Blasting Through The Front-End Bottleneck
With Shotgun

Rakesh Kumar*
Uppsala University

Abstract

The front-end bottleneck is a well-established problem in
server workloads owing to their deep software stacks and
large instruction working sets. Despite years of research
into effective L1-I and BTB prefetching, state-of-the-art tech-
niques force a trade-off between performance and metadata
storage costs. This work introduces Shotgun, a BTB-directed
front-end prefetcher powered by a new BTB organization
that maintains a logical map of an application’s instruction
footprint, which enables high-efficacy prefetching at low
storage cost. To map active code regions, Shotgun precisely
tracks an application’s global control flow (e.g., function and
trap routine entry points) and summarizes local control flow
within each code region. Because the local control flow en-
joys high spatial locality, with most functions comprised of
a handful of instruction cache blocks, it lends itself to a com-
pact region-based encoding. Meanwhile, the global control
flow is naturally captured by the application’s unconditional
branch working set (calls, returns, traps). Based on these
insights, Shotgun devotes the bulk of its BTB capacity to
branches responsible for the global control flow and a spatial
encoding of their target regions. By effectively capturing a
map of the application’s instruction footprint in the BTB,
Shotgun enables highly effective BTB-directed prefetching.
Using a storage budget equivalent to a conventional BTB,
Shotgun outperforms the state-of-the-art BTB-directed front-
end prefetcher by up to 14% on a set of varied commercial
workloads.

CCS Concepts - Computer systems organization —
Architectures;

Keywords Servers, Prefeteching, Instruction Cache,
Branch Target Buffer (BTB), Control Flow.

“This work was done while the author was at University of Edinburgh.

ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’18), https://doi.
org/10.1145/3173162.3173178.

Boris Grot
University of Edinburgh

Vijay Nagarajan
University of Edinburgh

ACM Reference Format:

Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting
Through The Front-End Bottleneck With Shotgun. In Proceedings of
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’18). ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3173162.3173178

1 Introduction

Traditional and emerging server workloads are character-
ized by large instruction working sets stemming from deep
software stacks. A user request hitting a modern server stack
may go through a web server, database, custom scripts, log-
ging and monitoring code, and storage and network I/O
paths in the kernel. Depending on the service, even simple
requests may take tens of milliseconds to complete while
touching MBs of code.

The deep stacks and their large code footprints can eas-
ily overwhelm private instruction caches (L1-I) and branch
prediction structures, diminishing server performance due
to the so-called front-end bottleneck. Specifically, instruction
cache misses may expose the core to tens of cycles of stall
time if filled from the last-level cache (LLC). Meanwhile,
branch target buffer (BTB) misses may lead to unpredicted
control flow transfers, triggering a pipeline flush when mis-
speculation is discovered.

The front-end bottleneck in servers is a well-established
problem, first characterized in the late 90s [1, 11, 14]. Over
the years, the problem has persisted; in fact, according to
a recent study from Google [8], it is getting worse due to
continuing expansion in instruction working set sizes in
commercial server stacks. As one example of this trend, the
Google study examined the Web Search workload whose
multi-MB instruction footprint had been expanding at an
annualized rate of 27%, doubling over the course of their
study [8].

Microarchitecture researchers have proposed a number
of instruction [4, 6, 12, 15, 17] and BTB [2, 3] prefetchers
over the years to combat the front-end bottleneck in servers.
State-of-the-art prefetchers rely on temporal streaming [6] to
record and replay instruction cache or BTB access streams.
While highly effective, each prefetcher requires hundreds
of kilobytes of metadata storage per core. Recent tempo-
ral streaming research has focused on lowering the storage
costs [9, 10, 12]; however, even with optimizations, for a
many-core CMP running several consolidated workloads,
the total storage requirements can reach into megabytes.

https://doi.org/10.1145/3173162.3173178
https://doi.org/10.1145/3173162.3173178
https://doi.org/10.1145/3173162.3173178

To overcome the overwhelming metadata storage costs of
temporal streaming, the latest work in relieving the front-
end bottleneck leverages fetch-directed instruction prefetching
(FDIP) [15] and extends it with unified prefetching into the
BTB [13]. The scheme, called Boomerang, discovers BTB
misses on the prefetch path and fills them by fetching the ap-
propriate cache blocks and extracting the necessary branch
target metadata.

While Boomerang reduces the prefetcher costs to near zero
by leveraging existing in-core structures (BTB and branch
direction predictor), it has limited effectiveness on workloads
with very large instruction working sets. Such workloads
result in frequent BTB misses that reduce Boomerang’s ef-
fectiveness, because instruction prefetching must stall when-
ever a BTB miss is being resolved to uncover subsequent
control flow. As a result, Boomerang captures less than 50%
of the opportunity of an ideal front-end prefetcher on work-
loads with the largest instruction working sets.

This work addresses the key limitation of Boomerang,
which is that a limited-capacity BTB simply cannot track
a sufficiently large control flow working set to guarantee
effective instruction prefetching. Our solution is guided by
software behavior. Specifically, we observe that contempo-
rary software is structured as a collection of small functions;
within each function, there is high spatial locality for the
constituent instruction cache blocks. Short-offset conditional
branches steer the local control flow between these blocks,
while long-offset unconditional branches (e.g., calls, returns),
drive the global control flow from one function to another.

Using this intuitive understanding, we make a critical
insight that an application’s instruction footprint can be
mapped as a combination of its unconditional branch work-
ing set and, for each unconditional branch, a spatial encoding
of the cache blocks around the branch target. The combi-
nation of unconditional branches and their corresponding
spatial footprints effectively encode the application’s control
flow across functions and the instruction cache working sets
within each function.

Based on these insights, this work introduces Shotgun, a
BTB-directed front-end prefetcher powered by a new BTB or-
ganization specialized for effective prefetching. Shotgun de-
votes the bulk of its BTB capacity to unconditional branches
and their targets’ spatial footprints. Using this information,
Shotgun is able to track the application’s instruction work-
ing set at a cache block granularity, enabling accurate and
timely BTB-directed prefetching. Moreover, because the un-
conditional branches comprise just a small fraction of the
application’s entire branch working set, they can be effec-
tively captured in a practical-sized BTB. Meanwhile, condi-
tional branches are maintained in a separate small-capacity
BTB. By exploiting prior observations on control flow com-
monality in instruction and BTB working sets [10], Shotgun
prefetches into the conditional branch BTB by predecoding
cache lines brought into the L1-I through the use of spatial

footprints. In doing so, Shotgun achieves a high hit rate in
the conditional branch BTB despite its small size.

Using a diverse set of server workloads, we make the
following contributions:

o Demonstrate that limited BTB capacity inhibits timely in-
struction prefetching in existing BTB-directed prefetchers.
This calls for BTB organizations that can map a larger
portion of an application’s instruction working set within
a limited storage budget.

e Show that local control flow has high spatial locality and a
small cache footprint. Given the target of an unconditional
branch, on average, over 80% of subsequent accesses (prior
to the next unconditional branch) are to cache blocks
within 10 blocks of the target. This observation enables a
compact spatial encoding of code regions.

e Propose a new BTB organization in which most of the
capacity is dedicated to unconditional branches, which
steer the global control flow, and spatially-encoded foot-
prints of their regions. By compactly encoding footprints
of entire code regions, the proposed organization avoids
the need to track a large number of conditional branches
inside these regions to discover their instruction cache
working set.

e Introduce Shotgun, a unified instruction cache and BTB
prefetcher powered by the proposed BTB organization.
By tracking a much larger fraction of an application’s
instruction footprint within a fixed BTB storage budget,
Shotgun outperforms the state-of-the-art BTB-directed
front-end prefetcher (Boomerang) by up to 14%.

