
7

Shooting Down the Server Front-End Bottleneck

RAKESH KUMAR, Norwegian University of Science and Technology (NTNU), Norway

BORIS GROT, University of Edinburgh, United Kingdom

The front-end bottleneck is a well-established problem in server workloads owing to their deep software

stacks and large instruction footprints. Despite years of research into effective L1-I and BTB prefetching, state-

of-the-art techniques force a trade-off between metadata storage cost and performance. Temporal Stream

prefetchers deliver high performance but require a prohibitive amount of metadata to accommodate the

temporal history. Meanwhile, BTB-directed prefetchers incur low cost by using the existing in-core branch

prediction structures but fall short on performance due to BTB’s inability to capture the massive control

flow working set of server applications. This work overcomes the fundamental limitation of BTB-directed

prefetchers, which is capturing a large control flow working set within an affordable BTB storage budget. We

re-envision the BTB organization to maximize its control flow coverage by observing that an application’s

instruction footprint can be mapped as a combination of its unconditional branch working set and, for each

unconditional branch, a spatial encoding of the cache blocks around the branch target. Effectively capturing

a map of the application’s instruction footprint in the BTB enables highly effective BTB-directed prefetching

that outperforms the state-of-the-art prefetchers by up to 10% for equivalent storage budget.

CCS Concepts: • Computer systems organization→ Architectures;

This work is partially supported through the Research Council of Norway (NFR) grant 302279 to NTNU.

The work presented in this manuscript is an extension of our conference paper entitled “Blasting Through The Front-

End Bottleneck With Shotgun”, which was published in the 23rd International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS) March, 2018 [1]. This manuscript extends the conference paper

by proposing a new design optimization, significantly expanding the evaluation, and identifying future research directions.

Concretely, the new contributions of this manuscript are as follows:

• This work proposes a new mechanism for spatial region prefetching, called “Bimodal 5-blocks”, which offers a

significant improvement in storage efficiency compared to the original Shotgun design with minimal performance

impact. (Section 6.3)

• Shotgun features two components for each of L1-I prefetching (FTQ and Spatial prefetching) and BTB prefilling

(Proactive and Reactive prefilling). This work quantifies the contribution of each of these components towards

overall performance and shows that while FTQ and Spatial L1-I prefetching complement each other, the reactive

BTB prefilling provides the majority of the benefits by itself. (Section 6.4)

• This work identifies the factors that prevent Shotgun from matching the performance of an ideal server front-end.

Based on these factors, we suggest the future research directions to erase the performance difference between an

ideal and practical front-end. (Section 6.7)

• This work qualitatively compares Shotgun’s FTQ (fetch target queue) filling mechanism to that of Boomerang

(a state-of-the-art prefetcher) and details how it enables continuous prefetching under a BTB miss, whereas

Boomerang is unable to do so. (Details in the “Discussion” at the end of Section 4)

Authors’ addresses: R. Kumar, Norwegian University of Science and Technology (NTNU), Sem Sælands vei 9, 7034 Trond-

heim, Norway; email: rakesh.kumar@ntnu.no; B. Grot, University of Edinburgh, Boris Grot: 10 Crichton Street, Edinburgh,

EH8 9AB, UK; email: boris.grot@ed.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0734-2071/2022/01-ART7 $15.00

https://doi.org/10.1145/3484492

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

mailto:permissions@acm.org
https://doi.org/10.1145/3484492

7:2 R. Kumar and B. Grot

Additional Key Words and Phrases: Server, microarchitecture, prefeteching, instruction cache, branch target

buffer (BTB)

ACM Reference format:

Rakesh Kumar and Boris Grot. 2022. Shooting Down the Server Front-End Bottleneck. ACM Trans. Comput.

Syst. 38, 3-4, Article 7 (January 2022), 30 pages.

https://doi.org/10.1145/3484492

1 INTRODUCTION

Traditional and emerging server workloads are characterized by large instruction working sets
stemming from deep software stacks. A user request hitting a modern server stack may go through
a web server, database, custom scripts, logging and monitoring code, and storage and network I/O
paths in the kernel. Depending on the service, even simple requests may take tens of milliseconds
to complete while touching MBs of code.

The deep stacks and their large code footprints can easily overwhelm private instruction caches
(L1-I) and branch prediction structures, diminishing server performance due to the so-called
front-end bottleneck. Specifically, instruction cache misses may expose the core to tens of cycles
of stall time if filled from the last-level cache (LLC). Meanwhile, branch target buffer (BTB) misses
may lead to unpredicted control flow transfers, triggering a pipeline flush when misspeculation
is discovered.

The front-end bottleneck in servers is a well-established problem, first characterized in the late
1990s [2–4]. Over the years, the problem has persisted; in fact, according to a recent study from
Google [5], it is getting worse due to continuing expansion in instruction working set sizes in
commercial server stacks. As one example of this trend, the Google study examined the Web Search
workload whose multi-MB instruction footprint had been expanding at an annualized rate of 27%,
doubling over the course of their study [5].

Microarchitecture researchers have proposed a number of instruction [6–10] and BTB [11, 12]
prefetchers over the years to combat the front-end bottleneck in servers. State-of-the-art prefetch-
ers rely on temporal streaming [7] to record and replay instruction cache or BTB access streams.
While highly effective, each prefetcher requires hundreds of kilobytes of metadata storage per core.
Recent temporal streaming research has focused on lowering the storage costs [8, 13, 14]; however,
even with optimizations, for a many-core CMP running several consolidated workloads, the total
storage requirements can reach into megabytes.

To overcome the overwhelming metadata storage costs of temporal streaming, the latest work in
relieving the front-end bottleneck leverages fetch-directed instruction prefetching (FDIP) [9] and ex-
tends it with unified prefetching into the BTB [15]. The scheme, called Boomerang, discovers BTB
misses on the prefetch path and fills them by fetching the appropriate cache blocks and extracting
the necessary branch target metadata.

While Boomerang reduces the prefetcher costs to near zero by leveraging existing in-core
structures (BTB and branch direction predictor), it has limited effectiveness on workloads with
very large instruction working sets. Such workloads result in frequent BTB misses that reduce
Boomerang’s effectiveness, because instruction prefetching must stall whenever a BTB miss is
being resolved to uncover subsequent control flow. As a result, Boomerang captures less than
50% of the opportunity of an ideal front-end prefetcher on workloads with the largest instruction
working sets.

This work addresses the key limitation of Boomerang, which is that a limited-capacity BTB
simply cannot track a sufficiently large control flow working set to guarantee effective instruction
prefetching. Our solution is guided by software behavior. Specifically, we observe that contempo-
rary software is structured as a collection of small functions; within each function, there is high

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

https://doi.org/10.1145/3484492

Shooting Down the Server Front-End Bottleneck 7:3

spatial locality for the constituent instruction cache blocks. Short-offset conditional branches
steer the local control flow between these blocks, while long-offset unconditional branches (e.g.,
calls, returns) drive the global control flow from one function to another.

Using this intuitive understanding, we make a critical insight that an application’s instruction
footprint can be mapped as a combination of its unconditional branch working set and, for each
unconditional branch, a spatial encoding of the cache blocks around the branch target. The
combination of unconditional branches and their corresponding spatial footprints effectively
encodes the application’s control flow across functions and the instruction cache working sets
within each function.

Based on these insights, this work introduces Shotgun, a BTB-directed front-end prefetcher pow-
ered by a new BTB organization specialized for effective prefetching. Shotgun devotes the bulk of
its BTB capacity to unconditional branches and their targets’ spatial footprints. Using this informa-
tion, Shotgun is able to track the application’s instruction working set at a cache block granular-
ity, enabling accurate and timely BTB-directed prefetching. Moreover, because the unconditional
branches make up just a small fraction of the application’s entire branch working set, they can
be effectively captured in a practical-sized BTB. Meanwhile, conditional branches are maintained
in a separate small-capacity BTB. By exploiting prior observations on control flow commonality
in instruction and BTB working sets [14], Shotgun prefetches into the conditional branch BTB by
predecoding cache lines brought into the L1-I through the use of spatial footprints. In doing so,
Shotgun achieves a high hit rate in the conditional branch BTB despite its small size.

Using a diverse set of server workloads, we make the following contributions:

• Demonstrate that limited BTB capacity inhibits timely instruction prefetching in existing
BTB-directed prefetchers. This calls for BTB organizations that can map a larger portion of
an application’s instruction working set within a limited storage budget.

• Show that local control flow has high spatial locality and a small cache footprint. Given
the target of an unconditional branch, on average, over 80% of subsequent accesses (prior
to the next unconditional branch) are to cache blocks within 10 blocks of the target. This
observation enables a compact spatial encoding of code regions.

• Propose a new BTB organization in which most of the capacity is dedicated to unconditional
branches, which steer the global control flow, and spatially encoded footprints of their target
regions. By compactly encoding footprints of entire code regions, the proposed organization
avoids the need to track a large number of conditional branches inside these regions to dis-
cover their instruction cache working set.

• Introduce Shotgun, a unified instruction cache and BTB prefetcher powered by the proposed
BTB organization. By tracking a much larger fraction of an application’s instruction footprint
within a fixed BTB storage budget, Shotgun outperforms the state-of-the-art BTB-directed
front-end prefetcher (Boomerang) by up to 10%.

• To further improve Shotgun’s storage efficiency, we explore different alternatives for spatial
encoding of target regions and evaluate their performance/storage trade-offs.

• Identify the factors that prevent Shotgun from matching the performance of an ideal server
front-end. Based on these factors, we suggest the future research directions to erase the per-
formance difference between an ideal and practical front-end.

2 BACKGROUND

2.1 Temporal Streaming Prefetching

Over the past decade, temporal streaming [7] has been the dominant technique for front-end
prefetching for servers. The key principle behind temporal streaming is to record control flow

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:4 R. Kumar and B. Grot

access or miss sequences and subsequently replay them to prefetch the necessary state. The gen-
eral concept has been applied to both instruction cache [16] and BTB [12] prefetching and shown
to be highly effective in eliminating misses in these structures.

The principal shortcoming of temporal streaming is the need to store large amounts of meta-
data (hundreds of kilobytes per core) for capturing control flow history [12, 16]. To mitigate the
cost, two complementary techniques have been proposed. The first is sharing the metadata across
all cores executing a common workload [13]. The second is using one set of unified metadata for
both instruction cache and BTB prefetching, thus avoiding the cost and complexity of maintaining
two separate control flow histories [14]. The key insight behind unified front-end prefetching is
that the metadata necessary for populating the BTB can be extracted from cache blocks contain-
ing the associated branch instructions. Thus, history needs to be maintained only for instruction
prefetching, while BTB prefetching happens “for free,” storage-wise.

