
Data-centric Serverless Cloud Architecture

Dmitrii Ustiugov
T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

The University of Edinburgh

2022





Abstract
Serverless has become a new dominant cloud architecture thanks to its high scalabil-

ity and flexible, pay-as-you-go billing model. In serverless, developers compose their

cloud services as a set of functions while providers take responsibility for scaling each

function’s resources according to traffic changes. Hence, the provider needs to timely

spawn, or tear down, function instances (i.e., HTTP servers with user-provider handles),

which cannot hold state across function invocations.

Performance of a modern serverless cloud is bound by data movement. Serverless

architecture separates compute resources and data management to allow function in-

stances to run on any node in a cloud datacenter. This flexibility comes at the cost of

the necessity to move function initialization state across the entire datacenter when

spawning new instances on demand. Furthermore, to facilitate scaling, cloud providers

restrict the serverless programming model to stateless functions (which cannot hold or

share state across different functions), which lack efficient support for cross-function

communication.

This thesis consists of four following research contributions that pave the way for

a data-centric serverless cloud architecture. First, we introduce STeLLAR, an open-

source serverless benchmarking framework, which enables an accurate performance

characterization of serverless deployments. Using STeLLAR, we study three leading

serverless clouds and identify that all of them follow the same conceptual architecture

that comprises three essential subsystems, namely the worker fleet, the scheduler, and

the storage. Our analysis quantifies the aspect of the data movement problem that is

related to moving state from the storage to workers when spawning function instances

(“cold-start” delays). Also, we study two state-of-the-art production methods of cross-

function communication that involve either the storage or the scheduler subsystems, if

the data is transmitted as part of invocation HTTP requests (i.e., inline).

Second, we introduce vHive, an open-source ecosystem for serverless benchmarking

and experimentation, with the goal of enabling researchers to study and innovate across

the entire serverless stack. In contrast to the incomplete academic prototypes and

proprietary infrastructure of the leading commercial clouds, vHive is representative of

the leading clouds and comprises only fully open-source production-grade components,

such as Kubernetes orchestrator and AWS Firecracker hypervisor technologies. To

demonstrate vHive’s utility, we analyze the cold-start delays, revealing that the high

cold-start latency of function instances is attributable to frequent page faults as the

function’s state is brought from disk into guest memory one page at a time. Our analysis
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further reveals that serverless functions operate over stable working sets - even across

function invocations.

Third, to reduce the cold-start delays of serverless functions, we introduce a novel

snapshotting mechanism that records and prefetches their memory working sets. This

mechanism, called REAP, is implemented in userspace and consists of two phases.

During the first invocation of a function, all accessed memory pages are recorded and

their contents are stored compactly as a part of the function snapshot. Starting from the

second cold invocation, the contents of the recorded pages are retrieved from storage

and installed in the guest memory before the new function instance starts to process the

invocation, allowing to avoid the majority of page faults, hence significantly accelerating

the function’s cold starts.

Finally, to accelerate the cross-function data communication, we propose Expe-

dited Data Transfers (XDT), an API-preserving high-performance data communication

method for serverless. In production clouds, function transmit intermediate data to other

functions either inline or through a third-party storage service. The former approach is

restricted to small transfer sizes, the latter supports arbitrary transfers but suffers from

performance and cost overheads. XDT enables direct function-to-function transfers

in a way that is fully compatible with the existing autoscaling infrastructure. With

XDT, a trusted component of the sender function buffers the payload in its memory

and sends a secure reference to the receiver, which is picked by the load balancer and

autoscaler based on the current load. Using the reference, the receiver instance pulls the

transmitted data directly from sender’s memory, obviating the need for intermediary

storage.
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Lay summary

Serverless has emerged as a new popular cloud computing paradigm that offers an

efficient programming model, automatic scaling with load changes, and a flexible,

pay-as-you-go billing model. In serverless, developers structure focus on writing the

business logic of their application, structured as a workflow of connected pieces of

logic called functions, while the providers manage cloud resources on demand. This

labor division opens great opportunities for systems researchers who seek to innovate in

serverless computing. Unfortunately, leading serverless providers, like AWS Lambda

and Azure Functions, continue to rely on proprietary infrastructure, leaving academics

to black-box research with production offerings or building their in-house prototypes of

various serverless infrastructure components.

This thesis analyzes the state-of-the-art cloud designs and proposes a novel high-

performance and resource-efficient cloud architecture. We start by introducing an open-

source framework for end-to-end and in-depth performance analysis of commercial,

even proprietary, clouds. This analysis identifies that a modern cloud architecture’s

performance is limited by ubiquitous data movement, which arises due to the separation

of compute and data management. To address this problem, our work introduces a

data-centric serverless cloud architecture, which we implement in three steps. First, we

introduce vHive, an open-source framework for serverless experimentation, that enables

cross-stack innovation in serverless systems. Second, using vHive, we introduce a

record-and-prefetch technique that allows to reduce the time to spawn new instances of

serverless functions on demand, obviating the need for keeping idle instances alive for

a long time. Finally, we design a high-performance serverless-native communication

fabric, prototyping it in vHive, that allows functions to communicate at a high speed

without the need to pass data via a traditional storage service.
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Chapter 1

Introduction

In today’s data-driven economy, the ability to collect, store, and process data in real-

time is a critical competitive advantage. As the demand for data and compute power

continues to grow exponentially, the design of cloud storage and compute services must

evolve to meet the requirements of modern applications.

Serverless computing has emerged as an increasingly popular cloud computing

paradigm and architecture, which attracts cloud users with its simple programming

model, fine-grain billing, and elastic resource scaling in response to application load

changes [84, 44]. Serverless computing today is the fastest growing cloud service and

deployment model of the past few years, increasing its Compound Annual Growth Rate

(CAGR) from 12% in 2017 to 21% in 2018 [45, 111].

In the “serverless” computing paradigm, application code still executes on servers,

however developers are freed from the burden of managing cloud server infrastructure.

Developers write code for their applications as a collection of fine-grain, short-running

tasks, called functions, which can be chained together and invoked based on events

(e.g., user clicks). For each function invocation, cloud providers automatically allocate

and launch a function instance, which consists of CPU and memory resources as well

as a copy of the user code required to execute the function.

The key benefit of serverless computing is that cloud providers quickly and automat-

ically scale the number of function instances up and down based on the load and users

pay only for the amount of resources consumed over time. This “autoscaling” capability

of serverless systems is key for offering programming simplicity and economical effi-

ciency. However, to facilitate scaling, providers tend to restrict functions to be stateless,

disallowing them to hold or share state across invocations of the same or different

functions. The labor division between application developers and cloud providers opens

1
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opportunities for systems researchers to innovate in serverless computing.

Unfortunately, leading serverless providers, such as AWS Lambda and Azure Func-

tions, rely on proprietary infrastructure. While existing in other computer systems

domains, where the entire infrastructure is hidden from the cloud users, this gap is

particularly large for serverless computing, preventing academics from discovering and

solving relevant problems in realistic scenarios. Hence, it is paramount for computer

systems researchers to devise a methodology and a toolchain for analyzing state-of-

the-art systems to pinpoint fundamental problems in real-world systems, even without

access to source code of particular commercial clouds. The researchers then need

a framework to design and prototype full-stack solutions to the identified problems,

assessing their efficiency in the context of a real serverless cloud.

Serverless cloud infrastructure takes complete responsibility for cloud resources

management, which is beneficial for cloud users but raises a number of important chal-

lenges for cloud providers. The first challenge lies in enabling serverless cloud to react

quickly to load changes, spawning new function instances on demand. This reaction

time primarily depends on the time the infrastructure takes to spawn a new instance of a

function in a cloud datacenter. The second challenge stems from the fact that providers

restrict the serverless programming model to stateless functions, which cannot share

data across one another. Many of serverless applications are data-intensive [66, 67],

making serverless cloud support for fast cross-function communication an essential

requirement to allow the applications to achieve their performance goals.

1.1 Thesis Contributions

To address the two design challenges mentioned above, this thesis takes a holistic

approach to designing a serverless cloud architecture. We start by building STeLLAR,

the methodology and the framework that enables performance analysis of production

clouds. Using STeLLAR, we identify that performance of modern commercial serverless

clouds is dominated by data movement. We identify two key bottlenecks that are

inherent to the modern serverless architecture (and common for all three cloud providers

we study) namely the cold-start delays that is the time to spawn a new instance in

response to traffic changes and slow communication across serverless functions. To

enable full-stack innovation in serverless systems, we introduce a framework, called

vHive, that integrates cutting-edge technologies and components released by the leading

serverless cloud providers. Using vHive, we build two solutions that address both of the
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aforementioned bottlenecks. First, to reduce the cold-start delays, we find that serverless

functions operate over stable memory working sets - even across function invocations -

that can be effectively recorded and prefetched. Second, to accelerate cross-function

communication, we introduce a serverless-native data communication fabric combining

high performance with autoscaling capabilities. Together these contributions lead to the

following thesis statement:

Thesis Statement
Designing a serverless cloud as a data-centric system

allows combining high performance and resource efficiency.

1.1.1 Serverless Clouds Characterization with STeLLAR

We devise a methodology and an open-source framework called Serverless Tail La-

tency Analyzer (STeLLAR) for detailed tail latency analysis of production serverless

platforms, each of which comprises many proprietary software components.1 To en-

able performance analysis of cloud infrastructure, we find that the architecture of any

serverless system has the fundamental set of components that define the overall system

performance. These components include: a cluster scheduler that adjusts the number

of instances of a function based on invocation traffic, the fleet of physical hosts that

spawn and run these instances, and a storage service that holds function images and also

stores the data transmitted across functions. Using STeLLAR, we analyze three leading

serverless platforms (AWS Lambda, Azure Functions, and Google Cloud Functions) by

evaluating the performance of each of the three fundamental components individually,

with targeted stress-tests and load scenarios. The studies show that the response time

– both the median and tail latencies – in the commercial clouds is heavily dominated

by data movement induced by the two performance bottlenecks common for all three

providers we study. The first bottleneck is attributable to moving the function initializa-

tion state to the target datacenter node to spawn a new instance of the function. The

second bottleneck is related to the lack of efficient support for fast communication

across functions, which are restricted by the providers to be stateless.

