Unified Frontend Prefetching

Maria Duratkova
University of Edinburgh
Edinburgh, UK
maria.durackova@ed.ac.uk

1 Background
1.1 BPU’s Importance in Instruction Supply

Today’s software stacks have reached massive instruction footprints.
These footprints far exceed typical front-end capacity limits. The
bloated footprints overwhelm the branch predictor, branch target
buffer, and instruction cache creating severe front-end bottlenecks
[2]. Branch direction and target mispredictions trigger costly pipeline
flushes. Instruction cache misses stall the processor for tens of cycles
while fetching from lower cache levels. The importance of a steady
instruction supply grows even more significant given the recent trend
of cores becoming wider and bulkier (larger ROB, wider pipeline,
larger BTB, caches etc.). A reliable instruction stream is critical
for harnessing the massive instruction-level parallelism of modern
cores and will become even more vital as processor designs grow
increasingly aggressive.

The branch prediction unit (BPU) is crucial in instruction sup-
ply. It speculatively predicts the branch instruction outcomes — the
branch direction using the branch predictor (BrP) and the branch
targets using the branch target buffer (BTB), return address stack and
indirect predictor. BPU’s role in instruction supply is two-fold. Its
primary role is to predict the branch outcomes and eliminate unnec-
essary pipeline flushes. The secondary role is in the Fetch Directed
Instruction Prefetching (FDIP) [18, 19], where the BPU is decoupled
from the instruction fetch unit (IFU) and allowed to run ahead of
the IFU to issue prefetch requests based on the BPU’s predictions.
FDIP is an attractive instruction prefetching solution, mainly due
to its near-zero capacity requirements and relatively high accuracy.
The accuracy, however, is highly dependent on the BPU’s accuracy,
as a single branch misprediction invalidates all consecutive prefetch
targets and potentially causes cache pollution by prefetching the
wrong targets.

1.1.1  Branch Target Buffer. The Branch Target Buffer (BTB) is a
component of the BPU, responsible for caching past predictions
of target addresses to make predictions. BTB holds a single entry
per branch. Any BTB miss causes the BPU to generate the wrong
target address for all taken branches and makes FDIP unable to
prefetch the correct instrution path. While numerous solutions have
been proposed to enhance BTB accuracy - from hierarchical designs
to prefetching mechanisms like [4, 13], combined BTB/I-Cache
prefetchers such as [12, 14, 15], and many other efficiency enhance-
ment techniques such as [1, 16, 23] - the effort to improve the BrP
presents a distinct set of challenges.

1.1.2 Branch Prediction Challenges. The state-of-the-art branch pre-
dictor 64KB TAGE-SC-L[22] predicts a given branch’s direction by

YArch 2025, March 31, 2025, Rotterdam, Netherlands
2025. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

partial pattern matching [17]. It identifies correlations by comparing
the current global history of branch outcomes leading to a branch
with the previously observed patterns of branch outcomes. A his-
tory of previous branch outcomes associated with a given branch
instruction is referred to as a pattern. There can be multiple patterns
associated with one branch.

While effective, TAGE faces significant challenges in achiev-
ing further improvements. Simply scaling up its structures proves
counterproductive, as any accuracy gains are offset by increased la-
tency costs. Another option is a hierarchical design of TAGE, which
presents two major obstacles. First, TAGE’s extensive use of hashing
destroys the natural locality patterns of individual branches, making
it difficult to efficiently partition predictor entries. Second, branch be-
haviour exhibits highly skewed pattern distributions across different
PCs (some PCs have disproportionately many patterns associated
with them), rendering straightforward per-PC paging approaches
ineffective due to bandwidth constraints. Any viable hierarchical
TAGE design must therefore address both the locality destruction
from hashing and the challenge of handling asymmetric pattern
distributions. [21]

Recent work introduced the Last Level Branch Predictor (LLBP)
[21], a design tackling aforementioned challenges in making TAGE
hierarchical. It consists of a large storage structure which organizes
the TAGE’s patterns into so-called contexts. A context is a series of
recently committed unconditional branches (jumps, calls, returns),
similar to a call graph. Each context is small enough (16 TAGE pat-
terns) to be effectively prefetched into a smaller prediction structure
ahead of time to make a timely and more accurate prediction.