The state of the art in temporal streaming combines the two ideas into a unified front-end
prefetcher called Confluence [14]. Confluence maintains only the L1-I history metadata for both
instruction and BTB prefetching, virtualizes it into the LLC, and shares it across the cores exe-
cuting a common workload. While effective, Confluence introduces a significant degree of cost
and complexity into a processor. LLC virtualization requires invasive LLC modifications, in-
curs extra traffic for metadata movement, and necessitates system software support to pin the
cache lines containing the history metadata in the LLC. Moreover, the effectiveness of meta-
data sharing diminishes when workloads are colocated, in which case each workload requires
its own metadata, reducing the effective LLC capacity in proportion to the number of colocated
workloads.

2.2 BTB-directed Prefetching

To mitigate the exorbitant overheads incurred by temporal streaming prefetchers, recent research
has revived the idea of BTB-directed (also called fetch-directed) instruction prefetching [9]. The
basic idea is to leverage the BTB to discover future branches, predict the conditional ones using the
branch direction predictor, and generate a stream of future instruction addresses used for prefetch-
ing into the L1-I. The key advantage of BTB-directed prefetching is that it does not require any
metadata storage beyond the BTB and branch direction predictor, both of which are already present
in a modern server core.

The original work on BTB-directed prefetching was limited to prefetching of instructions. Re-
cent work has addressed this limitation by adding a BTB prefetch capability in a technique called
Boomerang [15]. Boomerang uses a basic-block-oriented BTB to detect BTB misses, which it then
fills by fetching and decoding the necessary cache lines from the memory hierarchy. By adding a
BTB prefetch capability without introducing new storage, Boomerang enables a unified front-end
prefetcher at near-zero hardware cost compared to a baseline core.

While highly effective on workloads with smaller instruction working sets, Boomerang’s effec-
tiveness is reduced when instruction working sets are especially large. The branch footprint in
such workloads can easily exceed the capacity of a typical BTB by an order of magnitude, result-
ing in frequent BTB misses. Whenever each BTB miss occurs, Boomerang must stall instruction
prefetching to resolve the miss and uncover subsequent control flow. When the active branch work-
ing set is much larger than the BTB capacity, the BTB will thrash, resulting in a chain of misses
whenever control flow transfers to a region of code not in the BTB. Such a cascade of BTB misses
impedes Boomerang’s ability to issue instruction cache prefetches due to frequently unresolved
control flow. Thus, Boomerang’s effectiveness is tightly coupled to its ability to capture the control
flow in the BTB.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:5

Fig. 1. Comparison of state-of-the-art unified front-end prefetchers to the ideal front-end on server work-

loads. The baseline core features a fetch-directed instruction prefetcher (FDIP) and a 2K-entry BTB.

Table 1. Miss Rate of a 2K-entry

BTB without Prefetching

Workload MPKI

Nutch 2.5
Streaming 14.5
Apache 23.7
Zeus 14.6
Oracle 45.1
DB2 40.2

2.3 Competitive Analysis

Figure 1 compares the performance of the state-of-the-art temporal streaming (Confluence) and
BTB-directed (Boomerang) prefetchers. Complete workload and simulation parameters can be
found in Section 5. As the figure shows, on workloads with smaller instruction working sets, such
as Nutch and Zeus, Boomerang matches or outperforms Confluence by avoiding the latter’s re-
liance on the LLC for metadata accesses. In Confluence, the latency of these accesses is exposed
on each L1-I miss, which resets the prefetcher and incurs a round trip to the LLC to fetch new
history before prefetching can resume.

In contrast, on workloads with larger instruction working sets, such as Oracle and DB2,
Confluence handily outperforms Boomerang by 13% and 8%, respectively. On these workloads,
Boomerang experiences the highest BTB miss rates of any in the evaluation suite (see Table 1),
which diminishes prefetch effectiveness as explained in the previous section.

Given that software trends point in the direction of larger code bases and deeper call stacks [5],
there is a need for a better control flow delivery architecture that can enable prefetching for
even the largest instruction working sets without incurring prohibitive storage and complexity
costs.

3 BTB: CODE MEETS HARDWARE

To maximize the effectiveness of BTB-directed prefetching, we next study the interplay between
software behavior and the BTB.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:6 R. Kumar and B. Grot

Fig. 2. Program control flow example. The solid arrows represent global control flow, and dotted arrows depict

local control flow. A1, B1, and so forth denote cache block addresses.

3.1 Understanding Control Flow

Application code is typically organized as a collection of functions to increase code reusability
and productivity. The function body itself can be thought of as a contiguous region of code that
spans a small number of adjacent cache blocks, as small functions are favored by modular design
and software engineering principles. To achieve the desired functionality, execution is steered
between different code regions through function calls, system calls, and the corresponding return
instructions; collectively, we refer to these as global control flow. Meanwhile, local control flow

guides the execution within a code region using a combination of conditional branches and fall-
through (next sequential instruction) execution.

Figure 2 shows an example of three code regions and the two types of control flow. Global control
flow that transfers execution between the regions is depicted by solid arrows, which correspond
to call and return instructions. Meanwhile, local control flow transfers due to conditional branches
within the code regions are shown with dashed arrows.

Local control flow tends to have high spatial locality as instructions inside a code region are gen-
erally stored in adjacent cache blocks. Furthermore, conditional branches that guide local control
flow tend to have very short displacements, typically within a few cache blocks [15], as shown by
dashed arrows in Figure 2. Thus, even for larger functions, there is high spatial locality in the set
of instruction cache blocks being accessed within the function.

Figure 3 quantifies the spatial locality for a set of server workloads. The figure shows the prob-
ability of an access to a cache block in relation to its distance from an entry point to a code region,
where a code region is defined as a set of cache blocks spanning two unconditional branches (re-
gion entry and exit points) in dynamic program order. As the figure shows, regions tend to be
small and with high spatial locality: 90% of all accesses occur within 10 cache blocks of the region
entry point.

Finally, we demonstrate that the total branch working set of server workloads is large but
the unconditional branch working set is relatively small. As shown in Figure 4, for Oracle,

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:7

Fig. 3. Instruction cache block access distribution inside code regions.

Fig. 4. Contribution of static branches toward dynamic branch execution for Oracle and DB2.

accommodating 90% of all dynamic branches is not possible even by tracking 8K of the hottest
static branches. With a practical-sized BTB of 2K entries, only 65% of Oracle’s dynamic branches
can be covered. Meanwhile, the unconditional branch working set, responsible for the global
control flow, is rather modest because conditional branches that guide application logic within
code regions dominate. On Oracle, a 2K-entry BTB can capture 84% of all dynamically occurring
unconditional branches; increasing the capacity to 2.75K can cover 90% of dynamic unconditional
branch executions. The trend is similar on the DB2 workload, for which 2K of the hottest static
branches can cover only 75% of the total dynamic branches, whereas the same number of the
hottest unconditional branches cover 92% of the unconditional dynamic branches.

3.2 Implications for BTB-directed Prefetching

BTB-directed prefetchers rely on the BTB to discover control flow transfer points between other-
wise sequential code sections. Correctly identifying these transfer points is essential for accurate
and timely prefetching. Unfortunately, large branch working sets in server workloads cause fre-
quent BTB misses. Existing BTB-directed prefetchers handle BTB misses in one of two ways:

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:8 R. Kumar and B. Grot

• The original FDIP technique [9] speculates through the misses, effectively fetching straight
line code when a branch goes undetected; this, however, is ineffective if the missing branch
is a global control flow transfer that redirects execution to a new code region.

• The state-of-the-art proposal, Boomerang, stalls prefetching and resolves the BTB miss by
probing the cache hierarchy. While effective for avoiding pipeline flushes induced by the
BTB miss, Boomerang is limited in its ability to issue instruction prefetches when faced with
a cascade of BTB misses inside a code region as explained in Section 2.2.

We thus conclude that effective BTB-directed prefetching requires two elements: (1) identifying
global control flow transfer points and (2) racing through local code regions unimpeded. Existing
BTB-directed prefetchers are able to achieve only one of these goals at the expense of the other.
The next section will describe a new BTB organization that facilitates both of these objectives.

4 SHOTGUN

Shotgun is a unified BTB-directed instruction cache and BTB prefetcher. Its key innovation is using
the BTB to maintain a logical map of the program’s instruction footprint using software insights
from Section 3. The map allows Shotgun to incur fewer BTB-related stalls while staying on the
correct prefetch path, thus overcoming a key limitation of prior BTB-directed prefetchers.

Shotgun devotes the bulk of its BTB capacity to tracking the global control flow; this is cap-
tured through unconditional branches that pinpoint the inter-region control flow transfers. For
each unconditional branch, Shotgun maintains compact metadata to track the spatial footprint of
the target region, which enables bulk prefetching of cache blocks within the region. In contrast,
prior BTB-directed prefetchers had to discover intra-region control flow by querying the BTB one
branch at a time. Because unconditional branches represent a small fraction of the dynamic branch
working set and because the spatial footprints summarize locations of entire cache blocks (which
are few) and not individual branches (which are many), Shotgun is able to track a much larger
instruction footprint than a traditional BTB with the same storage budget.

4.1 Design Overview

Shotgun relies on a specialized BTB organization that judiciously uses the limited BTB capacity
to maximize the effectiveness of BTB-directed prefetching. Shotgun splits the overall BTB storage
budget into dedicated BTBs for capturing global and local control flow. Global control flow is primar-
ily maintained in the U-BTB, which tracks the unconditional branch working set and also stores
the spatial footprints around the targets of these branches. The U-BTB is the heart of Shotgun and
drives the instruction prefetch engine. Conditional branches are maintained in the C-BTB, which
is composed of just a few hundred entries to track the local control flow within the currently active
code regions. Finally, Shotgun uses a third structure, called Return Instruction Buffer (RIB), to track
return instructions; while technically part of the global (unconditional) branch working set, returns

require significantly less BTB metadata than other unconditional branches, so allocating them to
a separate structure allows for a judicious usage of the limited BTB storage budget. Figure 5 shows
the three BTBs and the per-entry metadata in each of them.

For L1-I prefetching, Shotgun extends Boomerang to leverage the separate BTBs and the spatial
footprints as follows: whenever Shotgun encounters an unconditional branch, it reads the spatial
footprint of the target region from the U-BTB and issues prefetch probes for the corresponding
cache blocks. For filling the BTBs, Shotgun takes a hybrid approach by incorporating the features
from both Boomerang [15] and Confluence [14]. Specifically, while prefetching instruction blocks
from LLC, Shotgun leverages the proactive BTB fill mechanism of Confluence to predecode
the prefetched blocks and fill the BTB before the entries are accessed. Should a BTB miss be

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:9

Fig. 5. Shotgun BTB organization.

encountered by the front-end despite the proactive fill mechanism, it is resolved using the reactive

BTB fill mechanism of Boomerang that fetches the associated cache block from the memory
hierarchy and extracts the necessary branch metadata.