1This was a joint work with equal contributions from myself and an undergraduate student, Theodor
Amariucai, who completed his Honours Project at the University of Edinburgh.
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1.1.2 vHive Framework for Serverless Experimentation

The results obtained with STeLLAR show that the cold start latency is attributable to data

movement because the delays are proportional to the size of the initialization state of

the function. Unfortunately, further analysis at the per-component level is cumbersome

because commercial cloud providers tend to keep their infrastructure proprietary. Thus,

we build vHive, an open-source framework for serverless experimentation with all

required datacenter- and host-level components for end-to-end serverless benchmarking.

vHive reuses available open-source serverless components, bridging the gap between a

production deployment and an agile research prototyping framework.

With vHive, we construct a prototype, similar to AWS Lambda, that uses Firecracker

MicroVM snapshots to spawn function instances. We discover that in the state-of-the-

art serverless system the high cold-start delays are due to frequent page faults as the

function’s state is brought from disk into guest memory one page at a time. Our analysis

also reveals that a function accesses a stable working set of pages across different

invocations.

1.1.3 Record-and-Prefetch Snapshots

With this insight, we build Record-and-Prefetch (REAP), which reduce the cold-start

delays by eliminating the majority of the page faults during launching a new function

instance from a snapshot. REAP snapshots is a light-weight software mechanism for

serverless hosts, which operates in two phases. In the first “record” phase that occurs

only upon the first invocation of a function, the hypervisor records the addresses of

the memory pages accessed during processing that invocation, capturing the content

of these pages in a working set file enclosed in the function snapshot. Then, upon

all further cold invocations of that function, the hypervisor proactively prefetches the

entire set from disk into memory, slashing the cold-start delays by 3.7x, on average.

We implement REAP entirely in userspace, with minimal changes (<200 LoC) to the

hypervisor and no changes to the host operating system.

1.1.4 Expedited Data Transfers

The second key performance bottleneck that we identify with STeLLAR is cross-

function data communication. Data movement can dominate the response time of short,

sub-second functions, in a data-intensive application, such as video analytics pipeline
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and machine learning. The stateless and ephemeral nature of function instances prevents

sharing function state across different functions that comprise application logic. Inter-

function communication generally occurs when one function, the producer, invokes one

or more consumer functions in the workflow passing inputs to them. Crucially, instances

of the consumer functions are not known by the producer at invocation time because

they are selected by the cloud provider’s load balancer and autoscaler components.

Hence, functions resort to communicating via an intermediate storage service, which

requires the producer function to first store the data, then invoke the consumer, and

subsequently have the consumer retrieve the data from storage. The indirection through

a storage layer avoids payload size limitation in inline transfers, but also introduces

significant latency overheads and adds the cost of using an external storage service.

To address this problem, we introduce Expedited Data Transfers (XDT), an API-

preserving high-performance data communication method for serverless that enables

direct function-to-function transfers in a manner fully compatible with the existing

autoscaling infrastructure. With XDT, a trusted component of the sender function buffers

the payload in its memory and sends a secure reference to the receiver, selected by the

load balancer and autoscaler. Using this reference, the receiver pulls the transmitted

data directly from the sender’s memory. We prototype our system in vHive, showing

that XDT delivers 1.8-12.3⇥ higher transmission bandwidth compared to AWS S3. As

a result, XDT accelerates three real-world serverless applications by 1.1-2.7⇥, while

avoiding the cost of storage.

1.2 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 provides the background knowledge on serverless cloud architecture,

its key underlying technologies and mechanisms, and an overview of serverless

workload characteristics.

• Chapter 3 introduces the Serverless Tail Latency AnalyzeR (STeLLAR) framework

and the characterization results obtained from analyzing leading commercial

clouds.

• Chapter 4 presents the vHive framework and demonstrates its effectiveness by

analyzing the root causes of the lengthy cold-start delays in a state-of-the-art

serverless system.
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• Chapter 5 describes the Record-and-Prefetch (REAP) snapshots technique that

we introduce to reduce the cold-start delays when launching a new instance of a

serverless function.

• Chapter 6 introduces Expedited Data Transfers (XDT), a high-speed API-preserving

communication method that integrates seamlessly with the existing autoscaling

infrastructure that underpins cloud deployments.

• Chapter 7 concludes the thesis, summarizing the key contributions and outlining

the directions for future work.



Chapter 2

Background and Related Work

In this chapter, we discuss the necessary the key concepts and the state-of-the-art

in serverless cloud architecture. We start by providing an overview of a serverless

cloud, its workload characteristics, and serverless autoscaling infrastructure. Then, we

describe the state-of-the-art approaches and system challenges for designing a fast and

resource-efficient serverless cloud.

2.1 Serverless Computing Overview

Serverless has emerged as an important cloud computing paradigm in which cloud

service developers organize their application logic as a series of stateless functions and

offload the infrastructure management and resources (auto)scaling entirely to the cloud

providers. This programming model is often referred to as Function-as-a-Service (FaaS).

To implement a serverless application, developers combine multiple functions in the

form of HTTP servers with corresponding user-defined handlers. Within an application,

functions are connected in a workflow, in which they invoke and communicate with

each other.

In addition to the lower time-to-market advantage, serverless clouds offer the flexible,

pay-as-you-go pricing model, where the provider charges the application developers

based on the cloud resources consumed by their functions (e.g., allocated memory

and CPU time). Note that the developers are not charged for the delays and extra

resource usage imposed by the provider infrastructure. Hence, low infrastructure-related

delays and the “autoscaling“ ability of the infrastructure to dynamically adjust the cloud

resources allocated to the functions is essential for the cloud to be economically feasible.

To adjust the resources allocated to functions, cloud providers scale the number

7
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of instances of these functions on demand, based on the invocation traffic in front of

each of the active instances of the function. The autoscaling requirement leads to the

following design decisions fundamental to serverless functions and their instances. First,

to facilitate scaling, functions are stateless (i.e., they cannot hold or share data) and their

instances are identical so that any of these instances can process any invocation of the

function it implements. Second, function instances are ephemeral and can be created

and torn down at any point in time, based on the decisions the cloud infrastructure

makes in response to load changes. As a result, this stateless and ephemeral nature of

functions prevents direct communication across functions because any of the functions

may have an arbitrary number of active instances at any moment.

The efficiency of the autoscaling infrastructure defines how fast a serverless cloud

can react to load changes. Since serverless cloud users pay only for useful processing,

the providers try to minimize the number of idle function instances, by tearing them

down when not in use after a short period of time, to improve overall cloud resources

utilization. As overprovisioning of the number of function instances is economically

impractical, the time the infrastructure takes to launch a new instance of a function

becomes a critical concern to provide high and predictable performance to serverless

applications.

More than 30% of serverless applications [66, 67] are data-intensive, transmitting

more than 1MB across functions in an application workflow. However, cross-function

communication is endemic due to the stateless nature of serverless functions. This

often places inter-function communication on the critical path, performance-wise,

necessitating a low-latency high-bandwidth communication substrate to provide high

performance for data-intensive applications. The quest for high-performance inter-

function communication is complicated by the autoscaling aspect of serverless, since a

producer instance in a workflow might not know the consumer until the latter is invoked

by the producer. It is only at the invocation point that the cloud infrastructure picks

either an existing instance of the consumer function or spawns a new one based on

observed load. Thus, any optimizations to the inter-function communication substrate

must respect the cloud provider’s autoscaling policies.

2.2 Serverless Workload Characteristics

A recent study of Azure Functions in production shows that serverless functions

are short-running, invoked infrequently, and function invocations are difficult to pre-
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dict [133]. Specifically, the Azure study shows that half of the functions complete

within 1 second while >90% of functions have runtime below 10 seconds. Another

finding is that functions tend to have small memory footprints: >90% of functions

allocate less than 300MB of virtual memory. Lastly, 90% of functions are invoked less

frequently than once per minute, albeit >96% functions are invoked at least once per

week. This application characteristics are corroborated by other studies [55, 56, 66].

Given these characteristics of functions, the providers seek to aggressively co-locate

thousands of function instances that share physical hosts to increase utilization of the

provider’s server fleet [19]. For example, a stated goal for AWS Lambda is deploying

4-8 thousand instances on a single host [19, 21, 36].

This high degree of co-location brings several challenges. First, serverless functions

run untrusted code provided by untrusted cloud service developers that introduces

a challenge for security. Second, serverless platforms aim to be general-purpose,

supporting functions written in different programming languages for a standard Linux

environment. As a result, most serverless providers use virtualization sandboxes that

either run a full-blown guest OS [2, 10, 19, 35, 122] or emulate a Linux environment by

intercepting and handling a sandboxed application’s system calls in the hypervisor [75].

Another challenge for serverless deployments is that idle function instances occupy

server memory. To avoid wasting memory capacity, most serverless providers tend to

limit the lifetime of function instances to 8-20 minutes after the last invocation due to

the sporadic nature of invocations, deallocating instances after a period of inactivity

and starting new instances on demand. Hence, the first invocation after a period of

inactivity results in a start-up latency that is commonly referred to as the serverless

function cold-start delay. In the last few years, high cold-start latencies have become

one of the central problems in serverless computing and one of the key metrics for

evaluating serverless providers [134, 137].

2.3 Serverless Autoscaling Infrastructure

In serverless, the cloud provider is responsible for dynamically scaling the number

of instances of each function based on instantaneous load changes. We describe the

operation of a serverless autoscaling infrastructure (Fig. 2.1) using the Knative [11]

terminology, since it resembles production clouds, mostly closely AWS [19].

The autoscaling infrastructure of serverless needs to satisfy two goals. First, new

instances can be requested at any point in time in response to a change in the traffic
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Figure 2.1: Operation of serverless autoscaling infrastructure.

while idle instances should be recycled to free up the cluster resources. Second, the

load should be balanced across all active instances of a function at any point in time.