2 Background
2.1 Temporal streaming prefetching

Over the past decade, temporal streaming [6] has been the
dominant technique for front-end prefetching for servers.
The key principle behind temporal streaming is to record con-
trol flow access or miss sequences and subsequently replay
them to prefetch the necessary state. The general concept
has been applied to both instruction cache [5] and BTB [3]
prefetching, and shown to be highly effective in eliminating
misses in these structures.

The principal shortcoming of temporal streaming is the
need to store large amounts of metadata (hundreds of kilo-
bytes per core) for capturing control flow history [3, 5].
To mitigate the cost, two complementary techniques have
been proposed. The first is sharing the metadata across all
cores executing a common workload [9]. The second is us-
ing one set of unified metadata for both instruction cache
and BTB prefetching, thus avoiding the cost and complex-
ity of maintaining two separate control flow histories [10].
The key insight behind unified front-end prefetching is that
the metadata necessary for populating the BTB can be ex-
tracted from cache blocks containing the associated branch

Workload | MPKI
Nutch 2.5
Streaming | 14.5
Apache 23.7

Zeus 14.6
Oracle 45.1
DB2 40.2

Table 1. Miss rate of a 2K-entry BTB without prefetching.

instructions. Thus, history needs to be maintained only for
instruction prefetching, while BTB prefetching happens “for
free”, storage-wise.

The state-of-the-art in temporal streaming combines the
two ideas into a unified front-end prefetcher called Conflu-
ence [10]. Confluence maintains only the L1-I history meta-
data for both instruction and BTB prefetching, virtualizes
it into the LLC and shares it across the cores executing a
common workload. While effective, Confluence introduces a
significant degree of cost and complexity into a processor.
LLC virtualization requires invasive LLC modifications, in-
curs extra traffic for metadata movement and necessitates
system software support to pin the cache lines containing
the history metadata in the LLC. Moreover, the effective-
ness of metadata sharing diminishes when workloads are
colocated, in which case each workload requires its own
metadata, reducing the effective LLC capacity in proportion
to the number of colocated workloads.

2.2 BTB-directed prefetching

To mitigate the exorbitant overheads incurred by tempo-
ral streaming prefetchers, recent research has revived the
idea of BTB-directed (also called fetch-directed) instruction
prefetching [15]. The basic idea is to leverage the BTB to dis-
cover future branches, predict the conditional ones using the
branch direction predictor, and generate a stream of future
instruction addresses used for prefetching into the L1-I. The
key advantage of BTB-directed prefetching is that it does not
require any metadata storage beyond the BTB and branch
direction predictor, both of which are already present in a
modern server core.

The original work on BTB-directed prefetching was lim-
ited to prefetching of instructions. Recent work has ad-
dressed this limitation by adding a BTB prefetch capabil-
ity in a technique called Boomerang [13]. Boomerang uses
a basic-block-oriented BTB to detect BTB misses, which it
then fills by fetching and decoding the necessary cache lines
from the memory hierarchy. By adding a BTB prefetch capa-
bility without introducing new storage, Boomerang enables
a unified front-end prefetcher at near-zero hardware cost
compared to a baseline core.

While highly effective on workloads with smaller instruc-
tion working sets, Boomerang’s effectiveness is reduced

19
1.8
1.7
o
216
31.5
&1.4
» 1.3
1.2
1 unl B |
o | |
0 WG 0 W 0 W v W v W 0 WG 0 W
o c g o c g o c g oc g oc g °cc g o c g
< < =i < © =] = o}
[ORE—-] o =3 v =3 [ORE -] [ORE—-] [ORE -] o =3
> Q > 2 > 2 = > Q > Q >
€5 £ 5 €5 5 = €5 £ 5
Ss 5§53 58 &8 55 55 &8
Om O m O @ O m O m O @ Om
Nutch Streaming Apache Zeus Oracle DB2 Gmean

Figure 1. Comparison of state-of-the-art unified front-end
prefetchers to the ideal front-end on server workloads.

when instruction working sets are especially large. The
branch footprint in such workloads can easily exceed the
capacity of a typical BTB by an order of magnitude, resulting
in frequent BTB misses. Whenever each BTB miss occurs,
Boomerang must stall instruction prefetching to resolve the
miss and uncover subsequent control flow. When the active
branch working set is much larger than the BTB capacity,
the BTB will thrash, resulting in a chain of misses whenever
control flow transfers to a region of code not in the BTB.
Such a cascade of BTB misses impedes Boomerang’s abil-
ity to issue instruction cache prefetches due to frequently
unresolved control flow. Thus, Boomerang’s effectiveness is
tightly coupled to its ability to capture the control flow in
the BTB.

2.3 Competitive Analysis

Figure 1 compares the performance of the state-of-the-
art temporal streaming (Confluence) and BTB-directed
(Boomerang) prefetchers. Complete workload and simula-
tion parameters can be found in Section 5. As the figure
shows, on workloads with smaller instruction working sets,
such as Nutch and Zeus, Boomerang matches or outper-
forms Confluence by avoiding the latter’s reliance on the
LLC for metadata accesses. In Confluence, the latency of
these accesses is exposed on each L1-I miss, which resets the
prefetcher and incurs a round-trip to the LLC to fetch new
history before prefetching can resume.

In contrast, on workloads with larger instruction working
sets, such as Oracle and DB2, Confluence handily outper-
forms Boomerang by 14% and 9%, respectively. On these
workloads, Boomerang experiences the highest BTB miss
rates of any in the evaluation suite (see Table 1), which di-
minishes prefetch effectiveness as explained in the previous
section.

Given that software trends point in the direction of larger
code bases and deeper call stacks [8], there is a need for
a better control flow delivery architecture that can enable
prefetching for even the largest instruction working sets
without incurring prohibitive storage and complexity costs.

A1 ol
,, bee o fn2()

I
A2 |4 \ B1 n3()
1 / ~
1 ,’ / bee
A3 |-} B2 ¢ \
\ = retun +
Voocall / ¥
\ < c2

call =

A4

A5

Figure 2. Program control flow example. The solid arrows
represent global control flow and dotted arrows depict local
control flow. A1, B1, etc denote cache block addresses.

3 BTB: Code Meets Hardware

To maximize the effectiveness of BTB-directed prefetching,
we next study the interplay between software behavior and
the BTB.

3.1 Understanding Control Flow

Application code is typically organized as a collection of
functions to increase code reusability and productivity. The
function body itself can be thought of as a contiguous re-
gion of code that spans a small number of adjacent cache
blocks, as small functions are favored by modular design
and software engineering principles. To achieve the desired
functionality, execution is steered between different code
regions through function calls, system calls and the corre-
sponding return instructions; collectively, we refer to these
as global control flow. Meanwhile, local control flow guides
the execution within a code region using a combination of
conditional branches and fall-through (next sequential in-
struction) execution.

Figure 2 shows a cartoon example of three code regions
and the two types of control flow. Global control flow that
transfers execution between the regions is depicted by solid
arrows, which correspond to call and return instructions.
Meanwhile, local control flow transfers due to conditional
branches within the code regions are shown with dashed
arrows.

Local control flow tends to have high spatial locality as
instructions inside a code region are generally stored in ad-
jacent cache blocks. Furthermore, conditional branches that
guide local control flow tend to have very short displace-
ments, typically within a few cache blocks [13], as shown by
dashed arrows in Figure 2. Thus, even for larger functions,
there is high spatial locality in the set of instruction cache
blocks being accessed within the function.