4.2 Design Details

4.2.1 BTB Organization. We now detail the microarchitecture of Shotgun’s three BTBs shown
in Figure 5.

Unconditional BTB (U-BTB). The U-BTB tracks the unconditional branch working set, spatial
footprints for the target, and, when applicable, return regions of these branches. Because uncondi-
tional branches and their spatial footprints are critical for prefetching, Shotgun devotes the bulk
of total BTB storage budget to U-BTB.

Each U-BTB entry, as shown in Figure 5, is composed of the following fields:

Tag: the branch identity.
Size: the size of the basic block containing the branch (like Boomerang, Shotgun uses a basic-block-
oriented BTB [17]).1

Type: the type of branch instruction (call, jump, etc.).
Target: the target address of the branch instruction.
Call Footprint: the spatial footprint for the target region of a call or unconditional jump instruction.
Return Footprint: the spatial footprint for the target region of a return instruction as explained next.

Because a function may be called from different sites, the footprint associated with a return

instruction is call site dependent. Meanwhile, tracking potentially many footprints for each return

instruction is impractical. To resolve this conundrum, Shotgun leverages a simple observation

1Here, a basic block means a sequence of straight-line instructions ending with a branch instruction, slightly different from

a conventional definition of single-entry single-exit straight-line code.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:10 R. Kumar and B. Grot

that the target region of a particular instance of a return is, in fact, the fall-through region of the
preceding call (static code region immediately following the call). Therefore, Shotgun associates
the spatial footprint of the return region with the entry of the corresponding call instruction in
the U-BTB. To support this design, each U-BTB entry must maintain two spatial footprints, one
for the target region of the call and the other for the return region.

Return Instruction Buffer (RIB). Shotgun employs a dedicated storage structure, RIB, to track re-

turn instructions corresponding to function and trap returns. Storing returns in the U-BTB along
with other unconditional branches would result in severe storage under-utilization because the
majority of U-BTB entry space is not needed for returns. For example, returns read their target
address from Return Address Stack (RAS) instead of the Target field of U-BTB entry. Similarly,
as discussed above, the spatial footprint for the return target region is stored along with the cor-
responding call. Together, these fields (Target, Call Footprint, and Return Footprint) account for
more than 50% of a U-BTB entry storage. The impact of such space under-utilization is significant
because returns occupy a significant fraction of U-BTB entries. Indeed, our studies show that 25%
of U-BTB entries are occupied by return instructions, hence resulting in storage inefficiency. Note
that with a conventional BTB, allocating the return instructions into the BTB does not lead to a
high inefficiency because over 70% of BTB entries are occupied by conditional branches, while
returns are responsible for fewer than 10% of all entries.

These observations motivate Shotgun’s use of a dedicated RIB structure to track return instruc-
tions. As shown in Figure 5, each RIB entry contains only (1) Tag, (2) Type, and (3) Size fields.
Compared to a U-BTB entry, there are no Target, Call Footprint, and Return Footprint fields in a
RIB entry. Thus, by storing only the necessary and sufficient metadata to track return instructions,
RIB avoids wasting U-BTB capacity.

Conditional BTB (C-BTB). Shotgun incorporates a small C-BTB to track the local control flow

(conditional branches) of currently active code regions. As shown in Figure 5, a C-BTB entry is
composed of (1) Tag, (2) Size, (3) Direction, and (4) Target fields. A C-BTB entry does not contain
branch Type field as all the branches are conditional. As explained in Section 4.2.3, Shotgun ag-
gressively prefetches into the C-BTB by exploiting spatial footprints, which affords a high hit rate
in the C-BTB with a capacity of only a few hundred entries.

4.2.2 Recording Spatial Footprints. Shotgun monitors the retire instruction stream to record
the spatial footprints. As an unconditional branch represents the entry point of a code region,
Shotgun starts recording a new spatial footprint on encountering an unconditional branch in the
retire stream. Subsequently, it tracks the cache block addresses of the following instructions and
adds them to the footprint if not already present. The spatial footprint recording for a code region
terminates on encountering a subsequent unconditional branch, which indicates entry to a differ-
ent code region. Once the recording terminates, Shotgun stores the footprint in the U-BTB entry
corresponding to the unconditional branch that triggered the recording.

Spatial footprint format: A naive approach to record a spatial footprint would be to record
the full addresses of all the cache blocks accessed inside a code region. Clearly, this approach
would result in excessive storage overhead due to the space requirements of storing full cache
block addresses. A storage-efficient alternative would be to record only the entry and exit points
of the region and later prefetch all the cache blocks between these points. However, as not all the
blocks in a region are accessed during execution, prefetching the entire region would result in
over-prefetching, potentially leading to on-chip network congestion and cache pollution.

To achieve both precision and storage efficiency, Shotgun leverages the insight that the accesses
inside a code region are centered around the target block (first block accessed in the region) as

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:11

discussed in Section 3. To exploit the high spatial locality around the target block, Shotgun uses
a short bit-vector, where each bit corresponds to a cache block, to record spatial footprints. The
bit positions in the vector represent the relative distance from the target block, and the bit value
(1 or 0) indicates whether the corresponding block was accessed or not during the last execution
of the region. Thus, by using a single bit per cache block, Shotgun dramatically reduces storage
requirements while avoiding over-prefetching.

4.2.3 Prefetching with Shotgun. Similar to FDIP [9], Shotgun also employs a Fetch Target Queue
(FTQ), as shown in Figure 5, to hold the fetch addresses generated by the branch prediction unit.
These addresses are later consumed by the fetch engine to fetch and feed the corresponding in-
structions to the core back-end. To fill the FTQ, the branch prediction unit of Shotgun queries all
three BTBs (U-BTB, C-BTB, and RIB) in parallel. If there is a hit in any of the BTBs, the appropri-
ate fetch addresses are inserted into the FTQ. As these addresses are eventually going to be used
for fetching instructions from L1-I, they represent natural prefetching candidates. Therefore, like
FDIP, Shotgun capitalizes on this opportunity by scanning through the fetch addresses, as they are
inserted into the FTQ, and issuing prefetch probes for corresponding L1-I blocks.

On a U-BTB or RIB hit, Shotgun also reads the spatial footprint of the target code region to
issue L1-I prefetch probes for appropriate cache blocks. Accessing the spatial footprint is simple
for U-BTB hits because it is directly read from the Call Footprint field of the corresponding U-
BTB entry. However, the mechanism is slightly more involved on RIB hits because the required
spatial footprint is not stored in RIB, but rather in the U-BTB entry of the corresponding call. To
find this U-BTB entry, we extend the RAS such that on a call, in addition to the return address
that normally gets pushed on the RAS, the address of the basic block containing the call is also
pushed.2 Because the RAS typically contains a small number of entries (8 to 32 is common), the
additional RAS storage cost to support Shotgun is negligible. On a RIB hit for a return instruction,
Shotgun pops the basic block address of the associated call from the RAS to index the U-BTB and
retrieve the spatial footprint from the Return Footprint field.

In addition to using the spatial footprint to prefetch instructions into the L1-I, Shotgun exploits
control flow commonality [14] to prefetch into the C-BTB as well. Thus, when the prefetched
blocks arrive at the L1-I, Shotgun uses a set of predecoders to extract branch metadata from them
and uses it to populate the C-BTB ahead of the access stream. By anticipating the upcoming in-
struction working set via the spatial footprints and prefetching its associated branch working set
into the C-BTB via predecoding, Shotgun affords a very small yet highly effective C-BTB.

Figure 6 shows an example of using a spatial footprint for L1-I and C-BTB prefetching on a U-
BTB hit. Shotgun first reads the target address A and the call footprint 01001000 from the U-BTB
entry. It then generates prefetch probes to the L1-I for the target block A and, based on the call
footprint in the U-BTB entry, for cache blocks A+2 and A+5 (step 1). If any of these blocks are not
found in the L1-I, Shotgun issues prefetch request(s) to the LLC (step 2). Once prefetched blocks
arrive from the LLC, they are installed in the L1-I (step 3) and are also forwarded to a predecoder
(step 4). The predecoder extracts the conditional branches from the prefetched blocks and inserts
them into the C-BTB (step 5).

If Shotgun detects a miss in all three BTBs, it invokes Boomerang’s BTB fill mechanism to resolve
the miss in the following manner: First, the instruction block corresponding to the missed branch
is accessed from L1-I or from lower cache levels if not present in the L1-I. The block is then fed
to the predecoder that extracts the missing branch and stores it into one the BTBs depending on

2 Because Shotgun uses a basic-block-oriented BTB, it is the basic block address, and not the PC, corresponding to the call

instruction that is stored on the RAS.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:12 R. Kumar and B. Grot

Fig. 6. Shotgun prefetching using spatial footprints.

branch type. The rest of the predecoded branches are stored in the BTB Prefetch Buffer [15]. On a
hit to the BTB Prefetch Buffer, the accessed branch is moved to the appropriate BTB based on the
branch type.

Discussion:

Populating FTQ entries - Shotgun vs. Boomerang: On a BTB hit, both Shotgun and Boomerang insert
the fetch addresses indicated by the BTB entry into the FTQ. However, their functionality differs on
BTB misses. Though it is possible to speculatively insert fall-through addresses to FTQ on a BTB
miss, Boomerang stops populating the FTQ until the BTB miss is resolved. This helps to avoid
pipeline squashes in case the missed branch is eventually taken. However, as L1-I prefetching also
stops when no new FTQ entries are being populated, Boomerang misses potential prefetching
opportunities especially if the missed branch turns out to be not taken. To compensate for this
missed opportunity, Boomerang prefetches the next two sequential blocks on BTB misses that are
filled from LLC or memory.