To monitor the load of the currently active instances, cloud infrastructure must timely

collect utilization metrics from each of the active function instances and timely react

with new instance placement decisions. To implement this, serverless infrastructure

depends on two main components. Each function invocation traverses a provider-

managed queue-proxy component, which is in charge of forwarding incoming requests

to the function instance with which the queue proxy is co-located. Queue proxy also

collects and reports utilization metrics of that instance to the autoscaler control plane

component. The autoscaler is the knowledge base about the current load in front of

each of the active instances.

To balance the load among all active instances of a function, serverless clouds

employ a load balancer whose job is to steer requests to one of the instances. Every

function invocation must traverse the load balancer. Referred to as activator in Knative

it is a load-aware L7 load balancer. The activator periodically receives updates from the

autoscaler, regarding the active instances and their current load. If there is an incoming

request for a function and there are no active instances available or all of them are busy,

the activator needs to request new instances of that function from the autoscaler. The

autoscaler makes a placement decision and spawns a new function instance while the

activator buffers the pending function invocation request. Once the new instances are up,

the activator steers the buffered invocations to their corresponding function instances

via their corresponding queue proxies.

This triplet of components, namely the queue proxy, the autoscaler, and the load

balancer, work together to enable autoscaling of serverless functions. The rest of

the serverless system is designed around this triplet to deliver seamless scalability to
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serverless application developers and efficient resource usage to cloud providers.

2.4 Challenges for Serverless Cloud Architecture

Next, we discuss the challenges that are inherent to the autoscaling infrastructure of

serverless clouds, namely the cold-start delays of spawning new instances of functions

upon demand and data communication across serverless functions.

2.4.1 Function Cold Starts

The delays related to launching new instances of functions depend on the underlying

technologies used for isolating the user-provided code of serverless functions. [64, 19].

In this section, we describe the key state-of-the-art technologies for function code

isolation, which the providers tailor to the fine-grain, stateless nature of serverless

functions (§2.2).

2.4.1.1 Hypervisor Specialization

Leading serverless vendors, including Amazon Lambda, Azure Functions, Google

Cloud Functions, and Alibaba Cloud, choose virtual machines (VMs) as their sandbox

technology in order to deliver security and isolation in a multi-tenant environment.

Although historically virtualization is known to come with significant overheads [128],

recent works in hypervisor specialization, including Firecracker [19] and Cloud Hyper-

visor [2], show that virtual machines can offer competitive performance as compared to

native execution (e.g., Docker containers), even for the cold-start delays.

Firecracker is a recently introduced hypervisor with a minimal emulation layer,

supporting just a single virtio network device type and a single block device type,

and relying on the host OS for scheduling and resource management [19]. This light-

weight design allows Firecracker to slash VM boot time to 125ms and reduces the

hypervisor memory footprint to 3MB [19, 21]. However, we measure that booting

a Firecracker VM within production-grade frameworks, such as Containerd [50] or

OpenNebula [122], takes 700-1300ms since their booting process is more complex, e.g.,

it includes mounting an additional virtual block device that contains a containerized

function image [4, 131]. Finally, the process inside the VM, which receives the function

invocation in the form of an RPC, takes up to several seconds to bootstrap before

it is able to invoke the user-provided function, which may have its own initialization



12 CHAPTER 2. BACKGROUND AND RELATED WORK

phase [64]. Together these delays – which arise on the critical path of function invocation

– significantly degrade the end-to-end execution time of a function.

2.4.1.2 Virtual Machine Snapshots

To reduce cold-start delays, researchers have proposed a number of VM snapshotting

techniques [5, 64, 75]. Snapshotting captures the current state of a VM, including the

state of the virtual machine monitor (VMM) and the guest-physical memory contents,

and store it as files on disk. Using snapshots, the host orchestrator (e.g., Containerd [50])

can capture the state of a function instance that has been fully booted and is ready to

receive and execute a function invocation. When a request for a function without a

running instance but with an existing snapshot arrives, the orchestrator can quickly

create a new function instance from the corresponding snapshot. Once loading finishes,

this instance is ready to process the incoming request, thus eliminating the high cold-

boot latency.

Snapshots are attractive because they require no main memory during the periods of

a function’s inactivity and reduce cold-start delays. The snapshots of function instances

can be stored in local storage (e.g., SSD) or in a remote storage (e.g., disaggregated

storage service).

The state-of-the-art academic work on function snapshotting, Catalyzer [64], showed

that snapshot-based restoration in the context of gVisor [75] virtualization technology

can be performed in 10s-100s of milliseconds. To achieve such a short start-up time,

Catalyzer minimizes the amount of processing on the critical path of loading a VM

from a snapshot. First, Catalyzer stores the minimum amount of snapshot state that is

necessary to resume VM execution de-serialized to facilitate VM loading. After that,

Catalyzer maps the plain guest-physical memory file as a file-backed virtual memory

region and resumes VM execution. Crucially, the guest-physical memory of the VM

is not populated with memory contents, which reside on disk, when the user code of

the function starts running. As a result, each access to a yet-untouched page raises a

page fault. These page faults occur on the critical path of function execution and may

significantly increase the runtime cost of a function loaded from a snapshot.

2.4.2 Communication Methods in Serverless

Any meaningful serverless application must combine multiple stateless functions that

communicate with each other. The resulting inter-function communication can signifi-
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cantly affect the performance of the entire serverless application. We next discuss the

various inter-function communication mechanisms, including solutions deployed in

production in today’s clouds and proposals from the academic community.

2.4.2.1 Production Methods

Serverless clouds, e.g., AWS Lambda or Google Cloud Functions, provide two methods

of data transfers: either inline as part of the invocation HTTP request, or via a third

party storage service, i.e. AWS S3 and Google Cloud Storage.

Inline transfers do not require external storage and can thus provide low latency,

but pose limitations on the amount of data that can be transferred between function in-

stances. Because invocation requests travel via the serverless autoscaling infrastructure,

providers tend to restrict the maximum aggregate size of inlined payloads to reduce

the pressure on the load balancer services, which are shared across the datacenter. For

instance, in AWS Lambda, inline transfers are limited to 6MB and 256KB per HTTP

request/response for synchronous and asynchronous invocation [26], respectively.

In contrast to inline transfers, through-storage transfers can be used for arbitrarily

large objects but require the use of an external storage service. For example, in AWS,

a function A, which needs to pass a large object as an input to function B would save

the object in an S3 bucket and pass the corresponding S3 key to B to then retrieve the

object. Problematically, the use of a storage service adds latency in the critical path of

communication and incurs additional financial costs to the developer due to the use of a

storage service.

2.4.2.2 Research Proposals

To overcome the limitations of inter-function communication methods used in produc-

tion clouds, recent works have considered two alternative strategies. The first strategy

focuses on improving the performance of data transfers through the use of tiered storage.

For example, Locus [125] uses different storage tiers for specific purposes, namely

Redis for shuffling and S3 for cold storage. Pocket [90] and SONIC [103] employ a

similar idea and develop a control-plane solution to multiplex different storage services

based on inferred application needs. Faa$T[129], Cloudburst [136], and OFC [116]

propose using key-value stores as a cache for ephemeral data transfers.

While being an improvement over production offerings, approaches that rely on

a storage layer for data transfers fundamentally increase system complexity for the
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provider, impose additional coordination overheads at the application level, and incur

latency overheads for storing and retrieving the data.

The second strategy advocated in research papers is to implement direct communica-

tion between function instances by exposing IP endpoints to functions. The unmediated

direct IP communication in serverless introduces several problems. First, exposing

IP addresses of the instances to untrusted user code is a security concern. Indeed,

allowing a malicious user to infer serverless cloud network topology can be of help

in denial-of-service or side channel attacks. Secondly, communication using static IP

addresses prevents the autoscaler from scaling individual functions independently and

places the burden of load balancing on the user. Doing so is fundamentally at odds with

the autoscaling principle of serverless computing, and is thus highly unattractive for

practical usage.

2.5 Summary

To summarize, serverless has emerged as a popular programming paradigm and cloud

architecture. In serverless, application developers compose an application as a workflow

that comprises several stateless functions, leaving the actual cloud resource management

to the cloud providers. The providers deploy autoscaling infrastructure that monitors the

load on each function in a workflow, spawning new instances of each function (or tearing

down the idle instances) whenever necessary, charging the application developers only

for the resources their functions consume. To make serverless computing economically

practical while delivering sufficiently high performance, the providers strive to make

autoscaling fast and resource-efficient. It is essential to characterize the delays imposed

by the complex distributed serverless infrastructure, featuring a deep software stack.

Then, the providers need to minimize the delays imposed by the infrastructure, in

particular, the ones imposed by launching new function instances and cross-function

data communication.
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Serverless Cloud Characterization

3.1 Introduction

Online services have stringent performance demands, with even slight response-time

hiccups adversely impacting revenue [57, 49]. Hence, providing not only a low average

response time but also a steady tail latency is crucial for cloud providers’ commer-

cial success [57]. The question we ask in this chapter is what level of performance

predictability do industry-leading serverless providers offer? Answering this question

requires a benchmarking tool for serverless deployments that can precisely measure la-

tency across a span of load levels, serverless deployment scenarios, and cloud providers.

While several serverless benchmarking tools exist, we find that they all come with

significant drawbacks. Prior works have characterized the throughput, latency, and

application characteristics of several serverless applications in different serverless

clouds; however, these works lack comprehensive tail latency analysis [152, 51, 77, 104,

143, 132]. These works also do not study the underlying factors that are responsible for

the long tail effects, the one exception being function cold starts, which have been shown

to contribute significantly to end-to-end latency in a serverless setting [19, 41, 143].

In this work, we introduce STeLLAR1, an open-source provider-agnostic bench-

marking framework for serverless systems’ performance analysis, both end-to-end and

per-component. To the best of our knowledge, our framework is the first to address the

lack of a toolchain for tail-latency analysis in serverless computing. STeLLAR features

a provider-agnostic design that is highly configurable, allowing users to model various

aspects of load scenarios and serverless applications (e.g., image size, execution time),

1STeLLAR stands for Serverless Tail-Latency Analyzer. The source code is available at https:
//github.com/ease-lab/STeLLAR.
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and to quantify their implications on the tail latency. Beyond end-to-end benchmarking,

the framework supports user-code instrumentation, allowing the accurate measurement

of latency contributions from different cloud infrastructure components (e.g., storage

accesses within a cross-function data transfer) with minimal instrumentation effort.

