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Abstract—Serverless computing has seen rapid adoption be-
cause of its instant scalability, flexible billing model, and
economies of scale. In serverless, developers structure their
applications as a collection of functions invoked by various
events like clicks, and cloud providers take responsibility for
cloud infrastructure management. As with other cloud services,
serverless deployments require responsiveness and performance
predictability manifested through low average and tail latencies.
While the average end-to-end latency has been extensively studied
in prior works, existing papers lack a detailed characterization
of the effects of tail latency in real-world serverless scenarios and
their root causes.

In response, we introduce STeLLAR, an open-source serverless
benchmarking framework, which enables an accurate perfor-
mance characterization of serverless deployments. STeLLAR is
provider-agnostic and highly configurable, allowing the analysis
of both end-to-end and per-component performance with minimal
instrumentation effort. Using STeLLAR, we study three leading
serverless clouds and reveal that storage accesses and bursty
function invocation traffic are key factors impacting tail latency in
modern serverless systems. Finally, we identify important factors
that do not contribute to latency variability, such as the choice
of language runtime.

Index Terms—serverless, tail latency, benchmarking

I. INTRODUCTION

Serverless computing, also known as Function-as-a-

Service (FaaS), has emerged as a popular cloud paradigm,

with the serverless market projected to grow at the compound

annual growth rate of 22.7% from 2020 to 2025 [1]. With

serverless, developers structure their application logic as a

collection of functions triggered by events (e.g., clicks). The

number of instances of each function active at any given time

is determined by the cloud provider based on instantaneous

traffic load directed at that particular function. Thus, developers

benefit from serverless through simplified management and

pay-per-actual-usage billing of cloud applications, while cloud

providers achieve higher aggregate resource utilization which

translates to higher revenues.

Online services have stringent performance demands, with

even slight response-time hiccups adversely impacting rev-

enue [2], [3]. Hence, providing not only a low average response

time but also a steady tail latency is crucial for cloud providers’

commercial success [2].

The question we ask in this paper is what level of perfor-

mance predictability do industry-leading serverless providers

offer? Answering this question requires a benchmarking tool

for serverless deployments that can precisely measure latency

§These authors contributed equally to this work.

across a span of load levels, serverless deployment scenarios,

and cloud providers.

While several serverless benchmarking tools exist, we find

that they all come with significant drawbacks. Prior works

have characterized the throughput, latency, and application

characteristics of several serverless applications in different

serverless clouds; however, these works lack comprehensive

tail latency analysis [4]–[9]. These works also do not study the

underlying factors that are responsible for the long tail effects,

the one exception being function cold starts, which have been

shown to contribute significantly to end-to-end latency in a

serverless setting [8], [10], [11].

In this work, we introduce STeLLAR1, an open-source

provider-agnostic benchmarking framework for serverless

systems’ performance analysis, both end-to-end and per-

component. To the best of our knowledge, our framework is the

first to address the lack of a toolchain for tail-latency analysis

in serverless computing. STeLLAR features a provider-agnostic

design that is highly configurable, allowing users to model

various aspects of load scenarios and serverless applications

(e.g., image size, execution time), and to quantify their implica-

tions on the tail latency. Beyond end-to-end benchmarking, the

framework supports user-code instrumentation, allowing the

accurate measurement of latency contributions from different

cloud infrastructure components (e.g., storage accesses within

a cross-function data transfer) with minimal instrumentation

effort.

Using STeLLAR, we study the serverless offerings of three

leading cloud providers, namely AWS Lambda, Google Cloud

Functions, and Azure Functions. We configure STeLLAR to

pinpoint the inherent causes of latency variability inside cloud

infrastructure components, including function instances, storage,

and the cluster scheduler. With STeLLAR, we also assess the

delays induced by data communication and bursty traffic and

their impact on the tail latency.

Our analysis reveals that storage accesses and bursty function

invocations are the key factors that cause latency variability

in today’s serverless systems. Storage accesses include the

retrieval of function images during the function instance start-

up as well as inter-function data communication that happens

via a storage service. Bursty traffic stresses the serverless

infrastructure by necessitating rapidly scaling up the number

of function instances, thus causing a significant increase in

both median and tail latency. We also find that the scheduling

1STeLLAR stands for Serverless Tail-Latency Analyzer. The source code
is available at https://github.com/ease-lab/STeLLAR.

https://github.com/ease-lab/STeLLAR
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policy, specifically whether multiple invocations may queue at

a single function instance, can significantly increase request

completion time by up to two orders of magnitude, particularly

for functions with long execution times. Our analysis also

reveals factors that, somewhat surprisingly, contribute little to

latency variability; one such factor is the choice of language

runtime.

II. BACKGROUND

A. Serverless Computing Basics

Over the last decade, serverless has emerged as the next dom-

inant programming paradigm and cloud architecture, known as

Function-as-a-Service (FaaS). Serverless offers many advan-

tages over conventional cloud computing, resulting in growing

interest among service developers. In this paradigm, cloud

service developers compose their applications as a collection of

jobs (i.e., functions), connecting function invocations to specific

events, e.g., HTTP requests. At the same time, serverless

providers are solely responsible for the function execution.

Providers deliver the natural scalability of each deployed

function - from zero to, virtually, infinity - charging service

developers in a convenient pay-as-you-go manner. Application

developers deploy functions by providing function handlers,

written in a high-level language of their choice, that providers

then integrate into HTTP servers. These HTTP servers, called

function instances, will process any invocation for the corre-

sponding functions. The developers pay only for the amount

of resources (CPU time and utilized memory) used by the

instances of their functions during the processing of function

invocations [12], [13]. To achieve function resources scalability,

the providers allocate these resources on demand, launching and

tearing down function instances in response to load changes.

Often packaged as binary archives or container images, both

further referred to as function images, function instances can

be launched on any node in a serverless cluster, with the cloud

provider responsible for instance placement and steering of

both requests and data to the instances.