Shotgun, in contrast, speculatively inserts a single fall-though address to FTQ every cycle until
the next BTB hit and then starts running at basic block granularity again. Such an approach not
only continues to provide instruction prefetch targets under a BTB miss, as it keeps inserting new
addresses to the FTQ, but also provides two additional advantages. First, Shotgun can potentially
discover and fill multiple BTB misses in parallel. Second, and more important, it increases the like-
lihood of getting the next U-BTB hit sooner, hence prefetching the next spatial region early. To
avoid pipeline squashes whenever fall-through is the wrong path, Shotgun marks the speculatively
inserted addresses and does not allow the fetch engine to read them until their corresponding BTB
miss is resolved. In other words, instead of stalling fetch address insertion into the FTQ, Shotgun
stalls the instruction fetch. After BTB miss resolution, the branch is predicted and all addresses af-
ter the speculatively inserted address are flushed if the predicted direction is taken; otherwise, the
addresses become non-speculative and the fetch engine is allowed to read them for fetching instruc-
tions from L1-I. To summarize, speculatively inserting fetch addresses to the FTQ under a BTB miss
ensures continuous generation of prefetch targets, whereas restricting the fetch engine to fetch the
corresponding instructions only after resolving the BTB miss minimizes the pipeline squashes.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:13

Table 2. Workloads

Web Search

Nutch
Apache Nutch v1.2

230 clients, 1.4GB index, 15GB data segment

Media Streaming

Darwin
Darwin Streaming Server 6.0.3

7,500 clients, 60GB dataset, high bitratez

Web Frontend (SPECweb99)

Apache
Apache HTTP Server v2.0

16K connections, fastCGI, worker threading model

Zeus
Zeus Web Server

16K connections, fastCGI

OLTP - Online Transaction Processing (TPC-C)

Oracle
Oracle 10g Enterprise Database Server

100 warehouses (10GB), 1.4 GB SGA

DB2
IBM DB2 v8 ESE Database Server

100 warehouses (10GB), 2GB buffer pool

Table 3. Microarchitectural Parameters

Processor
16-core, 2GHz, 3-way OoO

128 ROB, 32 LSQ

Branch Predictor TAGE [20] (8KB storage budget)

Branch Target Buffer 2K-entry

L1 I/D
32KB/2-way, 2-cycle, private

64-entry prefetch buffer

L2 NUCA cache shared, 512KB per core, 16-way, 5-cycle

Interconnect 4x4 2D mesh, 3 cycles/hop

Memory latency 45ns

5 METHODOLOGY

5.1 Simulation Infrastructure

We use Flexus [18], a full system multiprocessor simulator, to evaluate Shotgun on a set of enter-
prise and open-source scale-out applications listed in Table 2. Flexus, which models SPARC v9 ISA,
extends the Simics functional simulator with out-of-order (OoO) cores, memory hierarchy, and
on-chip interconnect. We use SMARTS [19] multiprocessor sampling methodology for sampled
execution. Samples are drawn over 32 billion instructions (2 billion per core) for each application.
At each sampling point, we start cycle-accurate simulation from checkpoints that include full ar-
chitectural and partial microarchitectural states consisting of caches, BTB, branch predictor, and
prefetch history tables. We warm up the system for 100K cycles and collect statistics over the next
50K cycles. We use the ratio of number of application instructions to the total number of cycles
(including the cycles spent executing operating system core) to measure performance. This metric
has been shown to be an accurate measure of server throughput [18].

Our modeled processor is a 16-core tiled CMP. Each core is three-way out-of-order that mi-
croarchitecturally resembles an ARM Cortex-A57 core. The microarchitectural parameters of the
modeled processor are listed in Table 3. We assume a 48-bit virtual address space.

5.2 Control Flow Delivery Mechanisms

We compare the efficacy and storage overhead of the following state-of-the-art control flow deliv-
ery mechanisms.
Confluence: Confluence is the state-of-the-art temporal streaming prefetcher that uses unified
metadata to prefetch into both L1-I and BTB [14]. To further reduce metadata storage costs, Con-
fluence virtualizes the history metadata into the LLC using SHIFT [13]. We model Confluence as

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:14 R. Kumar and B. Grot

SHIFT augmented with a 16K-entry BTB, which was shown to provide a generous upper bound on
Confluence’s performance [14]. To provide high L1-I and BTB miss coverage, Confluence requires
at least a 32K-entry instruction history and an 8K-entry index table, resulting in high storage over-
head. Furthermore, it adds significant complexity to the processor as it requires LLC tag extensions,
reduction in effective LLC capacity, pinning of metadata cache lines in the LLC, and the associated
system software support, making it an expensive proposition as shown in prior work [15]. The
LLC tag array extension, for storing index table, costs 240KB of storage overhead, whereas the his-
tory table for each colocated workload requires 204KB of storage, which is carved out from LLC
capacity.
Boomerang: As described in Section 2.2, Boomerang employs FDIP for L1-I prefetching and
augments it with BTB prefilling. Like FDIP, Boomerang employs a 32-entry FTQ to buffer the
instruction addresses before they are consumed by the fetch engine. We evaluate Boomerang with
a 2K entry basic-block-oriented BTB. Each BTB entry consists of a 37-bit tag, 46-bit target address,
5 bits for basic-block size, 3 bits for branch type (conditional, unconditional, call, return, and trap
return), and 2 bits for conditional branch direction prediction. In total, each BTB entry requires
93 bits, leading to an overall BTB storage cost of 23.25KB. Also, our evaluated Boomerang design
employs a 32-entry BTB prefetch buffer.
Shotgun: As described in Section 4.2, Shotgun uses dedicated BTBs for unconditional branches,
conditional branches, and returns. For a fair comparison against Boomerang, we restrict the com-
bined storage budget of all BTB components in Shotgun to be identical to the storage cost of
Boomerang’s 2K-entry BTB. Like Boomerang, Shotgun also employs a 32-entry FTQ and a 32-
entry BTB prefetch buffer.
U-BTB storage cost: We evaluate a 1.5K (1,536) entry U-BTB, which accounts for the bulk of Shot-

gun’s BTB storage budget. Each U-BTB entry consists of a 38-bit tag, 46-bit target, 5 bits for basic-
block size, and 1 bit for branch type (unconditional or call). Furthermore, each U-BTB entry also
consists of two 8-bit vectors for storing spatial footprints. In each spatial footprint, 6 of the 8 bits
are used to track the cache blocks after the target block and the other 2 bits for the blocks before
the target block. Overall, each U-BTB entry costs 106 bits, resulting in a total storage of 19.87KB.
C-BTB storage cost: Since Shotgun fills C-BTB from L1-I blocks prefetched via U-BTB’s spatial foot-

prints, only a small fraction of overall BTB storage is allocated to C-BTB. We model a 128-entry
C-BTB with each C-BTB entry consisting of a 41-bit tag, 22-bit target offset, 5 bits for basic-block
size, and 2 bits for conditional branch direction prediction. Notice that only a 22-bit target offset
is needed, instead of the complete 46-bit target address, as conditional branches always use PC
relative offsets and SPARC v9 ISA limits the offset to 22 bits. Also, as C-BTB stores only the condi-
tional branches, the branch type field is not needed. Overall, the 128-entry C-BTB requires 1.1KB
of storage.
RIB storage cost: We model a 512-entry RIB, with each entry containing a 39-bit tag, 5 bits for basic-

block size, and 1 bit for branch type (return or trap-return). Since return instructions get their target
from the RAS, the RIB does not store target addresses (Section 4.2). With 45 bits per each RIB entry,
a 512-entry RIB requires 2.8KB of storage.
Total: The combined storage cost of U-BTB, C-BTB, and RIB is 23.77KB.

6 EVALUATION

In this section, we first evaluate Shotgun’s effectiveness in eliminating front-end stall cycles, and
the corresponding performance gains in comparison to temporal streaming (Confluence) and BTB-
directed (Boomerang) control flow delivery mechanisms. Next, we evaluate the key design deci-
sions taken in Shotgun’s microarchitectural design; we then analyze Shotgun’s sensitivity to BTB

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:15

Fig. 7. Front-end stall cycles covered by different prefetching schemes over FDIP baseline.

storage budget. Finally, we study the factors that prevent Shotgun from matching the performance
of an ideal server front-end.

6.1 Front-end Stall Cycle Coverage and Prefetch Accuracy

To assess the efficacy of different prefetching mechanisms, we present the number of front-end stall
cycles covered by each of them over the baseline FDIP in Figure 7. Notice that instead of using the
more common misses covered metric, we use stall cycles covered; that way, we can precisely capture
the impact of in-flight prefetches: the ones that have been issued, but the requested block has not
yet arrived in L1-I when needed by the fetch unit. Furthermore, we consider stall cycles only on
the correct execution path, since wrong-path stalls do not affect performance.

On average, as shown in Figure 7, Shotgun covers about 11% of the stall cycles experienced by
the baseline FDIP prefetcher. Confluence and Boomerang, in contrast, incur about 18% and 14%
more front-end stalls than FDIP, as also observed by prior work [15]. Though Boomerang builds
on FDIP, the latter provides better stall coverage because it speculatively prefetches along the fall-
through path on BTB misses, whereas Boomerang pauses prefetching while it resolves the BTB
misses. The speculative prefetching improves coverage if the fall-through path eventually turns
out to be the correct path or if fall-through and taken paths converge quickly. However, the higher
stall cycle coverage does not translate to better performance for FDIP as discussed in the next
section.

A closer inspection of Figure 7 reveals that Shotgun outperforms its direct rival Boomerang
on all of the workloads by a significant margin. In particular, Shotgun provides nearly 18% and
29% more coverage than Boomerang on Oracle and DB2—the workloads with a high BTB MPKI
whose impact on front-end performance Shotgun aims to mitigate. Shotgun’s improved coverage
is a direct outcome of uninterrupted L1-I prefetching via U-BTB’s spatial footprints; in contrast,
Boomerang has to wait to resolve BTB misses.

Compared to Confluence, Shotgun provides better stall coverage on four out of six workloads.
A closer inspection reveals that Shotgun comprehensively outperforms Confluence on Apache,
Nutch, and Streaming with 41% to 75% additional coverage. Confluence performs poorly on these
applications, as also noted by Kumar et al. [15], owing to frequent LLC accesses for loading history
metadata. On every misprediction in L1-I access sequence, Confluence needs to load the correct
sequence from the LLC before starting to issue prefetches on the correct path. This start-up delay
in issuing prefetches on each new sequence compromises Confluence’s coverage.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:16 R. Kumar and B. Grot

Fig. 8. Prefetch accuracy for different prefetching schemes.

Fig. 9. Speedup of different prefetching schemes over FDIP baseline.

On the workloads with the highest BTB MPKI (DB2 and Oracle), Shotgun is within 7% of Con-
fluence on DB2 but is 24% behind on Oracle. As shown in Figure 4, Oracle’s unconditional branch
working set is much larger compared to other workloads. The most frequently executed 1.5K un-
conditional branches (equal to the number of Shotgun’s U-BTB entries) cover only 78% of dynamic
unconditional branch execution. Therefore, Shotgun often enters code regions not captured by U-
BTB, which limits the coverage due to not having a spatial footprint to prefetch from.