Using STeLLAR, we study the serverless offerings of three leading cloud providers,

namely AWS Lambda, Google Cloud Functions, and Azure Functions. We configure

STeLLAR to pinpoint the inherent causes of latency variability inside cloud infrastruc-

ture components, including function instances, storage, and the cluster scheduler. With

STeLLAR, we also assess the delays induced by data communication and bursty traffic

and their impact on the tail latency.

Our analysis reveals that storage accesses and bursty function invocations are the

key factors that cause latency variability in today’s serverless systems. Storage accesses

include the retrieval of function images during the function instance start-up as well

as inter-function data communication that happens via a storage service. Bursty traffic

stresses the serverless infrastructure by necessitating rapidly scaling up the number of

function instances, thus causing a significant increase in both median and tail latency.

We also find that the scheduling policy, specifically whether multiple invocations may

queue at a single function instance, can significantly increase request completion time

by up to two orders of magnitude, particularly for functions with long execution times.

Our analysis also reveals factors that, somewhat surprisingly, contribute little to latency

variability; one such factor is the choice of language runtime.

3.2 Motivation

3.2.1 A Lifecycle of a Function Invocation

We describe the serverless infrastructure organization (Fig. 3.1), summarizing available

information about the leading serverless provider, AWS Lambda [19], and the state-of-

the-art open-source research framework for serverless experimentation, vHive [143].

First, a function invocation, e.g., triggered by an external source like a click, arrives

as an RPC or HTTP request at one of the servers of a scale-out front-end fleet that

authenticates this request and its origin 1 . The request is then forwarded to the load

balancer that routes invocations to physical hosts, called Workers, that have instances
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of the function currently running 2 .2 Request routing is based on the load in front of

currently active instances.

If all function instances are busy upon an invocation arrival, the load balancer

buffers the invocation while asking the cluster scheduler to spawn a new instance for the

function 3 . The scheduler keeps track of the entire cluster resource utilization, which

informs decisions regarding function instance placement. Once the scheduler chooses

a Worker to run a new function instance, it contacts the Worker’s instance manager

asking to launch a new instance 4 .3 The instance manager retrieves the necessary

function state, e.g., a Docker image or an archive with sources, from a storage service

and starts the instance 5 . Note that the instance manager also acts as a part of the

invocation data plane, terminating connections to the load balancer and the function

instances on the Worker.

When a new instance of the function is ready, the instance manager informs the load

balancer, which can then steer the invocation to the instance manager 6 , which relays

it to the instance 7 . The function then performs language runtime initialization, after

which the user-provided code of the function might retrieve the function invocation’s

inputs, e.g., the output produced by the corresponding caller function 8 . Finally,

the function processes the invocation. During processing, a function may call other

functions with inputs that can be transferred inline inside the callee’s invocation RPC

arguments or by saving the input data in storage, which is required for larger payloads.

These internal function invocations also need to traverse the front-end and/or the load

balancer 9 , effectively repeating the whole aforementioned procedure.

3.2.2 Sources of Tail Latency in Serverless Clouds

Serverless infrastructures aim to deliver a high quality of service to the majority of

cloud application users. Specifically, similarly to conventional clouds, serverless in-

frastructures strive to minimize tail latency. Providing tail latency guarantees is a hard

task for serverless clouds while delivering continuous scaling of function instances and

given the necessity of running these instances on any node in a serverless cluster.

Fig. 3.1 shows the components that could potentially become sources of tail latency.

These are: the function instances themselves, the storage services used by both the

instance manager and the user code, and the cluster scheduler. For each of these

2The load-balancer component is referred to as Worker Manager in AWS Lambda [19] and Activator
in Knative [11].

3The instance manager is referred to as MicroVM Manager in AWS Lambda [19].
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components, we identify low-level application characteristics and scenarios that could

hurt tail latency.

First, spawning new function instances induces a significant delay, often referred to

as a cold start delay in the literature [143, 64, 133]. The key factors that contribute to

cold start delays include the language runtime (chosen by the application developer), the

provider’s sandbox technology, and the size of a function image. These factors impact

the cold start delays not only directly but also indirectly by interacting with various

infrastructure components, like storage services and network switches. For example,

interpreted languages, like Python, are known to have higher startup delays compared

to compiled languages, like Go. Also, providers use different sandboxes for function

instances; e.g., MicroVMs in AWS Lambda [19] and Google Cloud Functions [75],

whereas Azure Functions run in containers atop of regular VMs [100]. Finally, large

function images can take non-negligible amounts of time when retrieved from storage.

Function images are usually resident in low-cost storage that is not optimized for low

latency access since the majority of functions are invoked once per hour or less [133].

Second, the functions that transfer large payloads experience delays induced by the

involved infrastructure components. Functions can perform data transfers by embedding

their payloads inside the invocation RPC, albeit sizes are restricted to 256KB-10MB [26,

74]. For transferring larger payloads, functions have to resort to storage services

suffering from the tail-adverse effects of cost-optimized services, similarly to functions

that have large function images. Hence, functions that sporadically transfer large

amounts of data – both inline and via storage – may encounter significant tail latency

bloat.

The cluster scheduler is another important source of tail latency as prior work shows

that function invocation traffic can be bursty [146]. Serverless schedulers attempt to

right-size the number of active function instances by quickly reacting to changes in

the invocation traffic. Prior work showed that most functions are short-running [133],

which has the effect of placing a high load on the cluster scheduler which must cope

with a flurry of scheduling decisions at small time intervals. One important aspect

of the scheduler is the choice of the policy that deals with whether to steer multiple

requests in a burst to an existing warm instance or spawn new instances. The trade-off

is between inducing queuing at a warm instance or incurring long cold-start delays to

avoid queuing.

Take-away: a comprehensive measurement framework for tail latency analysis must
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stress all the relevant infrastructure components and technologies to pinpoint, assess

and compare all tail latency contributors for a given provider.

3.3 STeLLAR Design

This work introduces STeLLAR, an open-source, provider-agnostic framework for

serverless cloud benchmarking that enables systems researchers and practitioners to

conduct comprehensive performance analysis. STeLLAR is highly configurable, al-

lowing users to model specific load scenarios and selectively stressing distinct cloud

infrastructure components. For instance, as we show in this work, STeLLAR not only

helps assess the implications of the language runtime on the function startup time, like

prior work [86, 51, 121, 20], but can selectively stress the cluster scheduler by steering

frequent bursts of invocations to a set of functions. Also, STeLLAR can stress the

storage layer by invoking functions with large image sizes and by configuring data

transfer sizes across chains of functions. We envision STeLLAR’s users to be able

to configure the framework to model other scenarios and stress tests. STeLLAR uses

a robust performance measurement methodology (see §3.4 for details), tailored for

tail latency analysis, supporting both end-to-end and localized in-depth performance

studies.
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Figure 3.2: STeLLAR architecture overview.
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STeLLAR architecture, shown in Fig. 3.2, comprises of two main components,

namely deployer and client. The deployer features a set of provider-specific plugins,

each of which are responsible for deploying functions in the corresponding provider’s

cloud, using a programmatic interface offered by the providers. The deployer’s logic is

configured via a file with a static function configuration that abstracts away the details

and terminology of various providers. Using this configuration file, STeLLAR users

can define a wide range of static function parameters for each of the deployed functions,

as follows:

• Function deployment methods, namely with a ZIP archive and with a Docker

container;

• Maximum memory size of the deployed function’s instances;

• A number of identical replicas of the function. This is particularly useful to

accelerate cold-start latency measurements by invoking the replicas in parallel

instead of invoking a single function once in a long keep-alive period, each time

waiting for the providers to tear down an idle instance of the function.

Provided with the static configuration file, the deployer automatically configures

and deploys the requested set of functions, producing a file that contains a set of

endpoint URLs, each of which corresponds to a single function and is assigned by

the appropriate provider. The static function configuration file may define a function

handler’s code, a maximum memory size of a function instance, the effective image

size, as well the provider the target availability zone. For some providers, the deployer

supports several deployment methods, namely ZIP archive-based deployment, which is

common to all providers, and a more recent Docker-based deployment option available

in some serverless clouds, e.g., AWS Lambda [31]. The users can configure the effective

function image size by instructing the deployer to add a random-content file to the

corresponding ZIP archive or Docker image.

After configuring and uploading a set of functions using the deployer, STeLLAR

can drive the load to these functions, measuring their response time and visualizing the

measurements with a set of plotting utilities. The client is provider-agnostic, generating

function invocation traffic as HTTP requests to the endpoints that are defined in the file

produced by the deployer component. The clients invokes functions from the file with

the endpoints’ URLs in a round-robin fashion, calling them one after another according

to the specified IAT. To send a request to a deployed function, the client spawns a
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goroutine that sends an HTTP request to the function’s URL, blocking till the function’s

response arrives. For each of the requests, its goroutine measures the latency between

the time when the request was issued and the time when the corresponding response

was received. The measurements are then aggregated in a single file for further data

analysis and visualization.

The client supports further customization with a runtime configuration file where

users may specify a number of runtime parameters:

• The file may contain an arbitrary mix of deployed functions (every function

replica is treated as a separate function in this file);

• Inter-arrival time (IAT) distribution of the function invocation traffic, with a fixed,

stochastic, or bursty distribution;

• Function execution time;

• Chain length that is the number of functions in a chain, where each preced-

ing function invokes its following function while transferring a payload of a

configurable size.

• The type of data transfers if the chain is longer than a single function, namely

inline transfers and transfers via a storage service (AWS S3, Google Storage, and

Azure Blob Storage are supported).

STeLLAR lets the users specify the IAT distribution (e.g., round-robin across all

deployed functions) along with the number of requests issued in each step, i.e., the burst

size, which is essential to evaluate cloud infrastructure efficiency in the presence of

bursty traffic. Also, STeLLAR users can specify the execution time of a function with

a busy-spin loop of a configurable duration. Other parameters define the data transfer

behavior across chains of functions, where each function calls the next function in the

chain and waits for its response before returning. The users can specify the transport for

data transfers (inline arguments inside the invocation HTTP requests or a cloud storage

service) and the length of function chains.