1.2 How To Make the BPU Better?

Modern server workloads with massive instruction footprints over-
whelm both the BrP and BTB, necessitating effective prefetching so-
lutions for both structures. While separate prefetchers could address
each component individually, this approach would incur unneces-
sary overhead in terms of storage, energy, and complexity. A unified
prefetching mechanism that can simultaneously handle both BrP and
BTB entries is therefore more attractive, particularly given the tight
coupling between these components in the branch prediction unit.
The asymmetric nature of BrP and BTB entries makes it more
logical to embed BTB prefetching into a BrP prefetcher rather than
vice versa. While each branch has only one corresponding BTB
entry, it can have multiple TAGE patterns associated with it, making
pattern management more complex. The LLBP already solves the
challenge of managing TAGE patterns through its context-based
organization of TAGE patterns, making it a natural foundation for a
unified prefetcher. By extending LLBP’s contexts to include BTB
entries, we can leverage its existing prefetch mechanism while main-
taining its efficient handling of multiple patterns per branch.


https://doi.org/10.1145/nnnnnnn.nnnnnnn

YArch 2025, March 31, 2025, Rotterdam, Netherlands

Py FIQ _IFU
: Prefetch |
TAGE ' o
o . N I-Cache
! Uncond. Pattern Buffer (PB) BITB ‘ :
: Branches ' !
i TAGE Patterns Branch Target :
L 7} | L 7y I : Fetchi
[ Victim Victim |
: Prefefch Prefetclil |JF Preietcﬁl |JF ' :
Logic , |
' 1| Fetch
| LLBP Store . Engine
L LLBP Eniry | '

Figure 1: High-level Design of the Unified Frontend Prefetcher.

2 Unified Frontend Prefetching

We propose a unified frontend prefetching mechanism (UFP), illus-
trated in Figure 1, which simultaneously prefetches TAGE patterns,
BTB entries, and instructions while sharing metadata storage. By
extending LLBP to include BTB entries, UFP leverages LLBP’s
context-based design to enhance BPU accuracy through more pre-
cise branch prediction and target buffering. This improved BPU
accuracy enables FDIP to generate more accurate speculative paths,
leading to more effective instruction prefetching.

UFP extends the LLBP’s design by embedding the BTB metadata
to an LLBP entry. Therefore, one entry in the LLBP store will
consist of TAGE patterns, and a BTB entry. The prefetch mechanism
is triggered every time a new unconditional branch is committed.
The unconditional branch’s PC is inserted into the prefetching logic,
which generates a hash to index the LLBP store and initiate the
prefetch ([21] describes the prefetching logic).

UFP prefetches TAGE patterns into Patterns Buffer (PB), a struc-
ture which identifies the longest matching pattern of the current
branch, and makes a prediction alongside TAGE. If both TAGE and
PB make a prediction, the prediction with the longest history is cho-
sen. While patterns are prefetched into PB, a BTB entry associated
with the prefetch context is inserted into the BTB.

The rest of the mechanism is similar to any other FDIP design.
The speculative address of the next basic block is generated by the
BPU and pushed into the Fetch Target Queue (FTQ). FTQ operates
as a FIFO where each entry represents a basic block. FTQ issues
prefetches of cache lines associated with each FTQ entry into the
L1-I cache.

The most scarce resource in the UFP architecture is bandwidth,
therefore, we aim to minimise the size of an LLBP entry. We explore
reducing the number of TAGE patterns in LLBP while preserving
branch prediction accuracy. Additionally, given that a typical BTB
entry is about 10 bytes long, we aim to lower the overhead by limiting
each context to one BTB entry. However, our previous analysis
revealed that the average number of BTB entries per context exceeds
one. There are several options to solve the bandwidth problem.

Firstly, the BTB entry size can be reduced by storing only offsets
for both the tag and target instead of full addresses, significantly
lowering the storage overhead - an approach inspired by BTB-X [1].
Potentially allowing to store more than one BTB entry per context.

Maria Durackova

University of Edinburgh

Edinburgh, UK

maria.durackova@ed.ac.uk

Secondly, the number of BTB entries per context can be reduced

by optimizing how contexts are generated. We can control context
specificity, by dynamically adjusting the number of unconditional
branches used in context hash generation. Using more branch PCs
in the hash creates more specific contexts, naturally distributing
BTB entries across multiple contexts and reducing BTB entries per
context.

Thirdly, BTB entries which are more likely to cause a long stall
can be identified and prioritised when allocating the BTB entry in
the LLBP store (i.e. unconditional branches tend to jump further
than conditional and their targets are less likely to be cached in
the I-cache). Thus, the number of BTB entries per context can be
minimised.