Figure 8 presents the prefetch accuracy of the evaluated techniques. We define prefetch accuracy
as the ratio of useful prefetches to total number of prefetches generated by a prefetcher. As the
figure shows, all three prefetching techniques exhibit similar levels of accuracy, with Confluence,
Boomerang, and Shotgun being 71.10%, 69.75%, and 71.32% accurate, respectively.

6.2 Performance Analysis

Figure 9 shows the performance improvements for different prefetching mechanisms over the base-
line FDIP prefetching. The performance trends are similar to coverage trends (Figure 7), with Shot-
gun providing, on average, 14% performance improvement over the baseline and 4% improvement
over each of Boomerang and Confluence. The speedup over Boomerang is especially prominent
on high-BTB MPKI workloads, Oracle and DB2, where Shotgun achieves 7% and 8% improvement,
respectively.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:17

Fig. 10. Number of pipeline squashes per kilo instructions experienced by different techniques.

Interestingly, Figure 9 shows that Shotgun attains a relatively modest performance gain over
Boomerang on Nutch, Apache, and Zeus workloads, despite its noticeable coverage improvement.
The reason behind this behavior is that these workloads have relatively low L1-I MPKI; therefore,
the coverage improvement does not translate into proportional performance improvement. Similar
to coverage results, Shotgun outperforms Confluence on Apache, Nutch, Streaming, and Zeus.
Furthermore, it matches the performance gain of Confluence on DB2; however, due to lower stall
cycle coverage, Shotgun falls behind Confluence on Oracle by 6%.

It is also interesting to note that both Confluence and Boomerang provide, on average, about
10% performance improvement over the baseline FDIP despite incurring more front-end stalls as
observed in Figure 7. This is because they both reduce pipeline squashes stemming from BTB
misses in addition to covering L1-I-miss-induced stalls. FDIP, in contrast, is exclusively aimed at
minimizing L1-I miss stalls but not the squashes caused by BTB misses. Consequently, as shown
in Figure 10, it experiences about 20 squashes per thousand instructions compared to only 13
and 10 of Confluence and Boomerang, respectively. By reducing the amount of pipeline squashes,
Confluence and Boomerang are able to provide higher performance even with lower L1-I miss stall
coverage.

Recall that FDIP, Boomerang, and Shotgun rely solely on BTB and branch predictor for prefetch-
ing, whereas Confluence needs dedicated storage for keeping the prefetch metadata. In our eval-
uation, we allocate similar BTB storage budgets for FDIP, Boomerang, and Shotgun (23.25KB,
23.25KB, and 23.77KB, respectively). Therefore, the comparison among these techniques is ISO-
storage. We give Confluence a storage advantage in that its metadata storage (which is cache
resident) is not counted. For ISO-storage comparison with other techniques, we would need to
drastically reduce Confluence’s metadata and BTB budgets. However, this would greatly reduce
Confluence’s performance gain, which is already lower than Shotgun.

6.3 Quantifying the Impact of Spatial Footprints

As discussed in Section 4.2.2, Shotgun stores the spatial region footprints in the form of a bit-vector
to reduce the storage requirements while simultaneously avoiding over-prefetching. This section
evaluates the impact of spatial footprints and their storage format (bit-vector) on performance. We
evaluate the following spatial region prefetching mechanisms: (1) No bit vector: does not perform
any region prefetching; (2) 8-bit vector; (3) 32-bit vector; (4) Entire Region: prefetches all the cache
blocks between entry and exit points of the target region; (5) 5-Blocks: prefetches five consecutive

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:18 R. Kumar and B. Grot

Fig. 11. Shotgun front-end stall cycle coverage over FDIP with different spatial region prefetching

mechanisms.

Fig. 12. Shotgun performance gain over FDIP with different spatial region prefetching mechanisms.

cache blocks in the target region starting with the target block—the “5-Blocks” design point is
motivated by Figure 3, which shows that 80% to 90% of the accessed blocks lie within this limit, and
the benefit of always prefetching a fixed number of blocks is that it completely avoids the need to
store metadata for prefetching; and (6) Bimodal 5-blocks: prefetches five consecutive cache blocks
in the target region only if at least three of these blocks were accessed during the last execution of
the region; if fewer than three blocks were accessed, it does not prefetch anything.3 The advantage
of the Bimodal approach is that it requires only a single bit to decide whether or not to prefetch.
This bit is set/reset after executing a region based on the number of cache blocks accessed during
the execution.

First, we focus on the stall cycle coverage and performance with different bit-vector lengths.
For the No Bit Vector design, which performs no region prefetching, we increase the number of
entries in the U-BTB up to the same storage budget as the 8-bit vector design. For the 32-bit vector,
however, instead of reducing the number of U-BTB entries (to account for more bits in bit-vector),
we simply provide additional storage to accommodate the larger bit-vector. Therefore, the results
for 32-bit vector upper-bound the benefits of tracking a larger spatial region with the same global
control flow coverage in the U-BTB as the 8-bit vector design.

As Figures 11 and 12 show, an 8-bit vector provides, on average, 18% coverage and 3% per-
formance benefit compared to no spatial region prefetching. In fact, without spatial footprints,

3We experimented with both the number of cache blocks to be prefetched in a region and the number required to enable

prefetching. The chosen configuration provided the best performance.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:19

Fig. 13. Shotgun prefetch accuracy with different spatial region prefetching mechanisms.

Fig. 14. Number of cycles required to fill a L1-D miss with different mechanisms for spatial region

prefetching.

Shotgun provides only 1.5% better performance than Boomerang. With an 8-bit vector, Shotgun
improves the performance of every single workload, with the largest gain of 7% on Streaming
and DB2, compared to No Bit Vector. Meanwhile, increasing the bit-vector length to 32 bits pro-
vides only 0.5% performance, on average, over an 8-bit vector. These results suggest that longer
bit vectors do not offer a favorable cost/performance trade-off.

The next two spatial region prefetching mechanisms, Entire Region and 5-Blocks, lead to signif-
icant performance degradation compared to 8-bit vector as shown in Figure 12. The performance
penalty is especially severe in two of the high-opportunity workloads: DB2 and Streaming. This
performance degradation results from over-prefetching, as these mechanisms lack the information
about which blocks inside the target region should be prefetched. Always prefetching five blocks
from the target region results in significant over-prefetching and poor prefetch accuracy, as shown
in Figure 13, because many regions are smaller than five blocks. The reduction in prefetch accu-
racy is especially severe in Streaming, where it goes down to a mere 42% with 5-Block prefetching
compared to 80% with 8-bit vector. On average, 8-bit vector provides 71% accuracy, whereas Entire
Region and 5-Blocks prefetching are only 56% and 43% accurate, respectively. Over-prefetching
also increases pressure on the on-chip network, which in turn increases the effective LLC access
latency, as shown in Figure 14. For example, as the figure shows, the average latency to fill an L1-D
miss increases from 54 cycles with 8-bit vector to 65 cycles with 5-Blocks prefetching for DB2. The
combined effect of poor accuracy and increased LLC access latency due to over-prefetching makes
indiscriminate region prefetching less effective than the 8-bit vector design.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:20 R. Kumar and B. Grot

Fig. 15. Performance comparison of FTQ and Spatial Footprint prefetching.

To avoid the performance loss due to over-prefetching, the final alternative, Bimodal 5-blocks,
prefetches five consecutive cache blocks in the target region if at least three of these blocks were
accessed during the last execution; otherwise, spatial prefetching is not triggered. As shown in
Figure 13, the Bimodal design achieves good accuracy, approaching that of the 8-bit vector ap-
proach. However, disabling the spatial prefetching when only a few cache blocks are accessed in a
region also limits coverage. As a result, Bimodal 5-blocks provides 12% lower coverage than 8-bit
vector, as shown in Figure 11. Due to the lower coverage, Bimodal 5-blocks delivers only a 12.3%
performance gain, in comparison to 14% for 8-bit vector, over the baseline. Compared to Entire
Region and 5-Blocks prefetching, on average, Bimodal 5-blocks outperforms them, as shown in
Figure 12, by virtue of its higher accuracy despite similar or lower coverage.

6.4 Breaking Down the Performance Contribution of Different Shotgun Components

Shotgun features two components for each of L1-I prefetching (FTQ and Spatial prefetching) and
BTB prefilling (Proactive and Reactive prefilling). We next quantify the contribution of each of
these components toward overall performance. To do so, we disable the component under consid-
eration and measure the resulting performance loss.

6.4.1 L1-I Prefetching: FTQ vs. Spatial Prefetching. As detailed in Section 4.2.3, Shotgun employs
two mechanisms for L1-I prefetching. First, Shotgun leverages fetch addresses inserted into the
FTQ for L1-I prefetching. As these addresses are eventually going to be consumed by the fetch
engine for fetching instructions, they represent natural prefetching candidates. Second, Shotgun
also stores the spatial footprints of code regions in U-BTB so that it can later prefetch the whole
region on U-BTB and RIB hits.

Figure 15 presents the performance of these individual prefetching mechanisms and how they
fare when combined together. The results shows that individually, these techniques perform sim-
ilarly to each other, on average; however, using both together is more effective than using them
individually. Specifically, Spatial and FTQ prefetching deliver 10% and 11% performance gain over
the baseline, respectively. When combined, the performance gain increases to 14%. This is because,
when combined, each technique helps capture the opportunities missed by the other. For example,
if the spatial footprint misses a cache block, either because it was not accessed during the last exe-
cution or because the bit vector is too small to capture it, FTQ prefetching can potentially prefetch
it once the corresponding fetch addresses are inserted into the FTQ. Meanwhile, spatial prefetch-
ing helps by bulk-prefetching all the cache blocks in the spatial footprint at once, whereas FTQ
prefetching would have had to insert each of the prefetch targets into the FTQ one by one, hence
hurting timeliness compared to spatial prefetching.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:21

Fig. 16. Performance comparison of proactive and reactive BTB prefilling.

Fig. 17. Pipeline squashes per kilo instructions.

In summary, both L1-I prefetching techniques are essential for Shotgun to maximize the perfor-
mance due to their complementary nature.

6.4.2 BTB Prefilling: Proactive vs. Reactive. As described in Section 4.1, Shotgun incorporates
both proactive and reactive BTB prefilling mechanisms. Specifically, while prefetching instruction
cache blocks from LLC, the proactive mechanism predecodes the prefetched blocks and fills the
BTB before the entries are accessed. The reactive mechanism, in contrast, kicks in when a required
entry is not found in BTB, i.e., on a BTB miss. It resolves the miss by fetching the associated cache
block from the memory hierarchy and extracting the necessary branch metadata.