STeLLAR supports intra-function instrumentation, by adding calls into Go’s native

Time module. For example, to capture the data transfer delays, we add a timestamp

in the producer function before saving a payload to a storage service (e.g., AWS S3)

and another timestamp in the consumer function after retrieving the payload from

the storage. The functions’ code concatenates these timestamps and passes them to
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STeLLAR’s client as a string. The overhead of this instrumentation is sub-microsecond,

as Go relies on Linux’ clock gettime() whose overhead has been measured to be

within 30ns [78, 48].

Finally, STeLLAR can visualize latency measurements as a cumulative distribution

function or as latency percentiles as a function of one of the serverless-function pa-

rameters (e.g., the payload size in a data transfer, function image size). The ability to

collect both the end-to-end time and the internal timestamps, e.g., for measuring the

data transfer time, allows users to cross-validate their measurements.

3.4 Methodology

We use STeLLAR to characterize three leading serverless cloud offerings, namely AWS

Lambda, Google Cloud Functions, and Azure Functions. In the rest of this section,

we discuss different aspects of performance, approaches to function deployment, the

configuration of STeLLAR, and the metrics that we focus on.

Factor Analysis Vectors

To assess the impact of each of the identified tail-latency sources, we conduct studies

along the following four vectors. First, we evaluate the response time of warm and

cold functions under a non-bursty load (i.e., allowing no more than a single outstanding

request to each function).4 Second, we assess the cold function delays that appear

on the physical node that hosts these functions, varying the language runtime and the

functions’ image size. Third, we study the data communication delays for chained

functions, where one function transmits a payload of varied size to the second function;

we consider two data transfer methods: inline (i.e., inside the HTTP request) and via

a cloud storage service. Lastly, we investigate the behavior of serverless clouds in

the presence of bursty function invocations, varying the number of requests in a burst

(further referred to as the burst size) and their inter-arrival time.

Function Deployment Configuration

We deploy the functions in datacenters located near the western coast of the USA in

close proximity to the CloudLab Utah datacenter, where STeLLAR runs. The functions

4Here, we call a function warm if it has at least one instance online and idle upon a request’s arrival,
otherwise we refer to the function as a cold function.
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are configured with the maximum memory sizes, which are 1.5GB for Azure and 2GB

for AWS and Google for a single CPU core per function instance [26, 74, 34]. These

high-memory configurations are not subject to CPU throttling applied by the providers

to low-memory instances.

Unless specified otherwise, we deploy all functions using the ZIP-based deployment

method, which is supported by all studied providers. We deploy Python 3 functions for

all experiments except the function image size (§3.5.2.2) and the data transfer (§3.5.3)

experiments. In those experiments, we use Golang functions to minimize the image

size and increase the accuracy of the internal timestamp measurements required in the

data transfer experiment. To measure the data transfer time in a chain of two functions,

the first function records an initial timestamp before storing it in the transferred payload.

The payload is then sent using the second function’s invocation request or cloud storage.

Finally, the second function is invoked, after which it loads the data from the request or

storage and then records a second timestamp. STeLLAR’s client computes the effective

transfer time by subtracting these timestamps. All functions return immediately, unless

specified otherwise.

STeLLAR Configuration

We run the STeLLAR client on an xl170 node in CloudLab Utah datacenter which

features a 10-core Intel Broadwell CPU with 64GB DRAM and a 25Gb NIC [65]. The

propagation delays between the STeLLAR client deployment and the AWS, Google,

and Azure datacenters in the US West region, as measured by the Linux ping utility,

are 26, 14, and 32ms, respectively.

In all experiments, unless stated otherwise, functions return immediately with no

computational phase. To study warm function invocations, the client invokes each

function with a 3-second inter-arrival time (IAT), further referred to as short IAT, that

statistically ensures that at least one function instance stays alive. To evaluate cold

function invocations, the client invokes each function with a 15-min IAT, further referred

to as long IAT, which was chosen so that the providers shut down idle instances with a

likelihood of over 50%.5 We configure the STeLLAR client to invoke each function

either with a single request or by issuing a burst of requests simultaneously. A serverless

request completes in >20ms, as observed by the client, which means that requests in

the same burst create negligible client-side queuing. For each evaluated configuration,

5We found that AWS Lambda always shuts down idle function instances after 10 minutes of inactivity,
which allowed us to speed up experiments on AWS by issuing requests with a long IAT of 10 minutes.
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(a) Short IAT (b) Long IAT

Figure 3.3: Latency distributions for functions invoked with short and long inter-arrival

times.

STeLLAR collects 3000 latency samples (each request in a burst is one measurement).

In all experiments, to speed up the measurements, we deploy a set of identical

independent functions that the client invokes in a round-robin fashion, ensuring no

client-side contention. For example, to benchmark cold functions, we deploy over 100

functions, each of which is invoked with a fixed IAT.

Latency and Bandwidth Metrics

We compare the studied cloud providers using several metrics that include the median

response time, the 99-th percentile (further referred to as the tail latency), and the

tail-to-median ratio (TMR) that we define as the 99-th percentile normalized to the

median. Both median and tail latencies are reported as observed by the client, i.e., the

latencies include the propagation delays between the client deployment and the target

cloud datacenters. The TMR metric acts as a measure of predictability which allows the

comparison of response time predictability between different providers. We consider a

TMR above 10 potentially problematic from a performance predictability perspective.

In the data-communication experiments, we estimate the effective data transmission

bandwidth as the payload size divided by the median latency of the transfer.
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3.5 Results

3.5.1 Warm Function Invocations

We start by evaluating the response time of functions with warm instances by issuing

invocations with a short inter-arrival time (IAT). For this study, at most one invocation

to an instance is outstanding at any given time. Fig. 3.3a shows cumulative distribution

functions (CDFs) of the response times as observed by the STeLLAR client.

We note that propagation delays to and from the datacenter (§3.4) constitute a

significant fraction of the latency for warm invocations. Since the propagation delays

to the different providers’ datacenters differ, we subtract them to focus on the intra-

datacenter latencies. Note that this is the only place in the paper where we do so; the

rest of the results (including Fig. 3.3a) include the propagation delays.

With propagation delays subtracted, we find that Google has the lowest median

latency (17ms), followed by AWS (18ms), and Azure (25ms). In line with having the

lowest median latency, Google also displays a lower tail latency (47ms) compared to

the other two providers (74ms for AWS, 75ms for Azure). Despite having the highest

median latency, Azure yields the lowest TMR of all (1.3), compared to 1.5 for Google

and 1.7 for AWS.

Observation 1. Invocations of warm functions impose low delays and variability, with

a median latency of 25ms and TMRs <2.

3.5.2 Cold Function Invocations

We perform a factor analysis of cold-start delays, starting from latencies corresponding

to baseline invocations followed by an investigation of the effect of function image size,

language runtime and function deployment method.

3.5.2.1 Baseline Cold Invocation Latency

We study the response time of cold functions by issuing invocations with the long IAT.

As shown in Fig. 3.3b, the median and tail latencies of cold invocations are, respectively,

10-28⇥ and 9-49⇥ higher than their warm-start counterparts. We observe that the

lowest median latency (448ms) and the lowest latency variability (TMR of 1.5) are

delivered by AWS. Google ranks in the middle and displays a median latency of 870ms

and a TMR of 1.8. Finally, Azure shows the highest median latency of 1401ms with the

highest variability (TMR of 2.6).
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Figure 3.4: Cold-start latency as a function of the extra random-content file added to the

function and provider.

3.5.2.2 Impact of Function Image Size

In this experiment, we assess the impact of the image size on the median and tail

response times, by adding an extra random-content file to each image. We only consider

ZIP-based images as these are supported by all three of our studied cloud providers.

Results are shown in Fig. 3.4. We observe that Google is not sensitive to the image

size, with near-identical CDFs for images with added 10MB and 100MB files. It is

possible that Google allows retrieving images at much higher network and/or storage

bandwidth than its competitors, while masking the image retrieval with other cold-start

related operations.

In contrast, AWS show considerable sensitivity to the image size: increasing the

added file’s size from 10MB to 100MB results in 3.5⇥ and 4.2⇥ increase of the median

and the tail latency, respectively. Azure exhibits even higher sensitivity to the image size,

with the median and tail latencies increasing by 2.4⇥ and 1.6⇥ when adding 100MB

to the image, compared to the response time of the functions with added 10MB. For

functions with larger images, the tail latency may reach 2155ms in AWS and 5723ms

in Azure. However, for both AWS and Azure, the usage of large function images has

a moderate impact on latency variability, with a TMR of 1.7. In contrast to AWS and

Azure, Google shows considerably lower sensitivity to varying the image size. Also,

for large image sizes, e.g., with a 100MB file, Azure exhibits lower median latencies

(approx. 510ms) than its competitors albeit showing higher latency variability, with a

TMR of 3.6.

Observation 2. Invocations of cold functions may impose large delays of up to several
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Figure 3.5: Cold-start latency distributions in AWS for different language runtimes and

deployment methods.

seconds to the median response time, particularly for functions that have large images.

However, variability of cold-starts is moderate, with TMR of <3.6.

3.5.2.3 Impacts of Deployment Method and Language Runtime

We next study the implications of different deployment methods and language runtimes.

Deployment methods refer to how a developer packages and deploys their functions,

which also affects the way in which serverless infrastructures store and load a function

image when an instance is cold booted. We study the two deployment methods that are

in common use today: (1) ZIP archive, and (2) container-based image. With respect to

language runtime, our intent is not to evaluate all possible options, but rather to focus

on two fundamental classes of runtimes: compiled and interpreted. To that end, we

study functions written in Python 3 (interpreted) and Golang 1.13 (compiled) deployed

via ZIP and container-based images. This study is performed exclusively using AWS

Lambda because, at the time of this paper’s submission, Google Cloud Functions did

not support container-based deployment and Azure Functions did not support Golang.