Figure 3 quantifies the spatial locality for a set of server
workloads. The figure shows the probability of an access to

100% /
90% e = —=——— —
80% —

70% g

60% /
50% 4
40% off
30%

20%

10%
0%

Cumulative Access Probability

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >16
Distance from region entry point (in blocks)

=+—Nutch Streaming Apache Zeus =»=Oracle -@-DB2
Figure 3. Instruction cache block access distribution inside
code regions.

a cache block in relation to its distance from an entry point
to a code region, where a code region is defined as a set of
cache blocks spanning two unconditional branches (region
entry and exit points) in dynamic program order. As the
figure shows, regions tend to be small and with high spatial
locality: 90% of all accesses occur within 10 cache blocks of
the region entry point.

Finally, we demonstrate that the total branch working set
of server workloads is large but the unconditional branch
working set is relatively small. As shown in Figure 4, for
Oracle, accommodating 90% of all dynamic branches is not
possible even by tracking 8K hottest static branches. With
a practical-sized BTB of 2K entries, only 65% of Oracle’s
dynamic branches can be covered. Meanwhile, the uncondi-
tional branch working set, responsible for the global control
flow, is rather modest because conditional branches that
guide application logic within code regions dominate. On
Oracle, a 2K-entry BTB can capture 84% of all dynamically-
occurring unconditional branches; increasing the capacity
to 2.75K can cover 90% of dynamic unconditional branch
executions. The trend is similar on the DB2 workload, for
which 2K hottest static branches can cover only 75% of the
total dynamic branches, whereas the same number of hottest
unconditional branches cover 92% of the unconditional dy-
namic branches.

3.2 Implications for BTB-directed Prefetching

BTB-directed prefetchers rely on the BTB to discover con-
trol flow transfer points between otherwise sequential code
sections. Correctly identifying these transfer points is essen-
tial for accurate and timely prefetching. Unfortunately, large
branch working sets in server workloads cause frequent BTB
misses. Existing BTB-directed prefetchers handle BTB misses
in one of two ways:

o The original FDIP technique [15] speculates through the
misses, effectively fetching straight line code when a
branch goes undetected; this, however, is ineffective if
the missing branch is a global control flow transfer that
redirects execution to a new code region.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Dynamic branch coverage

1K 2K 3K 4K 5K 6K 7K 8K

Static Branches

Oracle (All branches)
——DB2 (All branches)

Oracle (Unconditional branches)

= = DB2 (Unconditional branches)

Figure 4. Contribution of static branches towards dynamic
branch execution for Oracle and DB2.

o The state-of-the-art proposal, Boomerang, stalls prefetch-
ing and resolves the BTB miss by probing the cache hierar-
chy. While effective for avoiding pipeline flushes induced
by the BTB miss, Boomerang is limited in its ability to
issue instruction prefetches when faced with a cascade of
BTB misses inside a code region as explained in Sec 2.2.

We thus conclude that effective BTB-directed prefetching
requires two elements: (1) identifying global control flow
transfer points, and (2) racing through local code regions
unimpeded. Existing BTB-directed prefetchers are able to
achieve only one of these goals at the expense of the other.
The next section will describe a new BTB organization that
facilitates both of these objectives.

4 Shotgun

Shotgun is a unified BTB-directed instruction cache and BTB
prefetcher. Its key innovation is using the BTB to maintain
a logical map of the program’s instruction footprint using
software insights from Sec 3. The map allows Shotgun to
incur fewer BTB-related stalls while staying on the correct
prefetch path, thus overcoming a key limitation of prior
BTB-directed prefetchers.

Shotgun devotes the bulk of its BTB capacity to tracking
the global control flow; this is captured through unconditional
branches that pinpoint the inter-region control flow transfers.
For each unconditional branch, Shotgun maintains compact
metadata to track the spatial footprint of the target region,
which enables bulk prefetching of cache blocks within the
region. In contrast, prior BTB-directed prefetchers had to
discover intra-region control flow by querying the BTB one
branch at a time. Because unconditional branches represent
a small fraction of the dynamic branch working set and
because the spatial footprints summarize locations of entire
cache blocks (which are few) and not individual branches
(which are many), Shotgun is able to track a much larger
instruction footprint than a traditional BTB with the same
storage budget.

4.1 Design Overview

Shotgun relies on a specialized BTB organization that ju-
diciously uses the limited BTB capacity to maximize the
effectiveness of BTB-directed prefetching. Shotgun splits
the overall BTB storage budget into dedicated BTBs for cap-
turing global and local control flow. Global control flow is
primarily maintained in the U-BTB, which tracks the un-
conditional branch working set and also stores the spatial
footprints around the targets of these branches. The U-BTB
is the heart of Shotgun and drives the instruction prefetch
engine. Conditional branches are maintained in the C-BTB,
which is comprised of just a few hundred entries to track
the local control flow within the currently-active code re-
gions. Finally, Shotgun uses a third structure, called Return
Instruction Buffer (RIB), to track return instructions; while
technically part of the global (unconditional) branch work-
ing set, returns require significantly less BTB metadata than
other unconditional branches, so allocating them to a sep-
arate structure allows for a judicious usage of the limited
BTB storage budget. Figure 5a shows the three BTBs and the
per-entry metadata in each of them.

For L1-I prefetching, Shotgun extends Boomerang to lever-
age the separate BTBs and the spatial footprints as follows:
whenever Shotgun encounters an unconditional branch, it
reads the spatial footprint of the target region from the U-
BTB and issues prefetch probes for the corresponding cache
blocks. For filling the BTBs, Shotgun takes a hybrid approach
by incorporating the features from both Boomerang [13] and
Confluence [10]. Specifically, while prefetching instruction
blocks from LLC, Shotgun leverages the proactive BTB fill
mechanism of Confluence to predecode the prefetched blocks
and fill the BTB before the entries are accessed. Should a
BTB miss be encountered by the front-end despite the proac-
tive fill mechanism, it is resolved using the reactive BTB fill
mechanism of Boomerang that fetches the associated cache
block from the memory hierarchy and extracts the necessary
branch metadata.

4.2 Design Details
4.2.1 BTB organization

We now detail the microarchitecture of Shotgun’s three BTBs,
which are shown in Figure 5a.

Unconditional branch BTB (U-BTB)

The U-BTB tracks the unconditional branch working set, the
spatial footprints for the target and, when applicable, return
regions of these branches. Because unconditional branches
and their spatial footprints are critical for prefetching, Shot-
gun devotes the bulk of total BTB storage budget to U-BTB.

Each U-BTB entry, as shown in Figure 5a, is comprised of

the following fields:

Tag: the branch identity.
Size: the size of the basic block containing the branch (like

Call
Footprint

Return
Footprint

U-BTB Entry ‘ Tag Size

RIB Entry Tag Size | Type

C-BTB Entry Tag

Type Target

Size | Direction

Target ‘

/ Branch Prediction Unit \

Branch
Predictor U-BTB
Return

| Address
—

C-BTB
BTB Prefetch Buffer

- /

Fetch Target Queue

| ‘ To L1-1

| |

(@)

U-BTB

Call
Target Footprint
A 01001000

1
Prefetch probes: A, A+2, A+5

N

sysenbal yoeseid

Last Level Cache

(b)

Figure 5. Shotgun: (a) BTB organization and (b) Prefetching using spatial footprints.

Boomerang, Shotgun uses a basic-block-oriented BTB [20])!.
Type: the type of branch instruction (call, jump, etc.).
Target: the target address of the branch instruction.

Call Footprint: the spatial footprint for the target region of a
call or unconditional jump instruction.

Return Footprint: the spatial footprint for the target region
of a return instruction as explained next.