Figure 16 compares the performance of proactive and reactive BTB prefilling mechanisms. As
the results show, the proactive prefilling performs very poorly by itself, resulting in a performance
loss of 11% over the baseline FDIP. The performance degradation is especially severe on Nutch
and Zeus, which show 17% and 18% slowdown, respectively. These results are in stark contrast
to the ones presented in Confluence [14], where proactive BTB prefilling was shown to provide a
significant performance boost. The reason for the difference in behavior is the very small size of the
C-BTB (128 entries) in Shotgun. The key principle behind the proactive BTB prefilling is to keep the
active branches of L1-I resident cache blocks in the BTB. To achieve that, Confluence sizes its BTB
in proportion to the L1-I capacity. However, the small C-BTB of Shotgun is incapable of holding
the conditional branches corresponding to the entire L1-I. Therefore, in the absence of reactive
BTB prefilling, C-BTB misses result in frequent pipeline squashes that lead to poor performance.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:22 R. Kumar and B. Grot

Figure 17 validates this reasoning by showing that the proactive-only prefilling incurs much higher
squashes per kilo-instructions than the other BTB filling mechanisms and even the baseline.

The reactive BTB prefilling, in contrast, performs very well by itself, and its performance gain is
within 1% of a design that features both proactive and reactive mechanisms as shown in Figure 16.
This is because the reactive mechanism detects and resolves each BTB miss, which minimizes
the number of pipeline squashes4 and improves the performance. Notice that the reactive BTB
prefilling mechanism of Shotgun is exactly the same as used by Boomerang. However, Shotgun
pays a much smaller BTB miss penalty, i.e., the number of cycles required to fill a missed BTB
entry, than Boomerang. This is because Shotgun uses its spatial footprint to prefetch the required
cache blocks within the spatial region before execution enters that region. As a result, BTB misses
in Shotgun are likely to be filled from L1-I as the corresponding cache blocks have already been
prefetched. Boomerang, in contrast, issues a prefetch only after detecting a BTB miss, which results
in a larger latency penalty as the required cache block often resides in a lower cache level. Indeed,
our results show that, on average, Shotgun needs only 10 cycles to fill a BTB miss, compared to
15 cycles required by Boomerang. Thus, by reducing the BTB miss penalty, Shotgun with only
reactive BTB prefilling significantly outperforms Boomerang.

To summarize, proactive BTB prefilling alone degrades performance, compared to baseline, due
to frequent pipeline squashes caused by C-BTB thrashing. The reactive mechanism, in contrast,
minimizes the squashes by resolving every BTB miss and thus provides high performance. Though
the reactive BTB prefilling provides most of the performance benefits by itself, complementing it
with a proactive mechanism comes for “free” in terms of required hardware. This is because the
proactive prefilling leverages the same hardware (e.g., predecoder) as employed by the reactive
one. Also, it delivers noticeable additional performance (nearly 5%) on Streaming.

6.5 Sensitivity to C-BTB Size

As discussed in Section 4, Shotgun incorporates a small C-BTB and relies on both proactive and
reactive mechanisms to fill it ahead of time. To measure Shotgun’s effectiveness in prefilling the
C-BTB, Figure 18 presents performance sensitivity to the number of C-BTB entries. Any speedup
with additional entries would highlight the opportunity missed by Shotgun.

To assess Shotgun’s effectiveness, we compare the performance of 128-entry vs. 1K-entry C-
BTBs. As the figure shows, despite an 8x increase in storage, the 1K-entry C-BTB delivers, on
average, only 0.7% improvement. This result validates our design choice, demonstrating that a
larger C-BTB capacity is not useful.

On the other hand, reducing the number of entries to 64 results in noticeable performance loss
especially on Streaming and DB2, with 3% lower performance compared to a 128-entry C-BTB.
On average, the 128-entry C-BTB outperforms the 64-entry C-BTB by about 1.5%, as shown in
Figure 18.

6.6 Sensitivity to the BTB Storage Budget

We now investigate the impact of the BTB storage budget on the effectiveness of the evaluated
BTB-directed prefetchers: Boomerang and Shotgun. We vary the BTB capacity from 512 entries
to 8K entries for Boomerang, while using the equivalent storage budget for Shotgun. To match
Boomerang’s BTB storage budget in the 512- to 4K-entry range, we proportionately scale Shotgun’s
number of entries in U-BTB, RIB, and C-BTB from the values presented in Section 5.2. However,
scaling the number of U-BTB entries to match 8K-entry Boomerang BTB storage would lead to a 6K-
entry U-BTB, which is overkill, as 4K-entry U-BTB is sufficient to capture the entire unconditional

4The remaining squashes come from conditional branch direction misprediction and indirect branch target mispredictions.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:23

Fig. 18. Shotgun speedup over FDIP with different C-BTB sizes.

Fig. 19. Boomerang and Shotgun speedup over FDIP for different BTB sizes. The indicated BTB size is for

FDIP and Boomerang; Shotgun uses the equivalent storage budget for its three BTBs.

branch working set as shown in Figure 4. Therefore, Shotgun limits the number of U-BTB entries
to 4K and expands RIB and C-BTB to store 1K and 4K entries, respectively, to utilize the remaining
budget. Empirically, we found this to be the preferred Shotgun configuration for the 8K-entry
storage budget.

Figure 19 shows the results for Oracle and DB2, the two workloads with the largest instruction
footprints that are particularly challenging for BTB-based prefetchers. The striped bars highlight
the results for the baseline 2K-entry BTB. As the figure shows, given an equivalent storage budget,
Shotgun always outperforms Boomerang. On the Oracle workload, Shotgun, with a small storage
budget equivalent to a 1K-entry conventional BTB, outperforms Boomerang with an 8K-entry BTB
(12% vs. 11.5% performance improvement over no prefetch baseline). Similarly, on DB2, Boomerang
needs more than twice the BTB capacity to match Shotgun’s performance. For instance, with a 2K-
entry BTB, Shotgun delivers a 30% speedup, whereas Boomerang attains only a 28% speedup with a
larger 4K-entry BTB. These results indicate that Shotgun’s judicious use of BTB capacity translates
to higher performance across a wide range of BTB sizes.

6.7 Analyzing the Remaining Front-end Stalls

Though, on average, Shotgun outperforms both Boomerang and Confluence, its performance lags
that of an ideal front-end on high MPKI workloads: Oracle and DB2. We analyze the sources of
these remaining front-end stalls and divide them into six categories. As prefetching via spatial

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:24 R. Kumar and B. Grot

footprints is the key enabler for Shotgun’s performance gain over the state-of-the-art prefetcher
(Boomerang), these categories reflect the factors that prevent spatial prefetching from reaching
the performance of an ideal front-end. The categories are as follows:
1. Late-arriving spatial prefetches: On a U-BTB hit, Shotgun leverages the spatial footprint to
identify the cache blocks likely to be accessed in the next region and triggers their prefetch if not
already present in L1-I. However, if Shotgun does not hit the U-BTB entry early enough, it would
not get sufficient time to prefetch a block before it is accessed. As a result, the prefetch latency will
be partially exposed and result in front-end stalls. We attribute such stalls to Shotgun’s inability
to hit the spatial footprint on time.
2. Mispredicted region: These stalls are caused by mispredicted unconditional branches that
lead Shotgun to prefetch the wrong spatial region. When execution is redirected to the correct
region after a pipeline flush, the latency of fetching any missed cache blocks will be exposed as
Shotgun never prefetched the correct region. Such mispredictions are caused by indirect uncon-
ditional branches and calls corresponding to virtual function calls, switch statements, interrupts,
exceptions, traps and so forth.
3. Out of range of bit vector: The results in Figure 3 imply that an 8-bit vector, as used by Shotgun
to store the spatial footprint, is big enough to capture more than 85% of cache blocks in a region.
However, 8 bits are not always sufficient to capture the whole spatial footprint. If a cache block is
farther from the start of the region than can be accommodated in 8 bits, it would not be captured
by a spatial footprint stored in an 8-bit vector. Consequently, it would not be prefetched via spatial
region prefetching. The front-end stalls corresponding to such cache blocks are attributed to the
limited range of the bit vector.
4. U-BTB miss: On a U-BTB (or RIB) miss, Shotgun cannot prefetch the next spatial region as
the miss implies that the spatial footprint for the next region is also not present in U-BTB. Though
Shotgun does prefill the unconditional branch metadata in U-BTB by predecoding the correspond-
ing cache block, it cannot prefill the spatial footprint on a miss because the region must execute
first in order to record the footprint. Any front-end stalls in such regions are attributed to U-BTB
misses.
5. Wrong spatial footprint: If the cache blocks accessed inside a region change from one execu-
tion of the region to the next, the spatial footprint would not be able to prefetech all the required
cache blocks for the current execution. We attribute the front-end stalls caused by the cache blocks
that were not accessed during the last execution but are accessed in the current execution to the
incorrect spatial footprint.
6. Uninitialized spatial footprint: If Shotgun encounters an uninitialized spatial footprint on a
U-BTB (or RIB) hit, it cannot prefetch the next spatial region. There are two main reasons for the
spatial footprint to be uninitialized on a U-BTB (or RIB) hit. First, the spatial footprint for return
instructions might be uninitialized (or missing) as the returns are tracked in RIB, whereas their
spatial footprints are stored in U-BTB along with the call instructions (details in Section 4.2.1). So,
if a call is evicted from U-BTB, the spatial footprint for return will be evicted alongside while the
return instruction itself remains in RIB. Second, the spatial footprint for U-BTB misses filled on
the wrong execution path will remain uninitialized because the wrong path will be detected before
the region execution could complete and spatial footprint could be written to U-BTB. The next hit
for such U-BTB entries on the correct path will see an uninitialized footprint. All front-end stalls
in such regions are attributed to an uninitialized spatial footprint.

Figure 20 presents the distribution of the remaining front-end stalls among these six categories.
As the figure shows, the two major sources of the remaining stalls are the spatial prefetches not
arriving on time and the mispredicted next regions. Together, these two sources constitute about

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:25

Fig. 20. Sources of the remaining front-end stalls.

67% of all the remaining stalls on average, with 37% of the stalls coming from the late-arriving
spatial prefetches and 30% from the mispredicted next spatial region.