The results of the study are shown in Fig. 3.5, from which we draw three obser-

vations. First, for ZIP-based deployment, both Golang and Python’s CDFs nearly

overlap, showing median and tail latencies of 360ms and 570ms, respectively. This

result demonstrates that the choice of a language runtime has negligible implications

for cold-start delays. The result is surprising in that it contradicts academic works that

showed that the choice of a runtime impacts cold-start latency [64, 152, 20]. However,

these academic works did not study production clouds, instead focusing on in-house or

open-source systems. Thus, we hypothesize that academic systems may lack important

optimization employed by production systems, such as having a pool of warm generic
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function instances [19]. We call attention to this issue as one that requires further study.

Our second observation is that the latency CDFs of Python and Golang runtimes with

container-based deployment differ significantly. Python functions show considerably

higher median and tail latency of 612ms and 2882ms, respectively, whereas for Golang,

the latency CDF of container-based deployment is close to that of ZIP-based one. One

possible explanation of this phenomenon is that a Golang program is compiled as a

static binary, suggesting that both ZIP and container image comprise the same binaries

that are likely to be stored in the same storage service. Meanwhile, for Python, a

container-based deployment shows higher median and tail latencies, compared to the

corresponding ZIP deployment. We attribute this behavior to the fact that Python

imports modules dynamically, requiring on-demand accesses to multiple distinct files in

the function image. When combined with a container-based deployment method, we

hypothesize that this results in multiple accesses to the function image storage, since

containers support splintering and on-demand loading of image chunks [107]. The

additional accesses to the image store would explain the high cold start time and latency

variability for Python container-based deployments.

Third, we characterize the latency variability induced by the language runtime and

the deployment method selection. We observe that Golang ZIP and Python ZIP-based

functions show similar TMRs of 1.5 and 1.7, indicating little impact on the tail latency.

Golang container-based deployment has slightly higher variability with a TMR of 2.4.

In contrast to Python ZIP deployment, Python container-based functions exhibit much

higher latency variability with a TMR of 4.7.

Observation 3. The choice of the language runtime has low impact on the cold function

invocation delay with a <15ms difference between Golang and Python functions’

median response time with ZIP deployment. In contrast, the deployment method strongly

impacts cold-start delays for functions written in an interpreted language such as

Python; compared to ZIP, container-based deployment significantly increases both

median and tail latencies by 1.7⇥ and 8.0⇥, respectively.

3.5.3 Data Transfer Delays

To study the impact of the data-transfer delays on the overall response time tail latency,

we deploy a producer-consumer chain of two functions in AWS and Google.6 The

producer function invokes the consumer with an accompanying payload of a specified
6We plan to extend this study to Azure Functions by the time of publication.
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(a) Median (solid) and tail (dashed) payload

transfer latencies

(b) Latencies for 10KB (solid) and 1MB (dashed)

payload transfers

Figure 3.6: Inline data transfer latency as a function of payload size. Note that both axes

in (a) and the X-axis in (b) are logarithmic.

size. The payload is transmitted in one of two ways: inline or via a storage service. We

report the latency from the start of the payload transmission, including the consumer

function invocation time, to the point when the payload is retrieved by the consumer

function.

3.5.3.1 Inline Transfers

First, we investigate the transmission time of transferring the payloads inline. Note

that both providers restrict the maximum HTTP request sizes, and hence the inline

payload size, to 6 and 10MB in AWS [26] and Google [74], respectively. For larger

data transfers, application developers must resort to storage-based transfers, discussed

below.

Fig. 3.6a shows the median and the tail transmission latency of inline transfers.

Google delivers the lowest median latency for small payloads (1-10KB), completing

the transfer 1.6⇥ faster than AWS. E.g., a 1KB transfer completes in 7ms in Google vs

11ms in AWS.

In contrast to small-payload transfers, which complete relative quickly, transferring

large payloads may take hundreds of milliseconds. For instance, AWS and Google

complete a 4MB transfer with median latencies of 124ms and 202ms, and TMRs of 1.4

and 1.3, respectively. For functions that run for less than 10 seconds, which account for

>70% of all functions as reported in Azure Functions’ trace [133], such data transfer

overheads might be prohibitively high.
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(a) Median (solid) and tail (dashed) latencies

(b) Latencies for 1MB (solid) and 1GB (dashed)

payload transfers

Figure 3.7: Storage-based data transfer latency as a function of payload size. Note that

both axes in (a) and the X-axis in (b) are logarithmic.

Next, we compare data transfer time variability in AWS and Google (Fig. 3.6b). For

both providers, the variability is low, with TMRs of 1.7 and 1.4, respectively. With

such low TMRs, we find that inline transfers have a fairly low impact on tail latency

compared to other sources of variability.

Finally, we study the effective bandwidth of inline data transfers, which we compute

by dividing the payload size by the observed median transmission time. We find

that AWS and Google functions deliver a relatively meager 264Mb/s and 152Mb/s of

bandwidth, respectively. This bandwidth is significantly lower than the bandwidth of

commodity datacenter network cards (e.g., 10-100Gb/s in non-virtualized AWS EC2

instances [22]).

3.5.3.2 Storage-based Transfers

First, we evaluate the latency and the effective-bandwidth characteristics of storage-

based transfers in AWS and Google, sweeping the size of the transmitted payloads

from 1KB to 1GB. Fig. 3.7a demonstrates that the lowest median latency is delivered

by AWS. For instance, a 1MB payload transfer completes 1.4⇥ faster in AWS than in

Google (111ms in AWS vs 155ms in Google).

Second, we investigate the effective transmission bandwidth of storage-based trans-

fers and compare it to the bandwidth that we measure for inline transfers (§3.5.3.1). We

observe that storage-based transfers provide significantly larger effective bandwidth

than the corresponding inline transfers. For example, 1MB transfers between functions

in AWS and Google yield 72Mb/s and 48Mb/s, respectively. The achieved bandwidth is
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much higher for >100MB payloads, reaching up to 960Mb/s and 408Mb/s for AWS

and Google, respectively. Despite the higher bandwidth achieved by large transferred

sizes, it is still more than an order of magnitude lower than what a low-end commodity

10Gb NIC can offer.

Finally, we assess how storage transfers contribute to latency variability in serverless.

Fig. 3.7b shows that storage-based transfer delays exhibit large tail latency. For instance,

when transferring 1MB of data, the tail latency is 1177ms in AWS and 5781ms in

Google, with corresponding TMRs of 10.6 and 37.3 in AWS and Google, respectively.

In contrast, transferring 1MB inside function invocation requests, i.e., inline, yields

much lower TMRs of 1.7 in AWS and 1.4 in Google (§3.5.3.1).

We speculate that the high variability of storage transfers is due to the fact that

storage services, by design, optimize for cost rather than performance. With the lack

of a fast and cheap communication alternative for large payload transfers, we identify

storage as one of the key contributors to the overall response time and performance

variability in serverless.

Observation 4. Storage-based data transfers significantly contribute to both median

and tail latencies. E.g., for a 1MB transfer in Google, these delays result in 155ms

median and 5774ms tail latencies, yielding a high TMR of 37.3. In contrast, inline

transfers are fast and predictable: e.g., for a 1MB transfer in Google, these delays

result in 62ms median and 88ms tail latencies with a much lower TMR of 1.4.

3.5.4 Bursty Invocations

We study the response time of functions in the presence of bursty invocations and assess

the impact of the scheduling policy on request completion time.

Fig. 3.8 shows the response time for requests arriving in bursts with short and long

IATs, corresponding to (mostly) warm and (mostly) cold invocations. We observe that

the burst size, i.e., the number of requests sent in a single burst, impacts both median

and tail latency characteristics for all three providers. However, different providers

exhibit different degrees of sensitivity to the burst size. Note that a burst size of 1

corresponds to a single invocation (Fig. 3.3).

3.5.4.1 Bursty Invocations with Short IAT

Fig. 3.8 (left subfigures) plot the latency CDFs of the three providers when bursts are

issued with short IATs. We observe that all providers exhibit the similar behavior:
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(a) AWS Lambda.

(b) Google Cloud Functions.

(c) Azure Functions.

Figure 3.8: Latency CDFs for short and long IATs for different burst sizes. Note that

X-axes vary across graphs.
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serving larger bursts leads to an increase in both median and tail latencies. Azure

displays the highest sensitivity to the burst size: increasing the burst size from 1 to 500

leads to an increase in both median and tail latencies by 33.4⇥ and 98.5⇥, respectively.

Noticeably, Google shows the lowest sensitivity to increasing the burst size from 100

to 500, with the median latencies being within 15ms for different burst sizes (the tail

latencies are within 50ms).

We next compare latency variability across the three providers using a burst size of

100 as a base for comparisons. We observe that Google shows the lowest variability,

followed by AWS, and Azure with TMRs of 1.7, 6.2, and 7.9, respectively. Increasing

the burst size from 100 to 500 results in lower variability for AWS and Azure, with

TMRs of 4.4 and 3.9, but slightly goes up for Google, with a TMR of 1.9.

3.5.4.2 Bursty Invocations with Long IAT

Next, we compare invocations in the presence of bursts with long IAT. Results are

plotted in the right-hand subfigures of Fig. 3.8. We find that different providers exhibit

different behavior as burst size increases.

For AWS, increasing the burst size from 1 to 100 results in 1.8⇥ and 1.3⇥ decrease

of the median and tail latencies, respectively. This latency reduction suggests that

AWS optimizes retrieval of function images from storage, possibly by employing an

in-memory storage-side caching. While increasing the burst size from 100 to 300

requests results in minimal changes, within 12%, in both median and tail latencies in

AWS, we observe that when serving a burst of even 500 requests, both median and tail

latencies continue to be lower than for an individual request.

Google’s median and tail latencies in the presence of bursts are higher than in the

presence of individual requests (i.e., burst size of 1). For instance, the median and tail

latencies is 870ms and 1567ms for a burst size of 1 vs. 1818ms and 3095ms for a burst

size of 100, respectively. Increasing the burst size to 300 results in further increase of

both median and tail latencies Interestingly, increasing the burst size to 500 results in a

reduction of both median and tail latencies. We hypothesize that this behavior might be

attributed to the effects coming from the function image storage subsystem that might

adjust aggressiveness of images caching based on load.

