleaving is likely less, and the

microarchitecture may not be entirely cold. In this case, recording only L2 or BTB

misses might not capture the full working set, reducing replay coverage.

Finding answers to those questions can be part of future work exploring the gener-

alization of Jukebox and Ignite to other workloads and investigating their performance

benefits.

6.3 Impact Beyond Severless

This work focuses on serverless computing, which exhibits frequent context switches

and consistently cold microarchitectural state. The restoration mechanisms developed

in Jukebox and Ignite address a significant performance challenge existing in various

computing paradigms beyond serverless: how to efficiently warm up the microarchi-

tectural state during frequent context switches.

Numerous application domains suffer from frequent context switches causing se-

vere performance degradation, wasting billions in terms of cost and energy [24]. For
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example, data center applications and web services process billions of micro-second

events in real-time, with production traces from Google revealing some applications

comprising up to 500 individual threads [99, 127] scheduled on the same CPU. Sim-

ilarly, mobile applications suffer from frequent context switches, with typical switch

periods ranging from 1ms to 100ms [157]. These switches occur as applications in-

teract with accelerators and online services, causing the CPU to process other appli-

cations and background tasks during waiting periods. For instance, Vougioukas et al.

documented a video camera app experiencing approximately 33.000 context switches

per second, entailing a performance degradation of more than 15% [166]. The find-

ings of this work can provide valuable insights for these domains to accelerate context

switches and improve CPU performance.

Another promising application area is confidential computing, where this work

could help reduce performance degradation caused by side-channel mitigation

techniques [16, 166]. Currently, preventing data leakage across applications via

side-channel attacks requires flushing all microarchitectural structures between

context switches. While essential for security, this flushing significantly degrades

performance, creating a challenging trade-off between security and user experience.

Although Jukebox and Ignite cannot eliminate the need for flushing, their techniques

could provide insights into mitigating some performance impacts by warming up

flushed structures post-context switch and contribute to ongoing research efforts to

better balance security and performance in modern computing.

The insights and techniques developed in this work transcend the specific context

of serverless computing, offering a broader perspective on improving efficiency across

diverse computing domains where frequent context switches pose significant perfor-

mance challenges.
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