The spatial prefetches arrive late when Shotgun is unable to reach a U-BTB entry, and issue
prefetches, early enough. This happens primarily due to small basic block sizes and branch mis-
predictions. Shotgun strives to hide L1-I/BTB miss latency by accumulating enough fetch addresses
in the FTQ so that the fetch engine remains busy while a missed block is being prefetched. The
number of fetch addresses accumulated in the FTQ is often a function of the size of basic blocks
because in each cycle Shotgun inserts fetch addresses corresponding to only a single basic block
into the FTQ. In the case of small basic blocks, the address accumulation in the FTQ is slow or does
not happen at all if the basic blocks have fewer instructions than the core fetch width (core con-
sumes up to “fetch width” addresses from the FTQ in each cycle). In the absence of sufficient work
in the FTQ, the queue drains quickly and miss latency is exposed. Similarly, branch mispredictions
cause the FTQ to drain completely as all wrong path instructions, including the fetch addresses
in the FTQ, have to be flushed. As a result, the latency of misses that occur before sufficient fetch
addresses have been accumulated in FTQ after a flush is also exposed.

To alleviate the impact of these two factors, further investigation is required to keep the FTQ
sufficiently occupied so that the miss latencies are not exposed. Multiple branch predictions per
cycle can potentially address the small basic block size limitation by inserting fetch addresses from
multiple basic blocks to the FTQ in one cycle. The branch prediction accuracy itself needs to be
improved to avoid draining the FTQ on mispredictions. Furthermore, to reduce the stalls caused by
mispredicted regions, we need to investigate better indirect branch target prediction mechanisms.
We leave such explorations for future work.

Of the remaining, the Out-of-range of bit vector is responsible for about 11% of the stalls on
average. A tempting solution to this problem is increasing the size of the bit vector; however, as
Figure 3 implies, the missing cache blocks have a very diverse distribution. Therefore, any reason-
able increase in bit vector size and storage cost is unlikely to capture these blocks. This hypothesis
is also validated by the results in Figure 12 in Section 6.3, which shows that increasing the bit
vector from 8-bit to 32-bit provides only 0.5% performance improvement.

U-BTB misses and Wrong spatial footprint each result in only about 5% of stalls, on average. Stalls
due to U-BTB misses are highest in Oracle (10%) because it has the largest branch working set as
implied by Table 1. The low incidence of stalls attributed to wrong spatial footprint also implies that
the cache blocks accessed inside a region mostly stay stable over executions, thus corroborating
prior results [16]. The remaining 12% of stalls come from the uninitialized spatial footprints.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:26 R. Kumar and B. Grot

7 RELATED WORK

As Shotgun aims to reduce L1-I-miss-induced stall cycles as well as the pipeline flushes caused by
BTB misses, this section discusses related work in both of these domains.
L1-I prefetching: Stalls stemming from L1-I misses are a well-known performance bottleneck,
especially in server workloads. Prior work has proposed both hardware and software mechanisms
to mitigate this bottleneck. On the hardware side, simple next-line prefetchers [21] are widely de-
ployed in commercial processors. These prefetchers are very efficient in prefetching sequential
code; however, control flow discontinuities caused by function calls, taken branches, interrupts,
and so forth render them of limited use for server applications. A number of prefetching tech-
niques have been proposed to address the limitations of next-line prefetchers, and these can be
broadly categorized as either branch-predictor-directed prefetchers [9, 22–25] or temporal stream
prefetchers [7, 8, 13, 16].

FDIP [9] is the most well-known and widely used fetch-directed-instruction prefetcher. It de-
couples the branch prediction unit from the fetch unit by mean of a FTQ. This decoupling en-
ables FDIP to recursively query the branch predictor to generate future fetch addresses and insert
them into the FTQ. As the FTQ entries are used for fetching instructions, FDIP checks whether
the corresponding blocks are present in L1-I and issues prefetches if they are not. Branch-history-
guided [23] and execution-history-guided [25] prefetchers associate discontinuity misses to earlier
executed instructions, which are then used to trigger prefetches in the next iterations.

Temporal stream prefetchers rely on the principle of record and replay. TIFS [7] records L1-I
misses in a miss log and replays the log for prefetching during the next executions of the same
control flow path. PIF [16] observes that recording the entire retire-order L1-I access stream, rather
than only L1-I misses, provides better coverage and accuracy. Though these prefetchers are highly
accurate, they incur huge, on the order of 100s KB, metadata storage overhead per core to record
the L1-I miss or access stream history. SHIFT [13] reduces the metadata storage cost by sharing
the metadata across multiple cores running the same workload.

While most of these techniques focus on improving L1-I miss coverage, a recent proposal, the en-
tangling instruction prefetcher [26], aims to improve prefetch timing. Prefetch timing is important
to ensure that a prefetched block arrives in L1-I before the demand fetch, but not so early that it
is evicted before being used. The key idea, similar to the execution-history-guided prefetcher [25],
is to find an earlier executed instruction that should trigger the prefetch of a later cache block. To
ensure timeliness, it estimates the latency of cache miss operations and entangles them to prior
instructions that are sufficiently far in the past to ensure timeliness of prefetches.

Similar to Shotgun, two previously proposed techniques, pTask [27] and RDIP [8], also leverage
global control flow information for prefetching. pTask initiates prefetching only on OS context
switches and requires software support. RDIP is closer to Shotgun as it also exploits global program
context captured by RAS for prefetching. However, there are important differences between the
two approaches. First, RDIP, for timely prefetching, predicts the future program context (next
call/return instruction) solely based on the current context. This approach ignores local control
flow in predicting the future execution path, which naturally limits accuracy. Shotgun, on the
the other hand, predicts each and every branch to locate the upcoming code region. Therefore,
Shotgun is more accurate in discovering future code regions and L1-I accesses. Also, RDIP incurs
a high storage cost, 64KB per core, as it has to maintain dedicated metadata for L1-I prefetching.
Shotgun, in contrast, has no additional storage requirement, as it captures the global control flow

and spatial footprints inside the storage budget of a conventional BTB.
On the software side, many approaches have been proposed to optimize the code layout at

compile time [28], at link time [29, 30], or post-link time [31, 32]. There have also been proposals

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

Shooting Down the Server Front-End Bottleneck 7:27

on inserting prefetch instructions in the binary at compile time [33] and exploiting recurring
call-graph history [34]. Recent work in software prefetching, AsmDB [35], profiles thousands of
production binaries in a data center and proposes profile-driven injection of software prefetch
instructions into the application binary at compile time. In addition, it introduces hardware
support for the execution of software prefetch instructions. I-SPY [36] improves over AsmDB by
correlating L1-I misses to execution contexts and prefetching a block only if the same execution
context is observed again. As these software techniques are mostly complementary to Shotgun,
they are likely to aid each other.

All of the techniques discussed above target only one part of the overall front-end bottleneck
as they prefetch only L1-I blocks but do not prefill BTB. Meanwhile, Shotgun offers a cohesive
solution to the entire problem.

BTB prefetching: BTB plays a critical role in identifying control flow discontinuities and feeding
the core with correct path instructions. The large instruction footprints of server workloads put
immense pressure on BTB, and the resulting BTB misses limit its ability to discover control flow
discontinuities. To mitigate this limitation, prior work has suggested to augment a low-latency
first-level BTB with a large-capacity second-level BTB. A dedicated prefetcher is then used to
bring entries from second-level to first-level BTB.

IBM z-series processors use a technique called Two-level Bulk Preload [11] to prefetch branches
from a 24K-entry second-level BTB to a 4K-entry first-level BTB. The prefetching mechanism uses
spatial correlation to prefetch a set of spatially proximate entries into the first-level BTB upon a
miss. Another technique, called Phantom BTB [12], virtualizes temporal streams of BTB entries
into the last level cache instead of using a dedicated second-level BTB. However, both of these
techniques incur 100s of KB of storage overhead. In addition, as they trigger prefetches on a miss
in first-level BTB, they expose the high latency of the second-level BTB or last level cache. Recent
work [40] has also explored profile guided software prefetching for BTBs.

In addition to BTB prefetching, researchers have investigated BTB entry organizations to maxi-
mize the number of entries in a given storage budget [14, 37, 38].

Unified L1-I and BTB prefetching: While the techniques discussed above employ dedicated
prefetchers for L1-I and BTB prefetching, recent work [14, 15, 39] proposes to unify them. Conflu-
ence [14] observes that L1-I blocks effectively embed the BTB metadata for the branches they con-
tain. Therefore, it proposes to predecode the L1-I blocks as they are prefetched into L1-I to extract
branch information and prefill it into the BTB. In doing so, Confluence not only avoids a dedicate
BTB prefetcher but also the second BTB level. However, its storage requirements still remain high
as it requires a temporal stream-based prefetcher for L1-I prefetching. SN4L+Dis+BTB [39] pro-
poses to divide the front-end bottleneck in separate components and use a dedicated prefetcher for
each component. Specifically, it uses a selective next-4-line (SN4L) prefetcher to prefetch sequen-
tial code and a modified discontinuity prefetcher (Dis) [10] to prefetch control flow discontinuities.
Finally, it takes Confluence’s approach of predecoding the prefetched L1-I blocks to prefill the BTB.
In doing so, it eliminates the storage overhead of temporal stream prefetching.

Boomerang [15] relies on FDIP for L1-I prefetching and extends it with BTB prefetch capability
to mitigate BTB-miss-related pipeline flushes. For BTB prefilling, it first detects BTB misses, fetches
the cache block containing the corresponding branch instruction, predecodes the cache blocks
to extract branch metadata, and finally inserts this metadata into the BTB. As it relies solely on
the existing branch prediction structures for L1-I prefetching and BTB prefilling, it incurs near-
zero hardware cost. However, Boomerang’s complete reliance on BTB to discover L1-I prefetch
candidates limits its prefetching opportunities. This is because back-to-back BTB misses severely
limit its ability to run ahead of the fetch unit and discover prefetch candidates as it does not know

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

7:28 R. Kumar and B. Grot

which control flow path to follow on a BTB miss. Shotgun, in contrast, partially decouples L1-I
prefetching from BTB, at it leverages spatial region footprints to prefetch the target code regions.

8 CONCLUSION

The front-end bottleneck in server workloads is a well-established problem due to frequent misses
in the L1-I and the BTB. Prefetching can be effective at mitigating the misses; however, existing
front-end prefetchers force a trade-off between coverage and storage overhead.

This article introduces Shotgun, a front-end prefetcher powered by a new BTB organization and
design philosophy. The main observation behind Shotgun is that an application’s instruction foot-
print can be summarized as a combination of its unconditional branch working set and a spatial
footprint around the target of each unconditional branch. The former captures the global control
flow (mostly function calls and returns), while the latter summarizes the local (intra-function) in-
struction cache working set. Based on this insight, Shotgun devotes the bulk of its BTB capacity
to unconditional branches and their spatial footprints. Meanwhile, conditional branches are main-
tained in a small-capacity dedicated BTB that is filled from the prefetched instruction cache blocks.
By effectively summarizing the application’s instruction footprint in the BTB, Shotgun enables a
highly effective BTB-directed prefetcher that largely erases the gap between metadata-free and
metadata-rich state-of-the-art prefetchers.