Because a function may be called from different sites, the
footprint associated with a return instruction is call-site-
dependent. Meanwhile, tracking potentially many footprints
for each return instruction is impractical. To resolve this
conundrum, Shotgun leverages a simple observation that
the target region of a particular instance of a return is, in
fact, the fall-through region of the preceding call (static code
region immediately following the call). Therefore, Shotgun
associates the spatial footprint of the return region with the
entry of the corresponding call instruction in the U-BTB. To
support this design, each U-BTB entry must maintain two
spatial footprints; one for the target region of the call and
the other for the return region.

Return Instruction Buffer (RIB)

Shotgun employs a dedicated storage structure, RIB, to track
return instructions corresponding to function and trap re-
turns. Storing returns in the U-BTB along with other un-
conditional branches would result in severe storage under-
utilization because the majority of U-BTB entry space is not
needed for returns. For example, returns read their target

Here, a basic block means a sequence of straight-line instructions ending
with a branch instruction; slightly different from a conventional definition
of single-entry single-exit straight-line code

address from Return Address Stack (RAS) instead of the Tar-
get field of U-BTB entry. Similarly, as discussed above, the
spatial footprint for return target region is stored along with
the corresponding call. Together, these fields (Target, Call
Footprint, and Return Footprint) account for more than 50%
of a U-BTB entry storage. The impact of such space under-
utilization is significant because returns occupy a significant
fraction of U-BTB entries. Indeed, our studies show that 25%
of U-BTB entries are occupied by return instructions, hence
resulting in storage inefficiency. Note that with a conven-
tional BTB, allocating the return instructions into the BTB
does not lead to a high inefficiency because over 70% of BTB
entries are occupied by conditional branches, while returns
are responsible for fewer than 10% of all entries.

These observations motivate Shotgun’s use of a dedicated
RIB structure to track return instructions. As shown in Fig 5a,
each RIB entry contains only (1) Tag, (2) Type, and (3) Size
fields. Compared to a U-BTB entry, there are no Target, Call
Footprint, and Return Footprint fields in a RIB entry. Thus, by
storing only the necessary and sufficient metadata to track
return instructions, RIB avoids wasting U-BTB capacity.

Conditional branch BTB (C-BTB)

Shotgun incorporates a small C-BTB to track the local control
flow (conditional branches) of currently active code regions.
As shown in Fig 5a, a C-BTB entry is composed of (1) Tag, (2)
Size, (3) Direction, and (4) Target fields. A C-BTB entry does
not contain branch Type field as all the branches are condi-
tional. As explained in Section 4.2.3, Shotgun aggressively
prefetches into the C-BTB by exploiting spatial footprints,
which affords a high hit rate in the C-BTB with a capacity
of only a few hundred entries.

4.2.2 Recording spatial footprints

Shotgun monitors the retire instruction stream to record the
spatial footprints. As an unconditional branch represents
the entry point of a code region, Shotgun starts recording
a new spatial footprint on encountering an unconditional
branch in the retire stream. Subsequently, it tracks the cache
block addresses of the following instructions and adds them
to the footprint if not already present. The spatial footprint
recording for a code region terminates on encountering a
subsequent unconditional branch, which indicates entry to
a different code region. Once the recording terminates, Shot-
gun stores the footprint in the U-BTB entry corresponding
to the unconditional branch that triggered the recording.

Spatial footprint format: A naive approach to record a
spatial footprint would be to record the full addresses of all
the cache blocks accessed inside a code region. Clearly, this
approach would result in excessive storage overhead due to
the space requirements of storing full cache block addresses.
A storage efficient alternative would be to record only the
entry and exit points of the region and later prefetch all the
cache blocks between these points. However, as not all the
blocks in a region are accessed during execution, prefetching
the entire region would result in over prefetching, potentially
leading to on-chip network congestion and cache pollution.
To achieve both precision and storage-efficiency, Shotgun
leverages the insight that the accesses inside a code region
are centered around the target block (first block accessed in
the region) as discussed in Sec 3. To exploit the high spatial
locality around the target block, Shotgun uses a short bit-
vector, where each bit corresponds to a cache block, to record
spatial footprints. The bit positions in the vector represent
the relative distance from the target block and the bit value (1
or 0) indicates whether the corresponding block was accessed
or not during the last execution of the region. Thus, by using
a single bit per cache block, Shotgun dramatically reduces
storage requirements while avoiding over prefetching.

4.2.3 Prefetching with Shotgun

Similar to FDIP [15], Shotgun also employs a Fetch Target
Queue(FTQ), as shown in Figure 5a, to hold the fetch ad-
dresses generated by the branch prediction unit. These ad-
dresses are later consumed by the fetch-engine to fetch and
feed the corresponding instructions to core back-end. To fill
the FTQ, the branch prediction unit of Shotgun queries all
three BTBs (U-BTB, C-BTB, and RIB) in parallel. If there is
a hit in any of the BTBs, the appropriate fetch addresses
are inserted in to the FTQ. As these addresses are eventually
going to be used for fetching instructions from L1-1, they rep-
resent natural prefetching candidates. Therefore, like FDIP,
Shotgun capitalizes on this opportunity by scanning through
the fetch addresses, as they are inserted into the FTQ, and
issuing prefetch probes for corresponding L1-I blocks.

On a U-BTB or RIB hit, Shotgun also reads the spatial

footprint of the target code region to issue L1-I prefetch
probes for appropriate cache blocks. Accessing the spatial
footprint is simple for U-BTB hits because it is directly read
from the Call Footprint field of the corresponding U-BTB
entry. However, the mechanism is slightly more involved on
RIB hits because the required spatial footprint is not stored
in RIB, rather in the U-BTB entry of the corresponding call.
To find this U-BTB entry, we extend the RAS such that on
a call, in addition to the return address that normally gets
pushed on the RAS, the address of basic block containing the
call is also pushed?. Because the RAS typically contains a
small number of entries (8-32 is common), the additional RAS
storage cost to support Shotgun is negligible. On a RIB hit for
a return instruction, Shotgun pops the basic block address
of the associated call from the RAS to index the U-BTB and
retrieve the spatial footprint from the Return Footprint field.

In addition to using the spatial footprint to prefetch in-
structions into the L1-I, Shotgun exploits control flow com-
monality [10] to prefetch into the C-BTB as well. Thus, when
the prefetched blocks arrive at the L1-I, Shotgun uses a set
of predecoders to extract branch metadata from them and
uses it to populate the C-BTB ahead of the access stream.
By anticipating the upcoming instruction working set via
the spatial footprints and prefetching its associated branch
working set into the C-BTB via predecoding, Shotgun affords
a very small yet highly effective C-BTB.

Figure 5b shows an example of using a spatial footprint
for L1-I and C-BTB prefetching on a U-BTB hit. Shotgun first
reads the target address A and the call footprint 01001000
from the U-BTB entry. It then generates prefetch probes to
the L1-I for the target block A and, based on the call footprint
in the U-BTB entry, for cache blocks A+2 and A+5 (step (D). If
any of these blocks are not found in the L1-I, Shotgun issues
prefetch request(s) to the LLC (step (2)). Once prefetched
blocks arrive from the LLC, they are installed in the L1-I
(step (3)) and are also forwarded to a predecoder (step (4)).
The predecoder extracts the conditional branches from the
prefetched blocks and inserts them into the C-BTB (step (5)).

If Shotgun detects a miss in all three BTBs, it invokes
Boomerang’s BTB fill mechanism to resolve the miss in the
following manner: first, the instruction block corresponding
to the missed branch is accessed from L1-I or from lower
cache levels if not present in the L1-I. The block is then fed to
the predecoder that extracts the missing branch and stores it
into one the BTBs depending on branch type. The rest of the
predecoded branches are stored in the BTB Prefetch Buffer
[13]. On a hit to the BTB Prefetch Buffer, the accessed branch
is moved to the appropriate BTB based on the branch type.