One can also see that AWS and Google functions’ response time never drops to

the range attributable to warm function invocations, i.e., 25-100ms (Fig. 3.3a). This

suggests that these providers do not allow multiple requests to queue at an already-

executing instance, and, instead, a dedicated instance services each and every request in
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Figure 3.9: Latency CDFs for different request burst sizes, arriving with a long IAT, for

the functions with 1-second long execution time.

a burst. This corroborates AWS documentation [24]. Azure exhibits a different behavior,

as its CDF suggests that such queuing may occur, albeit limited to a very small fraction

of requests (<5%).

Azure functions show that both median and tail latencies significantly increase when

increasing the burst size. For instance, increasing the burst size from 1 to 500 increases

the median and the tail latencies by 4.1⇥ (i.e., by 4344ms) and 2.1⇥ (i.e., by 4037ms).

Finally, we note that all three providers have low latency variability for bursts with

long IAT. For the burst size of 100, AWS shows the highest variability with a TMR of

2.2. Meanwhile, Google and Azure enjoy lower TMRs of 1.7 and 1.4, respectively.

Observation 5. For bursts arriving with a short IAT, two out of the three providers

experience a moderate increase in the median latency by 3.1-3.3⇥ and the tail latency

by 4.2-8.4⇥, compared to to serving individual invocations. The third provider exhibits

higher sensitivity with its median and tail latencies increasing by 33.5⇥ and 98.5⇥,

respectively. Meanwhile latency variability is moderate for all providers, with TMRs

<7.9.

Observation 6. For bursts arriving with a long IAT, all providers show moderate

latency variability with TMRs of 1.3-2.6. Despite that, the median and the tail latencies

of two out of three providers increase by up to 740ms and 4344ms.

3.5.4.3 Implications of Scheduling Policy

In this experiment, we study the scheduling policies that different providers apply in

the presence of bursty invocations with a long IAT. In contrast to the previous study,

where functions responded immediately (i.e., took no time other than to generate the
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response), here we deploy functions with an execution time of 1 second. Our goal is to

understand whether providers allow concurrent requests to queue at an active instance

to alleviate the lengthy cold-start delays. We chose the function execution time to be 1

second as it exceeds the median cold-start delays for all providers, as shown in §3.5.2.1.

Moreover, the traces released by Microsoft Azure show that 50% of functions run for

1 second, on average [133]. Intuitively, with the function execution time being longer

than the cold-start latency, a scheduling policy optimized exclusively for performance

would cold-start a new instance for each request in a burst instead of allowing multiple

requests to queue at an existing instance.

We perform the experiment with burst sizes of 1 and 100. Results are shown

in Fig. 3.9. First, we observe that for non-bursty execution (i.e., a burst size of 1),

CDFs for all providers are close to each other, as there is no potential for queuing.

For bursty execution, the providers exhibit dramatically different behavior from each

other. For instance, for burst sizes of 1 and 100, we observe that AWS demonstrates

nearly identical latency CDFs with median and tail latencies of 1598ms and 1865ms,

respectively. As both of these latencies are below 2 seconds, it is clear that all requests

execute on separate instances, and no request waits for another request, which is in line

with the observation we made in §3.5.4.2.

In contrast, Google delivers median and tail latencies of 2978ms and 4595ms,

respectively, indicating that up to four requests may queue at one function instance.

Meanwhile, Azure demonstrates median and tail latencies of 18637ms and 38545ms,

respectively, showing that more than 30% of requests in a burst may be executed by the

same instance.

While it is difficult to ascertain that either Google or Azure do, in fact, allow requests

to queue at an active instance, the results certainly suggest that. Indeed, doing so would

be a sensible policy, particularly for shorter functions, aimed at striking a balance

between function execution time and resource utilization in terms of the number of

active instances. Both policies (i.e., allowing queuing or not) have pros and cons, which

points to a promising optimization space for future research.

Observation 7. The choice of scheduling policy with respect to whether multiple

invocations may queue at a given function instance has dramatic implications on

request completion time and resource utilization (i.e., number of active instances).

For functions with long execution times, a scheduling policy that allows queuing may

increase both median and tail latency by up to two orders of magnitude.
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AWS Google Azure

Factor MR TR MR TR MR TR

Base warm (§3.5.1) 1 2 1 2 1 1

Base cold (§3.5.2.1) 10 15 28 50 25 64

Image size (§3.5.2.2) 29 49 17 60 59 100

Inline transfer (§3.5.3.1) 1 2 2 3 n/a n/a

Storage transfer (§3.5.3.2) 3 27 5 187 n/a n/a

Bursty warm (§3.5.4.1) 2 11 3 5 5 41

Bursty cold (§3.5.4.2) 6 12 59 100 41 58

Bursty long7(§3.5.4.3) 12 16 64 102 309 619

Table 3.1: Median to base median (MR) and tail to base median (TR) metrics per studied

tail-latency factor across providers. Cells with MR or TR >10 highlighted in red.

3.6 Discussion

In this section, we first recap our findings by focusing on key sources of execution time

variability induced by the serverless infrastructure. We next discuss variability in actual

function execution time by analyzing data from a publicly-available trace of serverless

invocations in Microsoft Azure.

3.6.1 Variability due to Serverless Infrastructure

We summarize our findings in Table 3.1. For each of the factors that we study, we

compute two metrics, namely median to base median ratio (MR) and tail to base median

ratio (TR), which normalize the median and tail delays as induced by the corresponding

factor to median latency of an individual warm function invocation. This normalization

is done separately for each provider, i.e., the reported median or tail latency for a given

experiment with a particular provider is normalized to the median latency of a warm

invocation on that provider. We consider an MR or TR above 10 to be potentially

problematic as it implies a high degree of variability. Such cells are highlighted in red

in Table 3.1.

We identify two trends that are common across the studied providers. First, we find

storage to be a key source of long tail effects. Indeed, both cold function invocations,

which require accessing the function image from storage, and storage-based data

7We subtract the 1s function execution time from the measured latencies to account only for infras-
tructure and queuing delays in order to compute the MR and TR metrics.
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Figure 3.10: Tail-to-median ratio (TMR) CDFs for per-function execution times, as

reported in Azure Function’s trace [133].

transfers induce high MR (up to 59) and high TR (up to 187). To put these numbers

in perspective, a hypothetical warm function with a median execution latency of 20ms

would see its median latency skyrocket to 1.18s with MR of 59 and its tail to 3.74s with

TR of 187.

The second trend we identify is that all studied providers exhibit high sensitivity to

bursty traffic, particularly, when bursts arrive with a long IAT (rows ”Bursty cold” and

”Bursty long” in Table 3.1). While part of the reason for the resulting high latencies can

be attributed to storage accesses for cold invocations, we note that the scheduling policy

also seems to play a significant role. For functions with a long execution duration (1s,

in our experiments), if requests to a function are allowed to queue at an active instance,

we observe MR and TR of 309 and 619, respectively.

3.6.2 Variability in Function Execution Time

We ask the question of how the variability induced by serverless infrastructure compares

to the variability in function execution time, i.e., the useful work performed by functions.

Given the many options for the choice of implementation language, the numerous ways

for breaking up a given functionality into one or more functions, the actual work

performed by each function and other effects that determine function execution time,

we do not attempt to characterize the execution-time variability on our own. Instead,

we use a publicly-available trace from Azure Functions that captures the distribution of

function execution times as a collection of percentiles [133], including a 99-th percentile

and a median, allowing us to compute the tail-to-mean ratio (TMR) for each function.
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For each function, the trace captures the time between the function starting execution

until it returns. Even though each function’s reported execution time excludes cold-

start delays, this measurement may still include some infrastructure delays, e.g., if

that function invokes other functions or interacts with a storage service. Hence, the

computed TMRs are the upper bound for the pure function execution time variability.

Fig. 3.10 shows the CDF of the TMRs for each of the functions in the trace. We

find that 70% of all functions have a TMR less than 10, indicating moderate variability

in function execution times. However, other functions exhibit significant variability,

roughly in the same range is the variability induced by storage-based transfers which

have a TMR of between 10.6 and 37.3. We observe that these conclusions generally

stand for both short- and long-running functions captured in the trace; however, short

functions exhibit higher variability in their execution time. Thus, only 60% of the

functions that run for less than a second have a TMR of less than 10; meanwhile, 90%

of the functions that run for more than ten seconds have a sub-10 TMR.

3.7 Related Work

Prior work includes a number of benchmarking frameworks and suites for end-to-end

analysis of various serverless clouds. FaaSDom [104], SebS [51], and BeFaaS [77] intro-

duce automated deployment and benchmarking platforms, along with a number of server-

less applications as benchmarks, supporting many runtimes and providers. Serverless-

Bench [152] and FunctionBench [86, 87] present collections of microbenchmarks and

real-world workloads for performance and cost analysis of various clouds [152, 86, 87].

In contrast, STeLLAR stresses the components of serverless clouds to pinpoint their

implications on tail latency whereas the prior works focus on measuring performance

of distinct applications or evaluate the efficiency of certain serverless test cases, e.g.,

invoking a chain of functions or concurrently launching function instances.

Another body of works study the performance of particular components of serverless

systems. Wang et al. conducted one of the first comprehensive studies of production

clouds [148], investigating a wide range of aspects, including cold start delays for

different runtimes.While we analyze many more tail latency factors, we also find that

some of their results in 2018 are now obsolete, e.g., in contrast to their findings, we show

that the choice of runtime minimally affects the tail latency in AWS (§3.5.2.2). vHive

is a framework for serverless experimentation and explores the cold-start delays of

MicroVM snapshotting techniques [143]. Li et al. studies the throughput of the cluster
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infrastructure of open-source FaaS platforms in the presence of concurrent function

invocations [97]. Hellerstein et al. analyzes the existing I/O bottlenecks in modern

serverless systems [80]. FaaSProfiler conducts microarchitectural analysis of serverless

hosts [132].

Other works investigate the efficiency of serverless systems for different classes

workloads, namely ML training [83], latency-critical microservices [73], data-intensive

applications[89, 90, 129], and confidential computations [98]. Eismann et al. catego-

rizes open-source serverless applications according to their non-performance character-

istics [67]. Shahrad et al. analyzes invocation frequency and execution time distributions

of applications in Azure Functions and explores the design space of function instance

keep-alive policies [133].