This division of labor, where serverless developers implement

functions and providers manage their resources, leads to the

following serverless cloud design principles. First, functions

are decoupled from cloud resources allocation, which happens

at the granularity of function instances. Second, function

instances are ephemeral and stateless, enabling processing

of any invocation by any instance. Third, instances can run on

any node in a serverless cluster, requiring the provider to ship

function images and steer requests to the appropriate node.

B. A Lifecycle of a Function Invocation

We describe the serverless infrastructure organization (Fig. 1),

summarizing available information about the leading serverless

provider, AWS Lambda [10], and the state-of-the-art open-

source research framework for serverless experimentation,

vHive [8]. First, a function invocation, e.g., triggered by an

external source like a click, arrives as an RPC or HTTP

request at one of the servers of a scale-out front-end fleet

that authenticates this request and its origin 1 . The request
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Figure 1: Serverless infrastructure overview.

is then forwarded to the load balancer that routes invocations

to physical hosts, called Workers, that have instances of the

function currently running 2 .2 Request routing is based on

the load in front of currently active instances.

If all function instances are busy upon an invocation arrival,

the load balancer buffers the invocation while asking the cluster

scheduler to spawn a new instance for the function 3 . The

scheduler keeps track of the entire cluster resource utilization,

which informs decisions regarding function instance placement.

Once the scheduler chooses a Worker to run a new function

instance, it contacts the Worker’s instance manager asking to

launch a new instance 4 .3 The instance manager retrieves the

necessary function state, e.g., a Docker image or an archive with

sources, from a storage service and starts the instance 5 . Note

that the instance manager also acts as a part of the invocation

data plane, terminating connections to the load balancer and

the function instances on the Worker.

When a new instance of the function is ready, the instance

manager informs the load balancer, which can then steer the

invocation to the instance manager 6 , which relays it to the

instance 7 . The function then performs language runtime

initialization, after which the user-provided code of the function

might retrieve the function invocation’s inputs, e.g., the output

produced by the corresponding caller function 8 . Finally, the

function processes the invocation. During processing, a function

may call other functions with inputs that can be transferred

inline inside the callee’s invocation RPC arguments or by saving

2The load-balancer component is referred to as Worker Manager in AWS
Lambda [10] and Activator in Knative [14].

3The instance manager is referred to as MicroVM Manager in AWS
Lambda [10].
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the input data in storage, which is required for larger payloads.

These internal function invocations also need to traverse the

front-end and/or the load balancer 9 , effectively repeating

the whole aforementioned procedure.

III. SOURCES OF TAIL LATENCY IN SERVERLESS CLOUDS

Serverless infrastructures aim to deliver a high quality of

service to the majority of cloud application users. Specifically,

similarly to conventional clouds, serverless infrastructures strive

to minimize tail latency. Providing tail latency guarantees is

a hard task for serverless clouds while delivering continuous

scaling of function instances and given the necessity of running

these instances on any node in a serverless cluster.

Fig. 1 shows the components that could potentially become

sources of tail latency. These are: the function instances

themselves, the storage services used by both the instance

manager and the user code, and the cluster scheduler. For

each of these components, we identify low-level application

characteristics and scenarios that could hurt tail latency.

First, spawning new function instances induces a significant

delay, often referred to as a cold start delay in the literature [8],

[15], [16]. The key factors that contribute to cold start delays

include the language runtime (chosen by the application

developer), the provider’s sandbox technology, and the size of

a function image. These factors impact the cold start delays

not only directly but also indirectly by interacting with various

infrastructure components, like storage services and network

switches. For example, interpreted languages, like Python, are

known to have higher startup delays compared to compiled

languages, like Go. Also, providers use different sandboxes for

function instances; e.g., MicroVMs in AWS Lambda [10] and

Google Cloud Functions [17], whereas Azure Functions run

in containers atop of regular VMs [18]. Finally, large function

images can take non-negligible amounts of time when retrieved

from storage. Function images are usually resident in low-cost

storage that is not optimized for low latency access since the

majority of functions are invoked once per hour or less [16].

Second, the functions that transfer large payloads experience

delays induced by the involved infrastructure components.

Functions can perform data transfers by embedding their

payloads inside the invocation RPC, albeit sizes are restricted

to 256KB-10MB [19], [20]. For transferring larger payloads,

functions have to resort to storage services suffering from

the tail-adverse effects of cost-optimized services, similarly to

functions that have large function images. Hence, functions

that sporadically transfer large amounts of data – both inline

and via storage – may encounter significant tail latency bloat.

The cluster scheduler is another important source of tail

latency as prior work shows that function invocation traffic

can be bursty [21]. Serverless schedulers attempt to right-size

the number of active function instances by quickly reacting

to changes in the invocation traffic. Prior work showed that

most functions are short-running [16], which has the effect of

placing a high load on the cluster scheduler which must cope

with a flurry of scheduling decisions at small time intervals.

One important aspect of the scheduler is the choice of the

policy that deals with whether to steer multiple requests in a

burst to an existing warm instance or spawn new instances.

The trade-off is between inducing queuing at a warm instance

or incurring long cold-start delays to avoid queuing.

Take-away: a comprehensive measurement framework for tail

latency analysis must stress all the relevant infrastructure

components and technologies to pinpoint, assess and compare

all tail latency contributors for a given provider.

IV. STELLAR DESIGN

This work introduces STeLLAR, an open-source, provider-

agnostic framework for serverless cloud benchmarking that

enables systems researchers and practitioners to conduct

comprehensive performance analysis. STeLLAR is highly con-

figurable, allowing users to model specific load scenarios and

selectively stressing distinct cloud infrastructure components.

For instance, as we show in this work, STeLLAR not only helps

assess the implications of the language runtime on the function

startup time, like prior work [5], [22]–[24], but can selectively

stress the cluster scheduler by steering frequent bursts of

invocations to a set of functions. Also, STeLLAR can stress the

storage layer by invoking functions with large image sizes and

by configuring data transfer sizes across chains of functions.