Discussion: Similar to Shotgun, two previously proposed
techniques, pTask [7] and (RDIP) [12]), also leverage global

2 Because Shotgun uses a basic-block oriented BTB, it is the basic block
address, and not the PC, corresponding to the call instruction that is stored
on the RAS.

Web Search
Apache Nutch v1.2
230 clients, 1.4 GB index, 15 GB data segment
Media Streaming
Darwin Streaming Server 6.0.3
7500 clients, 60GB dataset, high bitratez
Web Frontend (SPECweb99)
Apache HTTP Server v2.0
16K connections, fastCGI, worker threading model
Zeus Web Server
16K connections, fastCGI
OLTP - Online Transaction Processing (TPC-C)
Oracle 10g Enterprise Database Server

Nutch

Darwin

Apache

Zeus

Oracle 100 warehouses (10GB), 1.4 GB SGA
DB2 IBM DB2 v8 ESE Database Server
100 warehouses (10GB), 2GB buffer pool
Table 2. Workloads
P 16-core, 2GHz, 3-way OoO
rocessor 128 ROB, 32 LSQ
Branch Predictor TAGE [16] (8KB storage budget)
Branch Target Buffer 2K-entry
32KB/2way, 2-cycle, private
L 64-entry prefetch buffer
L2 NUCA cache shared, 512KB per core, 16-way, 5-cycle
Interconnect 4x4 2D mesh, 3 cycles/hop
Memory latency 45 ns

Table 3. Microarchitectural parameters

control flow information for prefetching; but unlike Shot-
gun, they target only L1-I misses. Moreover, pTask initiates
prefetching only on OS context switches and requires soft-
ware support. RDIP is closer to Shotgun as it also exploits
global program context captured by RAS for prefetching.
However, there are important differences between the two
approaches. First, RDIP, for timely prefetching, predicts the
future program context (next call/return instruction) solely
based on the current context. This approach ignores local
control flow in predicting the future execution path, which
naturally limits accuracy. Shotgun, on the the other hand,
predicts each and every branch to locate the upcoming code
region. Therefore, Shotgun is more accurate in discovering
future code regions and L1-I accesses. Second, RDIP targets
only a part of the overall front-end bottleneck as it prefetches
only L1-I blocks but does not prefill BTB. Meanwhile, Shot-
gun offers a cohesive solution to the entire problem. Finally,
RDIP incurs a high storage cost, 64KB per core, as it has to
maintain dedicated metadata for L1-I prefetching. Shotgun,
in contrast, has no additional storage requirement, as it cap-
tures the global control flow and spatial footprints inside the
storage budget of a conventional BTB.

5 Methodology
5.1 Simulation Infrastructure

We use Flexus [18], a full system multiprocessor simulator,
to evaluate Shotgun on a set of enterprise and open-source
scale-out applications listed in Table 2. Flexus, which models
SPARC v9 ISA, extends the Simics functional simulator with
out-of-order(OoO) cores, memory hierarchy, and on-chip

interconnect. We use SMARTS [19] multiprocessor sampling
methodology for sampled execution. Samples are drawn over
32 billion instructions (2 billion per core) for each application.
At each sampling point, we start cycle accurate simulation
from checkpoints that include full architectural and partial
microarchitectural state consisting of caches, BTB, branch
predictor, and prefetch history tables. We warm-up the sys-
tem for 100K cycles and collect statistics over the next 50K
cycles. We use the ratio of number of application instruc-
tions to the total number of cycles (including the cycles spent
executing operating system core) to measure performance.
This metric has been shown to be an accurate measure of
server throughput [18].

Our modeled processor is a 16-core tiled CMP. Each core
is 3-way out-of-order that microarchitecturally resembles an
ARM Cortex-A57 core. The microarchitectural parameters
of the modeled processor are listed in Table 3. We assume a
438-bit virtual address space.

5.2 Control Flow Delivery Mechanisms

We compare the efficacy and storage overhead of the follow-
ing state-of-the-art control flow delivery mechanisms.
Confluence: Confluence is the state-of-the-art temporal
streaming prefetcher that uses unified metadata to prefetch
into both L1-I and BTB [10]. To further reduce metadata stor-
age costs, Confluence virtualizes the history metadata into
the LLC using SHIFT [9]. We model Confluence as SHIFT aug-
mented with a 16K-entry BTB, which was shown to provide
a generous upper bound on Confluence’s performance [10].
To provide high L1-I and BTB miss coverage, Confluence
requires at least a 32K-entry instruction history and an 8K-
entry index table, resulting in high storage overhead. Fur-
thermore, it adds significant complexity to the processor as
it requires LLC tag extensions, reduction in effective LLC
capacity, pinning of metadata cache lines in the LLC and the
associated system software support, making it an expensive
proposition as shown in prior work [13]. The LLC tag array
extension, for storing index table, costs 240KB of storage
overhead, whereas the history table for each colocated work-
load require 204KB of storage which is carved out from LLC
capacity.

Boomerang: As described in Section 2.2, Boomerang em-
ploys FDIP for L1-I prefetching and augments it with BTB
prefilling. Like FDIP, Boomerang employs a 32-entry fetch
target queue (FTQ) to buffer the instruction addresses be-
fore they are consumed by the fetch engine. We evaluate
Boomerang with a 2K entry basic-block oriented BTB. Each
BTB entry consists of a 37-bit tag, 46-bit target address, 5
bits for basic-block size, 3 bits for branch type (conditional,
unconditional, call, return, and trap return), and 2 bits for
conditional branch direction prediction. In total, each BTB
entry requires 93 bits leading to an overall BTB storage cost
of 23.25KB. Also, our evaluated Boomerang design employs
a 32-entry BTB prefetch buffer.

Shotgun: As described in Section 4.2, Shotgun uses dedi-
cated BTBs for unconditional branches, conditional branches,
and returns. For a fair comparison against Boomerang, we
restrict the combined storage budget of all BTB components
in Shotgun to be identical to the storage cost of Boomerang’s
2K-entry BTB. Like Boomerang, Shotgun also employs a
32-entry FTQ and a 32-entry BTB prefetch buffer.

U-BTB storage cost: We evaluate a 1.5K (1536) entry U-BTB,
which accounts for the bulk of Shotgun’s BTB storage budget.
Each U-BTB entry consists of a 38-bit tag, 46-bit target, 5 bits
for basic-block size, and 1 bit for branch type (unconditional
or call). Furthermore, each U-BTB entry also consists of two
8-bit vectors for storing spatial footprints. In each spatial
footprint, 6 of the 8 bits are used to track the cache blocks
after the target block and the other two bits for the blocks
before the target block. Overall, each U-BTB entry costs 106
bits, resulting in a total storage of 19.87KB.

C-BTB storage cost: Since Shotgun fills C-BTB from L1-I
blocks prefetched via U-BTB’s spatial footprints, only a small
fraction of overall BTB storage is allocated to C-BTB. We
model a 128-entry C-BTB with each C-BTB entry consist-
ing of a 41-bit tag, 22-bit target offset, 5 bits for basic-block
size, and 2 bits for conditional branch direction prediction.
Notice that only a 22-bit target offset is needed, instead of
the complete 46-bit target address, as conditional branches
always use PC relative offsets and SPARC v9 ISA limits the
offset to 22-bits. Also, as C-BTB stores only the conditional
branches, the branch type field is not needed. Overall, the
128-entry C-BTB requires 1.1KB of storage.

RIB storage cost: We model a 512-entry RIB, with each entry

containing a 39-bit tag, 5 bits for basic-block size, and 1 bit for
branch type (return or trap-return). Since return instructions
get their target from the RAS, the RIB does not store target
addresses (Section 4.2). With 45 bits per each RIB entry, a
512-entry RIB requires 2.8KB of storage.