3 Methodology

We will evaluate UFP using the ChampSim [9] architectural sim-
ulator, comparing its performance against the "ideal" BPU (upper
bound), the "bare" FDIP (lower bound), and some prior work speci-
fied in Section 4. Our evaluation will focus on measuring execution
speed-up, frontend stall reduction, and prefetching accuracy across
all three frontend components (branch predictor, BTB, and instruc-
tion cache).

We will evaluate across a variety of workloads with large instruc-
tion footprints such as web search applications, media streaming
applications, online transaction processing, Java traces from bench-
mark suites such as DaCapo [3], BenchBase[5], Renaissance [24],
and Google Traces[6].

4 Related Work

Prior work has proposed various approaches to address the frontend
bottleneck for server workloads through prefetching.

Temporal instruction prefetchers such as [7, 8, 11] leverage the ob-
servation that programs exhibit repetitive instruction access patterns
over time. These prefetchers record and replay instruction cache
access sequences. PDIP [10] enhances the traditional FDIP approach
by incorporating temporal prefetching of only the targets where
FDIP struggles. While these prefetchers reduce I-Cache misses, they
focus solely on I-Cache prefetching and require large metadata stores
for instruction recording.

Phantom BTB [4] exploits temporal locality in BTB by using
a BTB miss as a trigger to replay a sequence of subsequent BTB
entries that historically followed the missing entry. In contrast, our
context-based mechanism provides a more precise trigger for BTB
prefetching by leveraging program control flow information captured
in branch contexts, potentially enabling more accurate and timely
prefetches.

Twig [13] is a profile-guided BTB prefetching mechanism that
identifies critical BTB misses and injects BTB prefetch instructions
into the code. Unlike UFP, it prefetches solely to BTB and requires
offline profiling to insert the prefetch instructions.

Prior work like Confluence [12], Boomerang [15], and Shotgun
[14] has demonstrated the benefits of joint BTB and instruction
cache prefetching by recognizing the correlation between BTB and
instruction cache misses. However, these approaches do not extend
their prefetching mechanisms to include the branch predictor.



Unified Frontend Prefetching

Ignite [20] demonstrates the prefetches into the instruction cache,
branch predictor, and BTB, but limits its scope to the specific case
of serverless function lukewarm starts, leaving the opportunity for a
general-purpose unified prefetching solution unexplored.

We plan to quantitatively compare UFP against LLBP, Phan-
tom BTB, Confluence, Boomerang, and Shotgun as these represent

the

state-of-the-art microarchitectural branch predictor and BTB

prefetching solutions for general-purpose workloads.

References

[1]

2

[3]

[4

[5

[6

17

8

[9

[10]

[11]

[12]

[13]

[14]

Truls Asheim, Boris Grot, and Rakesh Kumar. 2021. BTB-X: A Storage-Effective
BTB Organization. IEEE Computer Architecture Letters 20 (2021), 134-137.
https://api.semanticscholar.org/CorpusID:238413714

Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. AsmDB: understanding and mitigating
front-end stalls in warehouse-scale computers. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture (ISCA). ACM, 462-473.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M.
Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D.
von Dincklage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis. In OOPSLA ’06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications (Portland, OR, USA). ACM Press, New York, NY,
USA, 169-190. https://doi.org/10.1145/1167473.1167488

Toana Burcea and Andreas Moshovos. 2009. Phantom-BTB: a virtualized branch
target buffer design. In Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2009, Washington, DC, USA, March 7-11, 2009, Mary Lou Soffa and Mary Jane
Irwin (Eds.). ACM, 313-324. https://doi.org/10.1145/1508244.1508281

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. PVLDB 7, 4 (2013), 277-288. http://www.vldb.org/pvldb/
vol7/p277-difallah.pdf

DynamoRIO. 2024. Google Workload Traces. Retrieved April 01, 2024 from
https://dynamorio.org/google_workload_traces.html

Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive instruction
fetch. 2011 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (2011), 152—162. https://api.semanticscholar.org/CorpusID:
9228401

Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal instruction fetch streaming. In Proceedings
of the 41st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, 1-10.

Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jimenez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simulator:
Architectural Simulation for Education and Competition. (2022). https://doi.org/
10.48550/arXiv.2210.14324

Bhargav Reddy Godala, Sankara Prasad Ramesh, Gilles A. Pokam, Jared Stark,
André Seznec, Dean M. Tullsen, and David I. August. 2024. PDIP: Priority
Directed Instruction Prefetching. Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (2024). https://api.semanticscholar.org/CorpusID:267053631
Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. SHIFT: Shared history
instruction fetch for lean-core server processors. 2013 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (2013), 272-283. https:
/api.semanticscholar.org/CorpusID:8077124

Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: Unified in-
struction supply for scale-out servers. 2015 48th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO) (2015), 166-177. https:
//api.semanticscholar.org/CorpusID: 16525664

Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K. Soundarara-
jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A. Pokam,
Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-Guided BTB Prefetching for
Data Center Applications. MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture (2021). https://api.semanticscholar.org/CorpusID:
237512130

Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the
Front-End Bottleneck with Shotgun. In Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXIII). ACM, 30-42.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

YArch 2025, March 31, 2025, Rotterdam, Netherlands

Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.
Boomerang: A Metadata-Free Architecture for Control Flow Delivery. In Proceed-
ings of the 23rd IEEE Symposium on High-Performance Computer Architecture
(HPCA). IEEE Computer Society, 493-504.

Yunzhe Liu, Xinyu Li, Tingting Zhang, Tianyi Liu, Qi Guo, Fuxin Zhang, and
Jian Wang. 2024. AVM-BTB: Adaptive and Virtualized Multi-level Branch Target
Buffer. 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA) (2024), 17-31. https://api.semanticscholar.org/CorpusID:
271646613

Pierre Michaud. 2005. A PPM-like, Tag-based Predictor. J. Instr. Level Parallelism
7 (2005).

Glenn Reinman, Brad Calder, and Todd M. Austin. 1999. Fetch Directed Instruc-
tion Prefetching. In Proceedings of the 32nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). ACM/IEEE Computer Society, 16—
27.

Glenn D. Reinman, Todd M. Austin, and Brad Calder. 1999. A scalable front-end
architecture for fast instruction delivery. Proceedings of the 26th International
Symposium on Computer Architecture (Cat. No.99CB36367) (1999), 234-245.
https://api.semanticscholar.org/CorpusID: 713202

David Schall, Andreas Sandberg, and Boris Grot. 2023. Warming Up a Cold Front-
End with Ignite. 2023 56th IEEE/ACM International Symposium on Microar-
chitecture (MICRO) (2023), 254-267. https://api.semanticscholar.org/CorpusID:
263743386

David Schall, Andreas Sandberg, and Boris Grot. 2024. The Last-Level Branch
Predictor. In Proceedings of the 57th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO °24). IEEE.

André Seznec. 2016. TAGE-SC-L Branch Predictors Again. In 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5).

Niranjan K. Soundararajan, Peter Braun, Tanvir Ahmed Khan, Baris Kasikci,
Heiner Litz, and Sreenivas Subramoney. 2021. PDede: Partitioned, Dedupli-
cated, Delta Branch Target Buffer. MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (2021). https://api.semanticscholar.org/
CorpusID:237511563

Renaissance Suite. 2024. Renaissance Suite: A modern benchmark suite for the
JVM. Retrieved April 01, 2024 from https://renaissance.dev/


https://api.semanticscholar.org/CorpusID:238413714
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1508244.1508281
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://dynamorio.org/google_workload_traces.html
https://api.semanticscholar.org/CorpusID:9228401
https://api.semanticscholar.org/CorpusID:9228401
https://doi.org/10.48550/arXiv.2210.14324
https://doi.org/10.48550/arXiv.2210.14324
https://api.semanticscholar.org/CorpusID:267053631
https://api.semanticscholar.org/CorpusID:8077124
https://api.semanticscholar.org/CorpusID:8077124
https://api.semanticscholar.org/CorpusID:16525664
https://api.semanticscholar.org/CorpusID:16525664
https://api.semanticscholar.org/CorpusID:237512130
https://api.semanticscholar.org/CorpusID:237512130
https://api.semanticscholar.org/CorpusID:271646613
https://api.semanticscholar.org/CorpusID:271646613
https://api.semanticscholar.org/CorpusID:713202
https://api.semanticscholar.org/CorpusID:263743386
https://api.semanticscholar.org/CorpusID:263743386
https://api.semanticscholar.org/CorpusID:237511563
https://api.semanticscholar.org/CorpusID:237511563
https://renaissance.dev/

	1 Background
	1.1 BPU's Importance in Instruction Supply
	1.2 How To Make the BPU Better?

	2 Unified Frontend Prefetching
	3 Methodology
	4 Related Work
	References