We envision STeLLAR’s users to be able to configure the

framework to model other scenarios and stress tests. STeLLAR

uses a robust performance measurement methodology (see §V

for details), tailored for tail latency analysis, supporting both

end-to-end and localized in-depth performance studies.
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Figure 2: STeLLAR architecture overview.

STeLLAR architecture, shown in Fig. 2, is comprised of two

main components, namely deployer and client. The deployer

features a set of provider-specific plugins, each of which

are responsible for deploying functions in the corresponding

provider’s cloud, using a programmatic interface offered by

the providers. The deployer’s logic is configured via a file with

a static function configuration that abstracts away the details

and terminology of various providers. Using this configuration

file, STeLLAR users can define a wide range of static function

parameters for each of the deployed functions, as follows:
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• Function deployment method; currently, a ZIP archive or

a Docker container;

• Image size of a function, by embedding a random-content

file of a configurable size into the function’s ZIP archive

or a Docker container;

• Maximum memory size of the deployed function’s in-

stances;

• A number of identical replicas of the function. This

is particularly useful to accelerate cold-start latency

measurements by invoking many identical functions in

parallel instead of invoking a single function, then waiting

for the provider to shut down its corresponding idle

instance before repeating the experiment.

Provided with the static configuration file, the deployer

automatically configures and deploys the requested set of

functions, producing a file that contains a set of endpoint URLs,

each of which corresponds to a single function and is assigned

by the appropriate provider. The static function configuration

file may define a function handler’s code, a maximum memory

size of a function instance, the effective image size, as well the

provider the target availability zone. For some providers, the

deployer supports several deployment methods, namely ZIP

archive-based deployment, which is common to all providers,

and a more recent container-based deployment option available

in some serverless clouds, e.g., AWS Lambda [25]. With

a ZIP deployment, the user needs to wrap their code with

its dependencies, via each provider’s programmatic or CLI

interface used by STeLLAR, in an archive, which can be

then deployed at the target availability zone. The container

based deployment is done with the regular toolchain provided

by Docker that builds a container image using a Dockerfile.

The users can configure the effective function image size by

instructing the deployer to add a random-content file to the

corresponding ZIP archive or Docker image. Currently, the

STeLLAR deployer automates deployment in AWS Lambda

whereas deploying functions in Azure and Google clouds needs

to be done manually.
After configuring and uploading a set of functions using

the deployer, STeLLAR can drive the load to these functions,

measuring their response time and visualizing the measurements

with a set of plotting utilities. The client is provider-agnostic,

generating function invocation traffic as HTTP requests to the

endpoints that are defined in the file produced by the deployer

component. The clients invokes functions from the file with

the endpoints’ URLs in a round-robin fashion, calling them

one after another according to the specified IAT. To send a

request to a deployed function, the client spawns a goroutine

that sends an HTTP request to the function’s URL, blocking

till the function’s response arrives. For each of the requests,

its goroutine measures the latency between the time when

the request was issued and the time when the corresponding

response was received. The measurements are then aggregated

in a single file for further data analysis and visualization.
The client supports further customization with a runtime

configuration file where users may specify a number of runtime

parameters, including:

• An arbitrary mix of deployed functions;

• Inter-arrival time (IAT) distribution of the function invoca-

tion traffic, with a fixed, stochastic, or bursty distribution;

• Function execution time;

• Chain length that is the number of functions in a chain,

where each preceding function invokes its following

function while transferring a payload of a configurable

size;

• The type of data transfer to use for chained functions;

currently, (1) inline transfers, and (2) transfers via a

storage service (AWS S3 and Google Cloud Storage)

are supported.

STeLLAR lets the users specify the IAT distribution (e.g.,

round-robin across all deployed functions) along with the

number of requests issued in each step, i.e., the burst size,

which is essential to evaluate cloud infrastructure efficiency in

the presence of bursty traffic. Also, STeLLAR users can specify

the execution time of a function with a busy-spin loop of a

configurable duration. Other parameters define the data transfer

behavior across chains of functions, where each function calls

the next function in the chain and waits for its response before

returning. The users can specify the transport for data transfers

(inline arguments inside the invocation HTTP requests or a

cloud storage service) and the length of function chains.

STeLLAR supports intra-function instrumentation by adding

calls into Go’s native Time module. For example, to capture

the data transfer delays, we add a timestamp in the producer

function before saving a payload to a storage service (e.g.,

AWS S3) and another timestamp in the consumer function after

retrieving the payload from the storage. The functions’ code

concatenates these timestamps and passes them to STeLLAR’s

client as a string. The overhead of this instrumentation is sub-

microsecond, as Go relies on Linux’ clock_gettime()

whose overhead has been measured to be within 30ns [26],

[27].

Finally, STeLLAR can visualize latency measurements as

a cumulative distribution function or as latency percentiles as

a function of one of the serverless-function parameters (e.g.,

the payload size in a data transfer, function image size). The

ability to collect both the end-to-end time and the internal

timestamps, e.g., for measuring the data transfer time, allows

users to cross-validate their measurements.

V. METHODOLOGY

We use STeLLAR to characterize three leading serverless

cloud offerings, namely AWS Lambda, Google Cloud Func-

tions, and Azure Functions. In the rest of this section, we

discuss different aspects of performance, approaches to function

deployment, the configuration of STeLLAR, and the metrics

that we focus on.

Factor Analysis Vectors: To assess the impact of each of

the identified tail-latency sources, we conduct studies along

the following four vectors. First, we evaluate the response

time of warm and cold functions under a non-bursty load (i.e.,

allowing no more than a single outstanding request to each
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function).4 Second, we assess the cold function delays that

appear on the physical node that hosts these functions, varying

the language runtime and the functions’ image size. Third, we

study the data communication delays for chained functions,

where one function transmits a payload of varied size to the

second function; we consider two data transfer methods: inline

(i.e., inside the HTTP request) and via a cloud storage service.