Total: The combined storage cost of U-BTB, C-BTB and RIB
is 23.77KB.

6 Evaluation

In this section, we first evaluate Shotgun’s effectiveness in
eliminating front-end stall cycles, and the corresponding
performance gains in comparison to temporal streaming
(Confluence) and BTB-directed (Boomerang) control flow
delivery mechanisms. Next, we evaluate the key design deci-
sions taken in Shogun’s microarchitectural design: we start
with assessing the impact of spatial footprints in front-end
prefetching; we then analyze the impact of using a small
C-BTB on Shotgun’s performance; finally, we present a sen-
sitivity study to the BTB storage budget.

6.1 Front-end stall cycle coverage

To assess the efficacy of different prefetching mechanisms,
we present the number of front-end stall cycles covered

by each of them in Figure 6. Notice that instead of using
the more common misses covered metric, we use stall cycles
covered; that way, we can precisely capture the impact of
in-flight prefetches: the ones that have been issued, but the
requested block has not yet arrived in L1-I when needed by
the fetch unit. Furthermore, we consider stall cycles only on
the correct execution path, since wrong-path stalls do not
affect performance.

On average, as shown in the Figure 6, Shotgun covers
68% of the stall cycles experienced by a no prefetch baseline;
this is 8% better than each of Boomerang and Confluence. A
closer inspection reveals that Shotgun outperforms its direct
rival Boomerang on all of the workloads; in particular, Shot-
gun provides more than 10% coverage improvements on each
of DB2 and Streaming, and over 8% on Oracle — these work-
loads have a high BTB MPKI, whose impact on front-end
performance Shotgun aims to mitigate. Shotgun’s improved
coverage is a direct outcome of uninterrupted L1-I prefetch-
ing via U-BTB’s spatial footprints; in contrast, Boomerang
has to wait to resolve BTB misses.

Compared to Confluence, Shotgun provides better stall
coverage on four out of six workloads. A closer inspection re-
veals that Shotgun comprehensively outperforms Confluence
on Apache, Nutch, and Streaming with 16%-19% additional
coverage. Confluence performs poorly on these applications,
as also noted by Kumar et al. [13], owing to frequent LLC ac-
cesses for loading history metadata. On every misprediction
in L1-T access sequence, Confluence needs to load the correct
sequence from the LLC before starting issuing prefetches on
the correct path. This start-up delay in issuing prefetches on
each new sequence compromises Confluence’s coverage.

On the workloads with the highest BTB MPKI (DB2 and
Oracle), Shotgun is within 2% of Confluence on DB2, but is
10% behind on Oracle. As shown in Figure 4, Oracle’s un-
conditional branch working set is much larger compared to
other workloads. The most frequently executed 1.5K uncon-
ditional branches (equal to the number of Shotgun’s U-BTB
entries) cover only 78% of dynamic unconditional branch
execution. Therefore, Shotgun often enters code regions not
captured by U-BTB, which limits the coverage due to not
having a spatial footprint to prefetch from.

6.2 Performance Analysis

Figure 7 shows the performance improvements for differ-
ent prefetching mechanisms over a baseline without any
prefetcher. The performance trends are similar to coverage
trends (Figure 6) with Shotgun providing, on average, 32%
performance improvement over the baseline and 5% improve-
ment over each of Boomerang and Confluence. The speedup
over Boomerang is especially prominent on high BTB MPKI
workloads, DB2 and Oracle, where Shotgun achieves 10%
and 8% improvement respectively.

Interestingly, Figure 7 shows that Shotgun attains a rela-
tively modest performance gain over Boomerang on Nutch,

80%

o)
o
X

40%

20%

7770000007777

Stall Cycle Coverage

7777777227222

7722222222222

0%

Shotgun
Shotgun
Shotgun

Confluence INNEEGG_G__—_
Boomerang NI
Confluence INEIEG_G_—_—_——_
Boomerang NN
Confluence INEG_
Boomerang NN

=4
c
=3
o
=

Streaming Apache

Confluence NG
Boomerang NN

Vzzzzzz707777722227

20022222222

Shotgun 2
Shotgun zzZzzZZZZZZ777

Shotgun
Shotgun

Confluence INENEEGEGG_—__N
Boomerang NN
Confluence INNEEGEGG__—_
Boomerang NN
Confluence INEG_—__
Boomerang NN

N
)
c
@
o
=
Q
o
@
o
@
N
>
<

oq

Figure 6. Front-end stall cycles covered by different prefetching schemes over no-prefetch baseline.

1.6
N
C}_1.5 §
S 1.4 \
2 \
2 \
213 N\
& N
N
12 § .
N \ \
11 N \ N\
ol | N | N R
800C L W C L W C
S&®» cGm» c©o&a
o8 S$ob6 %Yot
TES TES TES
58” 587 §8
O @ O @ O m
Nutch Streaming = Apache

Confluence 1l

N

§

N

\

\
\ _
S \ N
S N \ N
Y I T TN
N BEY BEY E
55 858 853 (853
€S = €S = €S = €S

g s& 388 88

Zeus Oracle DB2 Gmean

Figure 7. Speedup of different prefetching schemes over no-prefetch baseline.

Apache, and Zeus workloads, despite its noticeable cover-
age improvement. The reason behind this behavior is that
these workloads have relatively low L1-I MPKI; therefore,
the coverage improvement does not translate into propor-
tional performance improvement. Similar to coverage results,
Shotgun outperforms Confluence on Apache, Nutch, Stream-
ing, and Zeus. Furthermore, it matches the performance gain
of Confluence on DB2; however, due to lower stall cycle
coverage, Shotgun falls behind Confluence on Oracle by 7%.

6.3 Quantifying the Impact of Spatial Footprints

As discussed in Sec 4.2.2, Shotgun stores the spatial region
footprints in the form of a bit-vector to reduce the storage re-
quirements while simultaneously avoiding over prefetching.
This section evaluates the impact of spatial footprints and
their storage format (bit-vector) on performance. We eval-
uate the following spatial region prefetching mechanisms:
(1) No bit vector: does not perform any region prefetching;
(2) 8-bit vector; (3) 32-bit vector; (4) Entire Region: prefetch
all the cache blocks between entry and exit points of the tar-
get region; and (5) 5-Blocks: prefetch five consecutive cache
blocks in the target region starting with the target block.
The “5-Blocks” design point is motivated by Figure 3, which
shows that 80%-90% of the accessed blocks lie within this
limit. The benefit of always prefetching a fixed number of

blocks is that it completely avoids the need to store metadata
for prefetching.

First, we focus on the stall cycle coverage and performance
with different bit-vector lengths. For the No Bit Vector de-
sign, which performs no region prefetching, we increase the
number of entries in the U-BTB up to the same storage bud-
get as the 8-bit vector design. For the 32-bit vector, however,
instead of reducing the number of U-BTB entries (to account
for more bits in bit-vector), we simply provide additional
storage to accommodate the larger bit-vector. Therefore, the
results for 32-bit vector upper-bound the benefits of track-
ing a larger spatial region with the same global control flow
coverage in the U-BTB as the 8-bit vector design.

As Figures 8 and 9 show, an 8-bit vector provides, on aver-
age, 6% coverage and 4% performance benefit compared to no
spatial region prefetching. In fact, without spatial footprints,
Shotgun’s coverage is only 2% better than Boomerang. With
an 8-bit vector, Shotgun improves the performance of every
single workload, with the largest gain of 9% on Streaming and
DB2, compared to No Bit Vector. Meanwhile, increasing the
bit-vector length to 32 bits provides only 0.5% performance,
on average, over an 8-bit vector. These results suggest that
longer bit vectors do not offer a favorable cost/performance
trade-off.