Finally, we identify the factors that prevent Shotgun from matching the performance of an ideal
server front-end. Based on these factors, we suggest the future research directions to erase the
performance difference between an ideal and practical front-end.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their helpful comments.

REFERENCES

[1] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the front-end bottleneck with shotgun. In

Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’18). ACM, New York, NY, 30–42. http://dx.doi.org/10.1145/3173162.3173178

[2] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. 1999. DBMSs on a modern processor: Where

does time go? In International Conference on Very Large Data Bases. 266–277.

[3] Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C. Raphael, and Walter E. Baker. 1998. Performance

characterization of a quad Pentium pro SMP using OLTP workloads. In International Symposium on Computer Archi-

tecture. 15–26.

[4] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve, and Luiz André Barroso. 1998. Performance of

database workloads on shared-memory systems with out-of-order processors. In International Conference on Archi-

tectural Support for Programming Languages and Operating Systems. 307–318.

[5] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon Wei, and

David M. Brooks. 2015. Profiling a warehouse-scale computer. In International Symposium on Computer Architecture.

158–169.

[6] I-Cheng K. Chen, Chih-Chieh Lee, and Trevor N. Mudge. 1997. Instruction prefetching using branch prediction

information. In International Conference on Computer Design. 593–601.

[7] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos. 2008. Temporal

instruction fetch streaming. In International Symposium on Microarchitecture. 1–10.

[8] Aasheesh Kolli, Ali G. Saidi, and Thomas F. Wenisch. 2013. RDIP: Return-address-stack directed instruction prefetch-

ing. In The 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46). 260–271.

[9] Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch directed instruction prefetching. In International Sympo-

sium on Microarchitecture. IEEE, 16–27.

[10] L. Spracklen, Yuan Chou, and S. G. Abraham. 2005. Effective instruction prefetching in chip multiprocessors for

modern commercial applications. In 11th International Symposium on High-Performance Computer Architecture.

225–236.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

http://dx.doi.org/10.1145/3173162.3173178

Shooting Down the Server Front-End Bottleneck 7:29

[11] J. Bonanno, A. Collura, D. Lipetz, U. Mayer, B. Prasky, and A. Saporito. 2013. Two level bulk preload branch prediction.

In International Symposium on High-Performance Computer Architecture. 71–82.

[12] Ioana Burcea and Andreas Moshovos. 2009. Phantom-BTB: A virtualized branch target buffer design. In Proceed-

ings of the 14th International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’09). 313–324. http://dx.doi.org/10.1145/1508244.1508281

[13] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. SHIFT: Shared history instruction fetch for lean-core server

processors. In International Symposium on Microarchitecture. 272–283.

[14] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: Unified instruction supply for scale-out servers. In

International Symposium on Microarchitecture. 166–177.

[15] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017. Boomerang: A metadata-free architec-

ture for control flow delivery. In 2017 IEEE International Symposium on High Performance Computer Architecture

(HPCA’17). 493–504. http://dx.doi.org/10.1109/HPCA.2017.53

[16] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive instruction fetch. In International Symposium

on Microarchitecture. 152–162.

[17] Tse-Yu Yeh and Yale N. Patt. 1992. A comprehensive instruction fetch mechanism for a processor supporting specu-

lative execution. In International Symposium on Microarchitecture. 129–139.

[18] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Ailamaki, Babak Falsafi, and James C. Hoe.

2006. SimFlex: Statistical sampling of computer system simulation. IEEE Micro 26, 4 (2006), 18–31.

[19] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe. 2003. SMARTS: Accelerating microar-

chitecture simulation via rigorous statistical sampling. In International Symposium on Computer Architecture. 84–95.

[20] André Seznec and Pierre Michaud. 2006. A case for (partially) TAgged GEometric history length branch prediction.

Journal of Instruction-Level Parallelism 8 (2006). https://jilp.org/vol8/index.html.

[21] A. J. Smith. 1978. Sequential program prefetching in memory hierarchies. Computer 11, 12 (Dec. 1978), 7–21. http:

//dx.doi.org/10.1109/C-M.1978.218016

[22] I-Cheng K. Chen, Chih-Chieh Lee, and T. N. Mudge. 1997. Instruction prefetching using branch prediction infor-

mation. In Proceedings International Conference on Computer Design VLSI in Computers and Processors. 593–601.

http://dx.doi.org/10.1109/ICCD.1997.628926

[23] Viji Srinivasan, Edward S. Davidson, Gary S. Tyson, Mark J. Charney, and Thomas R. Puzak. 2001. Branch history

guided instruction prefetching. In Proceedings of the 7th International Symposium on High-Performance Computer

Architecture (HPCA’01). IEEE Computer Society, 291.

[24] Alexander V. Veidenbaum, Qingbo Zhao, and Abduhl Shameer. 1999. Non-sequential instruction cache prefetching

for multiple.issue processors. International Journal of High Speed Computing 10, 1 (1999), 115–140. http://dx.doi.org/

10.1142/S0129053399000065

[25] Yi Zhang, Steve Haga, and Rajeev Barua. 2002. Execution history guided instruction prefetching. In Proceedings of

the 16th International Conference on Supercomputing (ICS’02). Association for Computing Machinery, New York, NY,

199–208. http://dx.doi.org/10.1145/514191.514220

[26] Alberto Ros and Alexandra Jimborean. 2020. The entangling instruction prefetcher. IEEE Computer Architecture Let-

ters 19, 2 (2020), 84–87. http://dx.doi.org/10.1109/LCA.2020.3002947

[27] P. Kallurkar and S. R. Sarangi. 2016. pTask: A smart prefetching scheme for OS intensive applications. In 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16). 1–12. http://dx.doi.org/10.1109/MICRO.

2016.7783706

[28] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO: Automatic feedback-directed optimization for

warehouse-scale applications. In 2016 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO’16). 12–23.

[29] David Xinliang Li, Raksit Ashok, and Robert Hundt. 2010. Lightweight feedback-directed cross-module optimization.

In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO’10).

Association for Computing Machinery, New York, NY, 53–61. http://dx.doi.org/10.1145/1772954.1772964

[30] Guilherme Ottoni and Bertrand Maher. 2017. Optimizing function placement for large-scale data-center applications.

In 2017 IEEE/ACM International Symposium on Code Generation and Optimization (CGO’17). 233–244. http://dx.doi.

org/10.1109/CGO.2017.7863743

[31] C.-K. Luk, R. Muth, Harish Patil, R. Cohn, and G. Lowney. 2004. Ispike: A post-link optimizer for the Intel/spl reg/

Itanium/spl reg/ architecture. In International Symposium on Code Generation and Optimization, 2004 (CGO’04). 15–26.

http://dx.doi.org/10.1109/CGO.2004.1281660

[32] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT: A practical binary optimizer for

data centers and beyond. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO’19). IEEE Press, 2–14.

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

http://dx.doi.org/10.1145/1508244.1508281
http://dx.doi.org/10.1109/HPCA.2017.53
https://jilp.org/vol8/index.html
http://dx.doi.org/10.1109/C-M.1978.218016
http://dx.doi.org/10.1109/ICCD.1997.628926
http://dx.doi.org/10.1142/S0129053399000065
http://dx.doi.org/10.1145/514191.514220
http://dx.doi.org/10.1109/LCA.2020.3002947
http://dx.doi.org/10.1109/MICRO.2016.7783706
http://dx.doi.org/10.1145/1772954.1772964
http://dx.doi.org/10.1109/CGO.2017.7863743
http://dx.doi.org/10.1109/CGO.2004.1281660

7:30 R. Kumar and B. Grot

[33] Chi-Keung Luk and T. C. Mowry. 1998. Cooperative prefetching: Compiler and hardware support for effective in-

struction prefetching in modern processors. In Proceedings. 31st Annual ACM/IEEE International Symposium on Mi-

croarchitecture. 182–193. http://dx.doi.org/10.1109/MICRO.1998.742780

[34] M. Annavaram, J. M. Patel, and E. S. Davidson. 2001. Call graph prefetching for database applications. In Proceedings

HPCA 7th International Symposium on High-Performance Computer Architecture. 281–290. http://dx.doi.org/10.1109/

HPCA.2001.903270

[35] Nayana Prasad Nagendra, Grant Ayers, David I. August, Hyoun Kyu Cho, Svilen Kanev, Christos Kozyrakis,

Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. 2020. AsmDB: Understand-

ing and mitigating front-end stalls in warehouse-scale computers. IEEE Micro 40, 3 (2020), 56–63. http://dx.doi.org/

10.1109/MM.2020.2986212

[36] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner Litz, and Baris Kasikci. 2020. I-SPY:

Context-driven conditional instruction prefetching with coalescing. In 2020 53rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’20). 146–159. http://dx.doi.org/10.1109/MICRO50266.2020.00024

[37] Truls Asheim, Boris Grot, and Rakesh Kumar. 2021. BTB-X: A storage-effective BTB organization. IEEE Computer

Architecture Letters 20, 2 (2021), 134–137.

[38] AMD Software Optimization Guide. Section 2.8.1.2. ([n. d.]). https://www.amd.com/system/files/TechDocs/56665.zip.

[39] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2020. Divide and conquer frontend bottleneck. In 2020

ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA’20). 65–78. http://dx.doi.org/10.1109/

ISCA45697.2020.00017

[40] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K. Soundararajan, Rakesh Kumar, Joseph Devietti,

Sreenivas Subramoney, Gilles A. Pokam, Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-guided BTB prefetching

for data center applications. In 54th Annual IEEE/ACM International Symposium on Microarchitecture, Virtual Event,

Greece, October 18-22, 2021. ACM, 816–829. https://doi.org/10.1145/3466752.3480124

Received October 2020; revised May 2021; accepted August 2021

ACM Transactions on Computer Systems, Vol. 38, No. 3-4, Article 7. Publication date: January 2022.

http://dx.doi.org/10.1109/MICRO.1998.742780
http://dx.doi.org/10.1109/HPCA.2001.903270
http://dx.doi.org/10.1109/MM.2020.2986212
http://dx.doi.org/10.1109/MICRO50266.2020.00024
https://www.amd.com/system/files/TechDocs/56665.zip
http://dx.doi.org/10.1109/ISCA45697.2020.00017
https://doi.org/10.1145/3466752.3480124