Lastly, we investigate the behavior of serverless clouds in the

presence of bursty function invocations, varying the number

of requests in a burst (further referred to as the burst size) and

their inter-arrival time.

Function Deployment Configuration: We deploy the func-

tions in datacenters located near the western coast of the

USA in close proximity to the CloudLab Utah datacenter,

where STeLLAR runs. The functions are configured with the

maximum memory sizes, which are 1.5GB for Azure and

2GB for AWS and Google for a single CPU core per function

instance [19], [20], [28]. These high-memory configurations

are not subject to CPU throttling applied by the providers to

low-memory instances.

Unless specified otherwise, we deploy all functions using

the ZIP-based deployment method, which is supported by

all studied providers. We deploy Python 3 functions for all

experiments except the function image size (§VI-B2) and the

data transfer (§VI-C) experiments. In those experiments, we

use Golang functions to minimize the image size and increase

the accuracy of the internal timestamp measurements required

in the data transfer experiment. To measure the data transfer

time in a chain of two functions, the first function records an

initial timestamp before storing it in the transferred payload.

The payload is then sent using the second function’s invocation

request or cloud storage. For the data transfer experiments,

functions transmitted data via the same-type storage services

available in the studied clouds, namely AWS S3 and Google

Cloud Storage. Finally, the second function is invoked, after

which it loads the data from the request or storage and then

records a second timestamp. STeLLAR’s client computes the

effective transfer time by subtracting these timestamps. All

functions return immediately, unless specified otherwise.

STeLLAR Configuration: We run the STeLLAR client on

an xl170 node in CloudLab Utah datacenter which features a

10-core Intel Broadwell CPU with 64GB DRAM and a 25Gb

NIC [29]. The propagation delays between the STeLLAR client

deployment and the AWS, Google, and Azure datacenters in

the US West region, as measured by the Linux ping utility,

are 26, 14, and 32ms, respectively.

In all experiments, unless stated otherwise, functions return

immediately with no computational phase. To study warm

function invocations, the client invokes each function with a

3-second inter-arrival time (IAT), further referred to as short

IAT, that statistically ensures that at least one function instance

stays alive. To evaluate cold function invocations, the client

invokes each function with a 15-min IAT, further referred to as

4Here, we call a function warm if it has at least one instance online and idle
upon a request’s arrival, otherwise we refer to the function as a cold function.
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Figure 3: Latency distributions for functions invoked with short

and long inter-arrival times.

long IAT, which was chosen so that the providers shut down

idle instances with a likelihood of over 50%.5 We configure

the STeLLAR client to invoke each function either with a

single request or by issuing a burst of requests simultaneously.

A serverless request completes in >20ms, as observed by

the client, which means that requests in the same burst create

negligible client-side queuing. For each evaluated configuration,

STeLLAR collects 3000 latency samples (each request in a

burst is one measurement).

In all experiments, to speed up the measurements, we deploy

a set of identical independent functions that the client invokes

in a round-robin fashion, ensuring no client-side contention.

For example, to benchmark cold functions, we deploy over

100 functions, each of which is invoked with a fixed IAT.

Latency and Bandwidth Metrics: We compare the studied

cloud providers using several metrics that include the median

response time, the 99-th percentile (further referred to as the

tail latency), and the tail-to-median ratio (TMR) that we

define as the 99-th percentile normalized to the median. Both

median and tail latencies are reported as observed by the client,

i.e., the latencies include the propagation delays between the

client deployment and the target cloud datacenters. The TMR

metric acts as a measure of predictability which allows the

comparison of response time predictability between different

providers. We consider a TMR above 10 potentially problematic

from a performance predictability perspective. In the data-

communication experiments, we estimate the effective data

transmission bandwidth as the payload size divided by the

median latency of the transfer.

VI. RESULTS

A. Warm Function Invocations

We start by evaluating the response time of functions with

warm instances by issuing invocations with a short inter-arrival

time (IAT). For this study, at most one invocation to an instance

is outstanding at any given time. Fig. 3a shows cumulative

distribution functions (CDFs) of the response times as observed

by the STeLLAR client.

We note that propagation delays to and from the datacen-

ter (§V) constitute a significant fraction of the latency for

5We found that AWS Lambda always shuts down idle function instances
after 10 minutes of inactivity, which allowed us to speed up experiments on
AWS by issuing requests with a long IAT of 10 minutes.
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Figure 4: Cold-start latency as a function of the extra random-

content file added to the function and provider.

warm invocations. Since the propagation delays to the different

providers’ datacenters differ, we subtract them to focus on the

intra-datacenter latencies. Note that this is the only place in

the paper where we do so; the rest of the results (including

Fig. 3a) include the propagation delays.
With propagation delays subtracted, we find that Google

has the lowest median latency (17ms), followed by AWS

(18ms), and Azure (25ms). In line with having the lowest

median latency, Google also displays a lower tail latency (47ms)

compared to the other two providers (74ms for AWS, 75ms

for Azure). Despite having the highest median latency, Azure

yields the lowest TMR of all (1.3), compared to 1.5 for Google

and 1.7 for AWS.

Observation 1. Invocations of warm functions impose low

delays and variability, with a median latency of ≤25ms and

TMRs <2.

B. Cold Function Invocations

We perform a factor analysis of cold-start delays, starting

from latencies corresponding to baseline invocations followed

by an investigation of the effect of function image size,

language runtime and function deployment method.
1) Baseline Cold Invocation Latency: We study the response

time of cold functions by issuing invocations with the long

IAT. As shown in Fig. 3b, the median and tail latencies of

cold invocations are, respectively, 10-28× and 9-49× higher

than their warm-start counterparts. We observe that the lowest

median latency (448ms) and the lowest latency variability

(TMR of 1.5) are delivered by AWS. Google ranks in the

middle and displays a median latency of 870ms and a TMR

of 1.8. Finally, Azure shows the highest median latency of

1401ms with the highest variability (TMR of 2.6).
2) Impact of Function Image Size: In this experiment, we

assess the impact of the image size on the median and tail

response times, by adding an extra random-content file to

each image. We only consider ZIP-based images as these are

supported by all three of our studied cloud providers.
Results are shown in Fig. 4. We observe that Google is

not sensitive to the image size, with near-identical CDFs for

images with added 10MB and 100MB files. We speculate that

the reason behind this behavior is that the deployed function’s

code does not access the file embedded in the function image,

allowing the infrastructure to skip the file’s loading, e.g., in

the case of Google employing a lazy image loading policy.
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Figure 5: Cold-start latency distributions in AWS for different

language runtimes and deployment methods.