The remaining spatial region prefetching mechanisms,

\

80%

20%

T/ 7 7770

0%

5-Blocks N
5-Blocks NEEEE—

5-Blocks NG

o
2
51
[
>
=
S

0

8-bit vector ZZZILIITIIZI7Z77777777777)

Stall Cycle Coverage

IS @

o o

X X
No bit vector I
32-bit vector I
Entire Region I———
No bit vector I
32-bit vector I
Entire Region II————

8-bit vector

32-bit vector I
Entire Region N

No bit vector I

=4
c
S
a
=

Streaming Apache

No bit vector I

VLTI T T 7777773

5-Blocks NEG_———
5-Blocks NEEG_—————
5-Blocks EEEEEGEG————

8-bit vector

32-bit vector I
Entire Region I
No bit vector INEEEEEE———
32-bit vector INEEEEGEG—G——————
Entire Region I
No bit vector [INEEEEEEGG———————
32-bit vector I
Entire Region I———
No bit vector G
32-bit vector I
Entire Region I
5-Blocks G

N
o
=4
@
o
5
o
o
®
o
@
N

Avg

Figure 8. Shotgun front-end stall cycle coverage with different spatial region prefetching mechanisms.

1.6

1.5 §
S14 %
3 N
] N
213 %

1.2 §

N

11 I\ \ \

o AN N N
55552 55552 55552
Co0moe ©UOO0mo ©O8OTwmo
888 $8ePs 8885
EXEp® EEEgY E5zev
SORE geRE zea:

fiv] i} i
Nutch Streaming Apache

No bit vector I

S
Lo [ERE - . - .
5565L%L s5555L & s55L & 55L
22283% B2L2e3d £8L2283% 222973
S0 wmo 500 @3] S @8] S @8
Q0 W= Q9092 @ o T= @ v =
>>go >5>5g@® > >Sg@ > >Sg@
22 g 222 g 222 g1 222 g0
22 299 299 299
0N E Qoo T o N E [} N
™5 z2 oS R R
Zeus Oracle DB2 Gmean

Figure 9. Shotgun performance with different spatial region prefetching mechanisms.

80%

60%

40%

Prefetch Accuracy

N
Q
X

777772777722277777722

Entire Region [INEIEG_G_—_——

)

7777777722222
)

Entire Region NN

7777777722222

7777777777222/

7777772277772777722)

0%

5-Blocks INEEG—_—
Entire Region [INEG_—_—
5-Blocks |IEEEEG_—
5-Blocks N
5-Blocks NN
5-Blocks NEEEGEG—
5-Blocks [N

8-bit vector
8-bit vector
8-bit vector
Entire Region NN
8-bit vector
8-bit vector
Entire Region
8-bit vector

Entire Region [N

8-bit vector

Entire Region INNIEG_—_—
5-Blocks N

z
c
=
a
>

Streaming = Apache Zeus Oracle

o
@
N
>
<
b

Figure 10. Shotgun prefetch accuracy with different spatial
region prefetching mechanisms.

Entire Region and 5-Blocks, lead to a performance degra-
dation compared to 8-bit vector as shown in Figure 9. The
performance penalty is especially severe in two of the high
opportunity workloads: DB2 and Streaming. This perfor-
mance degradation results from over-prefetching, as these
mechanisms lack the information about which blocks inside
the target region should be prefetched. Always prefetch-
ing 5 blocks from the target region results in significant
over prefetching and poor prefetch accuracy, as shown in
Figure 10, because many regions are smaller than 5 blocks.
The reduction in prefetch accuracy is especially severe in
Streaming where it goes down to mere 42% with 5-Block
prefetching compared to 80% with 8-bit vector. On average,
8-bit vector provides 71% accuracy whereas, Entire Region

& - 3
S} =} o

N
o

7777722272227

)
7777722227777

Entire Region INNEIEG_G__

7227772227722

Entire Region NN

7777222772227

Entire Region NN
5-Blocks INEEG—

)

)

Cycles to Fill an L1-d Miss

S}

5-Blocks |INEEG—
5-Blocks INEG————
5-Blocks INEG_———

5-Blocks |NEEEG—_—
5-Blocks [NEEEEEGEG——

5-Blocks
Entire Region I
Entire Region [INNG_—_
Entire Region |INNEG_

8-bit vector
8-bit vector
Entire Region
8-bit vector
8-bit vector
8-bit vector
8-bit vector
8-bit vector

z
c
=
Iaf
>

Streaming | Apache Zeus Oracle

o
@
N
>
<
b

Figure 11. Number of cycles required to fill an L1-D miss
with different mechanisms for spatial region prefetching.

and 5-Blocks prefetching are only 56% and 43% accurate,
respectively. Over-prefetching also increases pressure on the
on-chip network, which in turn increases the effective LLC
access latency, as shown in Figure 11. For example, as the
figure shows, average latency to fill an L1-D miss increases
from 54 cycles with 8-bit vector to 65 cycles with 5-Blocks
prefetching for DB2. The combined effect of poor accuracy
and increased LLC access latency due to over-prefetching
makes indiscriminate region prefetching less effective than
the 8-bit vector design.

6.4 Sensitivity to C-BTB Size

As discussed in Sec 4, Shotgun incorporates a small C-BTB
and relies on both proactive and reactive mechanisms to

peedup
[l e e e
O R, N WA UL

S

7777777777222277777777222)

1K Entry I

)

1K Entry I

722722

1K Entry I

64 Entry I
64 Entry I

1K Entry S
64 Entry N

64 Entry I
128 Entry 72

1K Entry

64 Entry NN

64 Entry NN
128 Entry zzzzZZ4
1K Entry
64 Entry I
128 Entry pzzz77z222
1K Entry I

128 Entry zzzZ

128 Entry
128 Entry
128 Entry

z
c
=
a
=
[9]
3
I}
QO
=]

Streaming Apache Zeus Oracle DB2

Figure 12. Shotgun speedups with different C-BTB sizes.

fill it ahead of time. To measure Shotgun’s effectiveness in
prefilling the C-BTB, Fig 12 presents performance sensitivity
to the number of C-BTB entries. Any speedup with additional
entries would highlight the opportunity missed by Shotgun.

To assess Shotgun’s effectiveness, we compare the perfor-
mance of 128-entry verses 1K-entry C-BTBs. As the figure
shows, despite an 8x increase in storage, the 1K entry C-BTB
delivers, on average, only 0.8% improvement. This result val-
idates our design choice, demonstrating that a larger C-BTB
capacity is not useful.

On the other hand, reducing the number of entries to 64 re-
sults in noticeable performance loss especially on Streaming
and DB2, with 4% lower performance compared to a 128-
entry C-BTB. On average, the 128-entry C-BTB outperforms
the 64-entry C-BTB by 2% as shown in Figure 12.

6.5 Sensitivity to the BTB Storage Budget

We now investigate the impact of the BTB storage budget on
the effectiveness of the evaluated BTB-directed prefetchers:
Boomerang and Shotgun. We vary the BTB capacity from 512
entries to 8K entries for Boomerang, while using the equiva-
lent storage budget for Shotgun. To match Boomerang’s BTB
storage budget in the 512- to 4K-entry range, we proportion-
ately scale Shotgun’s number of entries in U-BTB, RIB, and
C-BTB from the values presented in Sec 5.2. However, scaling
the number of U-BTB entries to match 8K-entry Boomerang
BTB storage would lead to a 6K-entry U-BTB, which is an
overkill, as 4K-entry U-BTB is sufficient to capture the en-
tire unconditional branch working set as shown in Figure 4.
Therefore, Shotgun limits the number of U-BTB entries to
4K and expands RIB and C-BTB to store 1K and 4K entries
respectively, to utilize the remaining budget. Empirically, we
found this to be the preferred Shotgun configuration for the
8K-entry storage budget.