In contrast, AWS show considerable sensitivity to the image

size: increasing the added file’s size from 10MB to 100MB

results in 3.5× and 4.2× increase of the median and the tail

latency, respectively. Azure exhibits even higher sensitivity to

the image size, with the median and tail latencies increasing by

2.4× and 1.6× when adding 100MB to the image, compared

to the response time of the functions with added 10MB. For

functions with larger images, the tail latency may reach 2155ms

in AWS and 5723ms in Azure. However, for both AWS and

Azure, the usage of large function images has a moderate

impact on latency variability, with a TMR of 1.7. In contrast to

AWS and Azure, Google shows considerably lower sensitivity

to varying the image size. Also, for large image sizes, e.g.,

with a 100MB file, Azure exhibits lower median latencies

(approx. 510ms) than its competitors albeit showing higher

latency variability, with a TMR of 3.6.

Observation 2. Invocations of cold functions may impose large

delays of up to several seconds to the median response time,

particularly for functions that have large images. However,

variability of cold-starts is moderate, with TMR of <3.6.

3) Impacts of Deployment Method and Language Runtime:

We next study the implications of different deployment methods

and language runtimes. Deployment methods refer to how a

developer packages and deploys their functions, which also

affects the way in which serverless infrastructures store and

load a function image when an instance is cold booted. We

study the two deployment methods that are in common use

today: (1) ZIP archive, and (2) container-based image. With

respect to language runtime, our intent is not to evaluate all

possible options, but rather to focus on two fundamental classes

of runtimes: compiled and interpreted. To that end, we study

functions written in Python 3 (interpreted) and Golang 1.13

(compiled) deployed via ZIP and container-based images. This

study is performed exclusively using AWS Lambda because, at

the time of this paper’s submission, Google Cloud Functions did

not support container-based deployment and Azure Functions

did not support Golang.

The results of the study are shown in Fig. 5, from which we

draw three observations. First, for ZIP-based deployment, both

Golang and Python’s CDFs nearly overlap, showing median

and tail latencies of 360ms and 570ms, respectively. This

result demonstrates that the choice of a language runtime

has negligible implications for cold-start delays. The result is

surprising in that it contradicts academic works that showed
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that the choice of a runtime impacts cold-start latency [4],

[15], [24]. However, these academic works did not study

production clouds, instead focusing on in-house or open-source

systems. Thus, we hypothesize that academic systems may lack

important optimization employed by production systems, such

as having a pool of warm generic function instances [10]. We

call attention to this issue as one that requires further study.

Our second observation is that the latency CDFs of Python

and Golang runtimes with container-based deployment dif-

fer significantly. Python functions show considerably higher

median and tail latency of 612ms and 2882ms, respectively,

whereas for Golang, the latency CDF of container-based

deployment is close to that of ZIP-based one. One possible

explanation of this phenomenon is that a Golang program

is compiled as a static binary, suggesting that both ZIP and

container image comprise the same binaries that are likely to

be stored in the same storage service. Meanwhile, for Python,

a container-based deployment shows higher median and tail

latencies, compared to the corresponding ZIP deployment.

We attribute this behavior to the fact that Python imports

modules dynamically, requiring on-demand accesses to multiple

distinct files in the function image. When combined with a

container-based deployment method, we hypothesize that this

results in multiple accesses to the function image storage, since

containers support splintering and on-demand loading of image

chunks [30]. The additional accesses to the image store would

explain the high cold start time and latency variability for

Python container-based deployments.

Third, we characterize the latency variability induced by the

language runtime and the deployment method selection. We

observe that Golang ZIP and Python ZIP-based functions show

similar TMRs of 1.5 and 1.7, indicating little impact on the

tail latency. Golang container-based deployment has slightly

higher variability with a TMR of 2.4. In contrast to Python ZIP

deployment, Python container-based functions exhibit much

higher latency variability with a TMR of 4.7.

Observation 3. The choice of the language runtime has low

impact on the cold function invocation delay with a <15ms

difference between Golang and Python functions’ median

response time with ZIP deployment. In contrast, the deployment

method strongly impacts cold-start delays for functions written

in an interpreted language such as Python; compared to ZIP,

container-based deployment significantly increases both median

and tail latencies by 1.7× and 8.0×, respectively.

C. Data Transfer Delays

To study the impact of the data-transfer delays on the overall

response time tail latency, we deploy a producer-consumer

chain of two functions in AWS and Google.6 The producer

function invokes the consumer with an accompanying payload

of a specified size. The payload is transmitted in one of two

ways: inline or via a storage service. We report the latency from

the start of the payload transmission, including the consumer

6At the time of this writing, Azure Functions did not support Go runtime.
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Figure 6: Inline data transfer latency as a function of payload

size. Note that both axes in (a) and the X-axis in (b) are

logarithmic.

function invocation time, to the point when the payload is

retrieved by the consumer function.
1) Inline Transfers: First, we investigate the transmission

time of transferring the payloads inline. Note that both providers

restrict the maximum HTTP request sizes, and hence the inline

payload size, to 6 and 10MB in AWS [19] and Google [20],

respectively. For larger data transfers, application developers

must resort to storage-based transfers, discussed below.

Fig. 6a shows the median and the tail transmission latency

of inline transfers. Google delivers the lowest median latency

for small payloads (1-10KB), completing the transfer 1.6×

faster than AWS. E.g., a 1KB transfer completes in 7ms in

Google vs 11ms in AWS.

In contrast to small-payload transfers, which complete

relative quickly, transferring large payloads may take hundreds

of milliseconds. For instance, AWS and Google complete a

4MB transfer with median latencies of 124ms and 202ms, and

TMRs of 1.4 and 1.3, respectively. For functions that run for

less than 10 seconds, which account for >70% of all functions

as reported in Azure Functions’ trace [16], such data transfer

overheads might be prohibitively high.

Next, we compare data transfer time variability in AWS and

Google (Fig. 6b). For both providers, the variability is low,

with TMRs of 1.7 and 1.4, respectively. With such low TMRs,

we find that inline transfers have a fairly low impact on tail

latency compared to other sources of variability.

Finally, we study the effective bandwidth of inline data

transfers, which we compute by dividing the payload size by

the observed median transmission time. We find that AWS

and Google functions deliver a relatively meager 264Mb/s

and 152Mb/s of bandwidth, respectively. This bandwidth is

significantly lower than the bandwidth of commodity datacenter

network cards (e.g., 10-100Gb/s in non-virtualized AWS EC2

instances [31]).
2) Storage-based Transfers: First, we evaluate the latency

and the effective-bandwidth characteristics of storage-based

transfers in AWS and Google, sweeping the size of the

transmitted payloads from 1KB to 1GB. Fig. 7a demonstrates

that the lowest median latency is delivered by AWS. For

instance, a 1MB payload transfer completes 1.4× faster in

AWS than in Google (111ms in AWS vs 155ms in Google).
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Second, we investigate the effective transmission bandwidth

of storage-based transfers and compare it to the bandwidth

that we measure for inline transfers (§VI-C1). We observe that

storage-based transfers provide significantly larger effective

bandwidth than the corresponding inline transfers. For example,

1MB transfers between functions in AWS and Google yield

72Mb/s and 48Mb/s, respectively. The achieved bandwidth is

much higher for >100MB payloads, reaching up to 960Mb/s

and 408Mb/s for AWS and Google, respectively. Despite the

higher bandwidth achieved by large transferred sizes, it is still

more than an order of magnitude lower than what a low-end

commodity 10Gb NIC can offer.

Finally, we assess how storage transfers contribute to latency

variability in serverless. Fig. 7b shows that storage-based

transfer delays exhibit large tail latency. For instance, when

transferring 1MB of data, the tail latency is 1177ms in AWS and

5781ms in Google, with corresponding TMRs of 10.6 and 37.3

in AWS and Google, respectively. In contrast, transferring 1MB

inside function invocation requests, i.e., inline, yields much

lower TMRs of 1.7 in AWS and 1.4 in Google (§VI-C1).

We speculate that the high variability of storage transfers

is due to the fact that storage services, by design, optimize

for cost rather than performance. With the lack of a fast and

cheap communication alternative for large payload transfers,

we identify storage as one of the key contributors to the overall

response time and performance variability in serverless.

Observation 4. Storage-based data transfers significantly

contribute to both median and tail latencies. E.g., for a 1MB

transfer in Google, these delays result in 155ms median and

5774ms tail latencies, yielding a high TMR of 37.3. In contrast,

inline transfers are fast and predictable: e.g., for a 1MB transfer

in Google, these delays result in 62ms median and 88ms tail

latencies with a much lower TMR of 1.4.

D. Bursty Invocations

We study the response time of functions in the presence

of bursty invocations and assess the impact of the scheduling

policy on request completion time.

Fig. 8 shows the response time for requests arriving in

bursts with short and long IATs, corresponding to (mostly)

warm and (mostly) cold invocations. We observe that the
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Figure 8: Latency CDFs for short and long IATs for different

burst sizes. Note that X-axes vary across graphs.

burst size, i.e., the number of requests sent in a single burst,

impacts both median and tail latency characteristics for all

three providers. However, different providers exhibit different

degrees of sensitivity to the burst size. Note that a burst size

of 1 corresponds to a single invocation (Fig. 3).

1) Bursty Invocations with Short IAT: Fig. 8 (left subfigures)

plot the latency CDFs of the three providers when bursts are

issued with short IATs. We observe that all providers exhibit

the similar behavior: serving larger bursts leads to an increase

in both median and tail latencies. Azure displays the highest

sensitivity to the burst size: increasing the burst size from 1

to 500 leads to an increase in both median and tail latencies

by 33.4× and 98.5×, respectively. Noticeably, Google shows

the lowest sensitivity to increasing the burst size from 100 to

500, with the median latencies being within 15ms for different

burst sizes (the tail latencies are within 50ms).

We next compare latency variability across the three

providers using a burst size of 100 as a base for compar-

isons. We observe that Google shows the lowest variability,

followed by AWS, and Azure with TMRs of 1.7, 6.2, and 7.9,

respectively. Increasing the burst size from 100 to 500 results

in lower variability for AWS and Azure, with TMRs of 4.4
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and 3.9, but slightly goes up for Google, with a TMR of 1.9.

2) Bursty Invocations with Long IAT: Next, we compare

invocations in the presence of bursts with long IAT. Results

are plotted in the right-hand subfigures of Fig. 8. We find

that different providers exhibit different behavior as burst size

increases.

For AWS, increasing the burst size from 1 to 100 results

in 1.8× and 1.3× decrease of the median and tail latencies,

respectively. This latency reduction suggests that AWS op-

timizes retrieval of function images from storage, possibly

by employing an in-memory storage-side caching. While

increasing the burst size from 100 to 300 requests results in

minimal changes, within 12%, in both median and tail latencies

in AWS, we observe that when serving a burst of even 500

requests, both median and tail latencies continue to be lower

than for an individual request.

Google’s median and tail latencies in the presence of bursts

are higher than in the presence of individual requests (i.e.,

burst size of 1). For instance, the median and tail latencies

is 870ms and 1567ms for a burst size of 1 vs. 1818ms and

3095ms for a burst size of 100, respectively. Increasing the

burst size to 300 results in further increase of both median

and tail latencies Interestingly, increasing the burst size to 500

results in a reduction of both median and tail latencies. We

hypothesize that this behavior might be attributed to the effects

coming from the function image storage subsystem that might

adjust aggressiveness of images caching based on load.