Figure 13 shows the results for Oracle and DB2, the two
workloads with the largest instruction footprints that are par-
ticularly challenging for BTB-based prefetchers. The striped
bars highlight the results for the baseline 2K-entry BTB. As
the figure shows, given an equivalent storage budget, Shot-
gun always outperforms Boomerang. On the Oracle work-
load, Shotgun, with a small storage budget equivalent to a
1K-entry conventional BTB outperforms Boomerang with an

1.6
15

S
214
(]
213 S
1%
1.2
11
1.0
~ x ~ ¥ X x ¥ X
- < - < 0 - < 0

Boomerang Shotgun

§
\
\
\
\
§

~
~

N
§
\
\
\

\
\
\

~
~

P,
)

512 -

1K -

4K [

8K I

512

8K I

512
512 I

2K
2K

Boomerang Shotgun

Oracle DB2

Figure 13. Boomerang and Shotgun speedup for different
BTB sizes. The indicated BTB size is for Boomerang; Shotgun
uses the equivalent storage budget for its three BTBs.

8K-entry BTB (27% vs 26.3% performance improvement over
no prefetch baseline). Similarly on DB2, Boomerang needs
more than twice the BTB capacity to match Shotgun’s perfor-
mance. For instance, with a 2K-entry BTB, Shotgun delivers
a 61.5% speedup, whereas Boomerang attains only a 58.9%
speedup with a larger 4K-entry BTB. These results indicate
that Shotgun’s judicious use of BTB capacity translates to
higher performance across a wide range of BTB sizes.

7 Conclusion

The front-end bottleneck in server workloads is a well-
established problem due to frequent misses in the L1-I and
the BTB. Prefetching can be effective at mitigating the misses;
however, existing front-end prefetchers force a trade-off be-
tween coverage and storage overhead.

This paper introduces Shotgun, a front-end prefetcher
powered by a new BTB organization and design philosophy.
The main observation behind Shotgun is that an applica-
tion’s instruction footprint can be summarized as a combi-
nation of its unconditional branch working set and a spatial
footprint around the target of each unconditional branch.
The former captures the global control flow (mostly func-
tion calls and returns), while the latter summarizes the local
(intra-function) instruction cache working set. Based on this
insight, Shotgun devotes the bulk of its BTB capacity to un-
conditional branches and their spatial footprints. Meanwhile,
conditional branches are maintained in a small-capacity dedi-
cated BTB that is filled from the prefetched instruction cache
blocks. By effectively summarizing the application’s instruc-
tion footprint in the BTB, Shotgun enables a highly effective
BTB-directed prefetcher that largely erases the gap between
metadata-free and metadata-rich state-of-the-art prefetch-
ers.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their helpful comments. This work is supported by EPSRC
grant EP/M001202/1 to the University of Edinburgh.

References
[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.

Wood. 1999. DBMSs on a Modern Processor: Where Does Time Go?.
In International Conference on Very Large Data Bases. 266—277.

[2] J. Bonanno, A. Collura, D. Lipetz, U. Mayer, B. Prasky, and A. Saporito.

[10

(11

—

]

—

2013. Two Level Bulk Preload Branch Prediction. In International
Symposium on High-Performance Computer Architecture. 71-82.
Ioana Burcea and Andreas Moshovos. 2009. Phantom-BTB: a virtual-
ized branch target buffer design. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2009, Washington, DC, USA, March 7-11,
2009. 313-324. DOI: http://dx.doi.org/10.1145/1508244.1508281
I-Cheng K Chen, Chih-Chieh Lee, and Trevor N Mudge. 1997. Instruc-
tion Prefetching Using Branch Prediction Information. In International
Conference on Computer Design. 593-601.

Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive
Instruction Fetch. In International Symposium on Microarchitecture.
152-162.

Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak
Falsafi, and Andreas Moshovos. 2008. Temporal Instruction Fetch
Streaming. In International Symposium on Microarchitecture. 1-10.

P. Kallurkar and S. R. Sarangi. 2016. pTask: A smart prefetching
scheme for OS intensive applications. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1-12. DOIL:
http://dx.doi.org/10.1109/MICRO.2016.7783706

Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David M. Brooks. 2015.
Profiling a warehouse-scale computer. In International Symposium on
Computer Architecture. 158-169.

Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. SHIFT: Shared His-
tory Instruction Fetch for Lean-core Server Processors. In International
Symposium on Microarchitecture. 272-283.

Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: Unified
Instruction Supply for Scale-Out Servers. In International Symposium
on Microarchitecture. 166-177.

Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C.
Raphael, and Walter E. Baker. 1998. Performance Characterization

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

of a Quad Pentium Pro SMP using OLTP Workloads. In International
Symposium on Computer Architecture. 15-26.

Aasheesh Kolli, Ali G. Saidi, and Thomas F. Wenisch. 2013. RDIP:
return-address-stack directed instruction prefetching. In The 46th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-
46, Davis, CA, USA, December 7-11, 2013. 260-271.

Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan.
2017. Boomerang: A Metadata-Free Architecture for Control Flow
Delivery. In 2017 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2017, Austin, TX, USA, February 4-8, 2017.
493-504. DOI: http://dx.doi.org/10.1109/HPCA.2017.53

Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve,
and Luiz André Barroso. 1998. Performance of Database Workloads
on Shared-Memory Systems with Out-of-Order Processors. In Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. 307-318.

Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch Directed In-
struction Prefetching. In International Symposium on Microarchitecture.
IEEE, 16-27.

André Seznec and Pierre Michaud. 2006. A case for (partially) TAgged
GEometric history length branch prediction. J. Instruction-Level Paral-
lelism 8 (2006).

L. Spracklen, Yuan Chou, and S. G. Abraham. 2005. Effective Instruc-
tion Prefetching in Chip Multiprocessors for Modern Commercial
Applications. In 11th International Symposium on High-Performance

Computer Architecture. 225-236.
Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastas-

sia Ailamaki, Babak Falsafi, and James C. Hoe. 2006. SimFlex: Statistical
Sampling of Computer System Simulation. IEEE Micro 26, 4 (2006),
18-31.

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. 2003. SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling. In International Symposium on Computer
Architecture. 84-95.

Tse-Yu Yeh and Yale N. Patt. 1992. A comprehensive instruction fetch
mechanism for a processor supporting speculative execution. In Inter-
national Symposium on Microarchitecture. 129-139.

http://dx.doi.org/10.1145/1508244.1508281
http://dx.doi.org/10.1109/MICRO.2016.7783706
http://dx.doi.org/10.1109/HPCA.2017.53

	Abstract
	1 Introduction
	2 Background
	2.1 Temporal streaming prefetching
	2.2 BTB-directed prefetching
	2.3 Competitive Analysis

	3 BTB: Code Meets Hardware
	3.1 Understanding Control Flow
	3.2 Implications for BTB-directed Prefetching

	4 Shotgun
	4.1 Design Overview
	4.2 Design Details

	5 Methodology
	5.1 Simulation Infrastructure
	5.2 Control Flow Delivery Mechanisms

	6 Evaluation
	6.1 Front-end stall cycle coverage
	6.2 Performance Analysis
	6.3 Quantifying the Impact of Spatial Footprints
	6.4 Sensitivity to C-BTB Size
	6.5 Sensitivity to the BTB Storage Budget

	7 Conclusion
	Acknowledgments
	References