One can also see that AWS and Google functions’ response

time never drops to the range attributable to warm function

invocations, i.e., 25-100ms (Fig. 3a). This suggests that these

providers do not allow multiple requests to queue at an already-

executing instance, and, instead, a dedicated instance services

each and every request in a burst. This corroborates AWS

documentation [32]. Azure exhibits a different behavior, as its

CDF suggests that such queuing may occur, albeit limited to a

very small fraction of requests (<5%).

Azure functions show that both median and tail latencies

significantly increase when increasing the burst size. For

instance, increasing the burst size from 1 to 500 increases

the median and the tail latencies by 4.1× (i.e., by 4344ms)

and 2.1× (i.e., by 4037ms).

Finally, we note that all three providers have low latency

variability for bursts with long IAT. For the burst size of

100, AWS shows the highest variability with a TMR of 2.2.

Meanwhile, Google and Azure enjoy lower TMRs of 1.7 and

1.4, respectively.

Observation 5. For bursts arriving with a short IAT, two

out of the three providers experience a moderate increase

in the median latency by 3.1-3.3× and the tail latency by

4.2-8.4×, compared to to serving individual invocations. The

third provider exhibits higher sensitivity with its median and

tail latencies increasing by 33.5× and 98.5×, respectively.

Meanwhile latency variability is moderate for all providers,

with TMRs <7.9.

Observation 6. For bursts arriving with a long IAT, all
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Figure 9: Latency CDFs for different request burst sizes,

arriving with a long IAT, for the functions with 1-second

long execution time.

providers show moderate latency variability with TMRs of

1.3-2.6. Despite that, the median and the tail latencies of two

out of three providers increase by up to 740ms and 4344ms.

3) Implications of Scheduling Policy: In this experiment, we

study the scheduling policies that different providers apply in

the presence of bursty invocations with a long IAT. In contrast

to the previous study, where functions responded immediately

(i.e., took no time other than to generate the response), here

we deploy functions with an execution time of 1 second.

Our goal is to understand whether providers allow concurrent

requests to queue at an active instance to alleviate the lengthy

cold-start delays. We chose the function execution time to

be 1 second as it exceeds the median cold-start delays for all

providers, as shown in §VI-B1. Moreover, the traces released by

Microsoft Azure show that 50% of functions run for 1 second,

on average [16]. Intuitively, with the function execution time

being longer than the cold-start latency, a scheduling policy

optimized exclusively for performance would cold-start a new

instance for each request in a burst instead of allowing multiple

requests to queue at an existing instance.

We perform the experiment with burst sizes of 1 and 100.

Results are shown in Fig. 9. First, we observe that for non-

bursty execution (i.e., a burst size of 1), CDFs for all providers

are close to each other, as there is no potential for queuing. For

bursty execution, the providers exhibit dramatically different

behavior from each other. For instance, for burst sizes of 1 and

100, we observe that AWS demonstrates nearly identical latency

CDFs with median and tail latencies of 1598ms and 1865ms,

respectively. As both of these latencies are below 2 seconds,

it is clear that all requests execute on separate instances, and

no request waits for another request, which is in line with the

observation we made in §VI-D2.

In contrast, Google delivers median and tail latencies of

2978ms and 4595ms, respectively, indicating that up to four

requests may queue at one function instance. Meanwhile,

Azure demonstrates median and tail latencies of 18637ms

and 38545ms, respectively, showing that more than 30% of

requests in a burst may be executed by the same instance.

While it is difficult to ascertain that either Google or Azure

do, in fact, allow requests to queue at an active instance,

the results certainly suggest that. Indeed, doing so would be

a sensible policy, particularly for shorter functions, aimed at

striking a balance between function execution time and resource

utilization in terms of the number of active instances. Both
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AWS Google Azure
Factor MR TR MR TR MR TR
Base warm (§VI-A) 1 2 1 2 1 1
Base cold (§VI-B1) 10 15 28 50 25 64
Image size, 100MB (§VI-B2) 29 49 17 60 59 100
Inline transfer (§VI-C1) 1 2 2 3 n/a n/a
Storage transfer (§VI-C2) 3 27 5 187 n/a n/a
Bursty warm (§VI-D1) 2 11 3 5 5 41
Bursty cold (§VI-D2) 6 12 59 100 41 58

Bursty long7(§VI-D3) 12 16 64 102 309 619

Table I: Median to base median (MR) and tail to base

median (TR) metrics per studied tail-latency factor across

providers. Cells with MR or TR >10 highlighted in red. In the

corresponding rows, the payload size of the transferred data

is 1MB (for both inline and storage-based transfers), the burst

size is 100 invocations.

policies (i.e., allowing queuing or not) have pros and cons,

which points to a promising optimization space for future

research.

Observation 7. The choice of scheduling policy with respect

to whether multiple invocations may queue at a given function

instance has dramatic implications on request completion time

and resource utilization (i.e., number of active instances). For

functions with long execution times, a scheduling policy that

allows queuing may increase both median and tail latency by

up to two orders of magnitude.

VII. DISCUSSION

In this section, we first recap our findings by focusing on key

sources of execution time variability induced by the serverless

infrastructure. We next discuss variability in actual function

execution time by analyzing data from a publicly-available

trace of serverless invocations in Microsoft Azure.

A. Variability due to Serverless Infrastructure

We summarize our findings in Table I. For each of the factors

that we study, we compute two metrics, namely median to

base median ratio (MR) and tail to base median ratio (TR),

which normalize the median and tail delays as induced by the

corresponding factor to median latency of an individual warm

function invocation. This normalization is done separately for

each provider, i.e., the reported median or tail latency for a

given experiment with a particular provider is normalized to

the median latency of a warm invocation on that provider. We

consider an MR or TR above 10 to be potentially problematic as

it implies a high degree of variability. Such cells are highlighted

in red in Table I.

We identify two trends that are common across the studied

providers. First, we find storage to be a key source of long tail

effects. Indeed, both cold function invocations, which require

accessing the function image from storage, and storage-based

data transfers induce high MR (up to 59) and high TR (up

to 187). To put these numbers in perspective, a hypothetical

warm function with a median execution latency of 20ms would

7We subtract the 1s function execution time from the measured latencies to
account only for infrastructure and queuing delays in order to compute the
MR and TR metrics.
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Figure 10: Tail-to-median ratio (TMR) CDFs for per-function

execution times, as reported in Azure Function’s trace [16].

see its median latency skyrocket to 1.18s with MR of 59 and

its tail to 3.74s with TR of 187.

The second trend we identify is that all studied providers

exhibit high sensitivity to bursty traffic, particularly, when

bursts arrive with a long IAT (rows ”Bursty cold” and ”Bursty

long” in Table I). While part of the reason for the resulting

high latencies can be attributed to storage accesses for cold

invocations, we note that the scheduling policy also seems to

play a significant role. For functions with a long execution

duration (1s, in our experiments), if requests to a function are

allowed to queue at an active instance, we observe MR and

TR of 309 and 619, respectively.

B. Variability in Function Execution Time

We ask the question of how the variability induced by

serverless infrastructure compares to the variability in function

execution time, i.e., the useful work performed by functions.

Given the many options for the choice of implementation lan-

guage, the numerous ways for breaking up a given functionality

into one or more functions, the actual work performed by each

function and other effects that determine function execution

time, we do not attempt to characterize the execution-time

variability on our own. Instead, we use a publicly-available trace

from Azure Functions that captures the distribution of function

execution times as a collection of percentiles [16], including

a 99-th percentile and a median, allowing us to compute the

tail-to-mean ratio (TMR) for each function.

For each function, the trace captures the time between the

function starting execution until it returns. Even though each

function’s reported execution time excludes cold-start delays,

this measurement may still include some infrastructure delays,

e.g., if that function invokes other functions or interacts with

a storage service. Hence, the computed TMRs are the upper

bound for the pure function execution time variability.

Fig. 10 shows the CDF of the TMRs for each of the functions

in the trace. We find that 70% of all functions have a TMR less

than 10, indicating moderate variability in function execution

times. However, other functions exhibit significant variability,

roughly in the same range is the variability induced by storage-

based transfers which have a TMR of between 10.6 and 37.3.

We observe that these conclusions generally stand for both short-

and long-running functions captured in the trace; however, short

functions exhibit higher variability in their execution time. Thus,

only 60% of the functions that run for less than a second have
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a TMR of less than 10; meanwhile, 90% of the functions that

run for more than ten seconds have a sub-10 TMR.

VIII. RELATED WORK

Prior work includes a number of benchmarking frameworks

and suites for end-to-end analysis of various serverless clouds.

FaaSDom [7], SebS [5], and BeFaaS [6] introduce automated

deployment and benchmarking platforms, along with a number

of serverless applications as benchmarks, supporting many

runtimes and providers. ServerlessBench [4] and Function-

Bench [22], [33] present collections of microbenchmarks and

real-world workloads for performance and cost analysis of

various clouds [4], [22], [33]. In contrast, STeLLAR stresses the

components of serverless clouds to pinpoint their implications

on tail latency whereas the prior works focus on measuring

performance of distinct applications or evaluate the efficiency of

certain serverless test cases, e.g., invoking a chain of functions

or concurrently launching function instances.

Another body of works study the performance of particular

components of serverless systems. Wang et al. conducted one

of the first comprehensive studies of production clouds [34],

investigating a wide range of aspects, including cold start

delays for different runtimes.While we analyze many more

tail latency factors, we also find that some of their results

in 2018 are now obsolete, e.g., in contrast to their findings,

we show that the choice of runtime minimally affects the tail

latency in AWS (§VI-B2). vHive is a framework for serverless

experimentation and explores the cold-start delays of MicroVM

snapshotting techniques [8]. Li et al. studies the throughput of

the cluster infrastructure of open-source FaaS platforms in the

presence of concurrent function invocations [35]. Hellerstein et

al. analyzes the existing I/O bottlenecks in modern serverless

systems [36]. FaaSProfiler conducts microarchitectural analysis

of serverless hosts [9].

Other works investigate the efficiency of serverless systems

for different classes workloads, namely ML training [37],

latency-critical microservices [38], data-intensive applications

[39]–[41], and confidential computations [42]. Eismann et

al. categorizes open-source serverless applications according

to their non-performance characteristics [43]. Shahrad et al.

analyzes invocation frequency and execution time distributions

of applications in Azure Functions and explores the design

space of function instance keep-alive policies [16].

IX. CONCLUSION

Over the last decade, serverless computing has seen wide

adoption by cloud service developers, attracted by its fast time

to market, pay-as-you-go pricing model, and built-in scalability.

Composing their services as a collection of short-running

stateless functions, service developers offload infrastructure

management entirely to cloud providers. This role separation

challenges the cloud infrastructure that must deliver low

response time to most of its customers. Hence, measuring

and analyzing tail latency and its sources is crucial when

designing latency-critical cloud applications. To the best of

our knowledge, STeLLAR is the first open-source provider-

agnostic benchmarking framework that enables tail-latency

analysis of serverless systems, allowing to study performance

both end-to-end and per-component. By design, STeLLAR is

highly configurable and can model various load scenarios and

vary the characteristics of serverless applications, selectively

stressing various components of serverless infrastructure. Using

STeLLAR, we perform a comprehensive analysis of tail latency

characteristics of three leading serverless clouds and show that

storage accesses and bursty traffic of function invocations

are the largest contributors to latency variability in modern

serverless systems. We also find that some of the important

factors, like the choice of language runtime, have a minor

impact on tail latency.
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