3.8 Conclusion

Measuring and analyzing tail latency and its sources is crucial when designing latency-

critical cloud applications. To the best of our knowledge, STeLLAR is the first open-

source provider-agnostic benchmarking framework that enables tail-latency analysis of

serverless systems, allowing to study performance both end-to-end and per-component.

By design, STeLLAR is highly configurable and can model various load scenarios

and vary the characteristics of serverless applications, selectively stressing various

components of serverless infrastructure. Using STeLLAR, we perform a comprehensive

analysis of tail latency characteristics of three leading serverless clouds and show that

storage accesses – in particular, moving function instance initialization state upon a cold

start and cross-function data communication – and bursty traffic of function invocations

are the largest contributors to latency variability in modern serverless systems. We also

find that some of the important factors, like the choice of language runtime, have a

minor impact on tail latency.



Chapter 4

vHive Framework for Serverless

Systems Research

In this chapter, we introduce vHive, an open-source full-stack framework for experi-

menting with serverless systems, which integrates production-grade components from

leading commercial clouds into a representative research platform. Using vHive, we

analyze the root cause of the cold-start delays, which is the first performance bottleneck

we found in modern serverless clouds (§3).

4.1 Introduction

Today most serverless providers rely on proprietary infrastructure, preventing innovation

efforts in academic environment, where researchers lack access to the complex software

stack of the real-world clouds. As the serverless premise implies that serverless cloud

providers take complete responsibility for cloud infrastructure management, large parts

of the leading clouds’ stack are obscure to academic researchers. As a result, these

researchers are limited to experiment with small-scale, often incomplete prototypes

built in-house, diminishing the value of their research results in the context of real-world

systems.

To facilitate deeper understanding and experimentation with serverless computing,

we introduce vHive, an open-source framework for serverless experimentation, which

enables systems researchers to innovate across the entire serverless stack.1 Existing

open-source systems and frameworks are ill-suited for researchers, being either incom-

plete, focusing only on one of the components, such as a hypervisor [75], or rely on

1The code is available at https://github.com/ease-lab/vhive.
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insufficiently secure container isolation [32, 6, 7, 81, 94]. vHive integrates open-source

production-grade components from the leading serverless providers, namely Amazon

Firecracker [19], Containerd [50], Kubernetes [13], and Knative [11], that offer the

latest virtualization, snapshotting, and cluster orchestration technologies along with a

toolchain for functions deployment and benchmarking.

To illustrate vHive’s utility, we study the cold-start delays, i.e., the breakdown

of a a function instance bootstrapping time, analyzing the contributions by various

components of the serverless software stack. Because of their short execution time,

booting a function (i.e., cold start) has overwhelmingly high latency, and can easily

dominate the total execution time. Moreover, customers are not billed for the time a

function boots, which de-incentivizes the cloud vendor from booting each function from

scratch on-demand. Customers also have an incentive to avoid cold starts because of

their high impact on latency [119]. As a result, both cloud vendors and their customers

prefer to keep function instances memory-resident (i.e., warm) [76, 113, 119]. However,

keeping idle function instances alive wastefully occupies precious main memory, which

accounts for 40% of a modern server’s typical capital cost [19]. With serverless

providers instantiating thousands of function on a single server [19, 21], the memory

footprint of keeping all instances warm can reach into hundreds of GBs.

To avoid keeping thousands of functions warm while also eliding the high latency

of cold-booting a function, the industry has embraced snapshotting as a promising

solution. With this approach, once a function instance is fully booted, its complete state

is captured and stored on disk. When a new invocation for that function arrives, the

orchestrator can rapidly load a new function instance from the corresponding snapshot.

Once loaded, the instance can immediately start processing the incoming invocation,

thus eliminating the high latency of a cold boot.

Using vHive, we study the cold-start latency of functions from the FunctionBench

suite [86, 87], their memory footprint, and their spatio-temporal locality characteristics

when the functions run inside Firecracker MicroVMs [19] as part of the industry-

standard Containerd infrastructure [4, 50]. We focus on a state-of-the-art baseline where

the function is restored from a snapshot on a local SSD, thus achieving the lowest

possible cold-start latency with existing snapshotting technology [5, 64].

Based on our analysis, we make three key observations. First, restoring from a

snapshot yields a much smaller memory footprint (8-99MB) for a given function than

cold-booting the function from scratch (148-256 MB) – a reduction of 61-96%. The

reason for the greatly reduced footprint is that only the pages that are actually used by
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the function are loaded into memory. In contrast, when a function boots from scratch,

both the guest OS and the function’s user code engage functionality that is never used

during serving a function invocation (e.g., function initialization).

Our second observation is that the execution time of a function restored from a

snapshot is dominated by serving page faults in the host OS as pages are lazily mapped

into the guest memory. The host OS serves these page faults one by one, bringing

the pages from the backing file on disk. We find that these file accesses impose a

particularly high overhead because the guest accesses lack spatial locality, rendering

host OS’ disk read-ahead prefetching ineffective. Altogether, we find that servicing

page faults on the critical path of function execution accounts for 95% of actual function

processing time, on average – a significant slowdown, compared to executing a function

from memory (i.e., “warm”).

Our last observation is that a given function accesses largely the same set of guest-

physical memory pages across multiple invocations of the function. For the studied

functions, 97%, on average of the memory pages are the same across invocations.

We summarize our contributions as following:

• We release vHive, an open-source framework for serverless experimentation,

combining production-grade components from the leading serverless providers to

enable innovation in serverless systems across their deep and distributed software

stack.

• Using vHive, we demonstrate that the state-of-the-art approach of starting a

function from a snapshot results in low memory utilization but high start-up

latency due to lazy page faults and poor locality in SSD accesses. We further

observe that the set of pages accessed by a function across invocations recurs.

4.2 vHive: an Open-Source Framework for Serverless

Experimentation

To enable a deeper understanding of serverless computing platforms, this paper intro-

duces vHive, an open-source framework for experimentation with serverless computing.

As depicted in Fig. 4.1, vHive integrates production-grade components from the leading

serverless providers, such as Amazon and Google.
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Figure 4.1: vHive architecture overview. Solid and dashed arrows show the data plane

and the control plane, respectively.

4.2.1 Deploying and Programming with Functions in vHive

vHive adopts Knative [11], a serverless framework that runs on top of Kubernetes [13]

and offers a programming and deployment model that is similar to AWS Lambda [33]

and Azure functions [113]. To deploy an application in vHive, one can deploy ap-

plication functions by supplying Knative with each function’s Open Container Initia-

tive (OCI) [141] image, e.g., a Docker image, along with a configuration file. This OCI

image contains the function’s handle code, which is executed by an HTTP or gRPC

server upon an invocation. The configuration file contains the relevant environment

variables and other parameters for function composition and function instances scaling.

Using the configuration files, the application developers can compose their functions

with any conventional ”serverful” services with Kubernetes providing their URLs to

the relevant functions. For example, functions that use large inputs or produce large

outputs, like photos or videos, often have to save them in an object store or a database.

Upon a function’s deployment, Knative provides a URL for triggering this function.

Using these URLs, application developers can compose their functions, e.g., by specify-

ing the URL of a callee function in the configuration file of the caller function. For each

function, Knative configures the load-balancer service, sets up the network routes and

dynamically scales the number of instances of the function in the system, according to

changes in the function’s invocation traffic.
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4.2.2 vHive Infrastructure Components

Serverless infrastructure comprises of the front-end fleet of servers that expose the HTTP

endpoints for function invocations, the worker fleet that executes the function code, and

the cluster manager that is responsible for managing and scaling function instances

across the workers [19, 54, 133]. These components are connected by an HTTP-level

fabric, e.g., gRPC [8], that that enables management and resources monitoring [19].

A function invocation, in the form of an HTTP request or an RPC, first arrives at one

of the front-end servers for request authentication and mapping to the corresponding

function. In vHive, the Istio service [9] plays the roles of an HTTP endpoint and a load

balancer for the deployed functions. If the function that received an invocation has at

least one active instance, the front-end server simply routes the invocation request to an

active instance for processing.

If there are no active function instances, the load balancer contacts the cluster

manager to start a new instance of the function before the load balancer routes this

invocation to a worker. vHive relies on Kubernetes cluster orchestrator to automate

services deployment and management. Knative seamlessly extends Kubernetes, which

was originally designed for conventional “serverful” services, to enable autoscaling

of functions. For each function, Knative deploys an autoscaler service that monitors

the invocation traffic to each function and makes decisions on scaling the number of

functions instances in the cluster based on observed load.

At the autoscaler’s decision, a chosen worker’s control plane starts a new function

instance as a pod, the scaling granule in Kubernetes, that contains a Knative Queue-

Proxy (QP) and a MicroVM that runs the function code. The QP implements a software

queue and a health monitor for the function instance, reporting the queue depth to the

function’s autoscaler, which is the basis for the scaling decisions. The function runs

in a MicroVM to isolate the worker host from the untrusted developer-provided code.

vHive follows the model of AWS Lambda, which deploys a single function inside a

MicroVM that processes a single invocation at a time [19].

To implement the control plane, vHive introduces a vHive-CRI orchestrator service

that integrates the two forks of Containerd – the stock version [50] and the Firecracker-

specific version developed for MicroVMs [4] – for managing the lifecycle of con-

tainerized services (e.g., the QP) and MicroVMs. The vHive-CRI orchestrator receives

Container-Runtime Interface (CRI) [47] requests from the Kubernetes control plane and

processes them, making the appropriate calls to the corresponding Containerd services.
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Figure 4.2: Cold-start latency breakdown for Firecracker’s snapshot load mechanism,

compared to the warm latency.

Once the load balancer, which received the function invocation, the QP, and the function

instance inside a MicroVM establish the appropriate HTTP-level connections, the data

plane of the function is ready to process function invocations. When the function

instance finishes processing the invocation, it responds to the load balancer, which

forwards the response back to the invoking client.

vHive enables systems researchers to experiment with serverless deployments that

are representative of production serverless clouds. vHive allows easy analyzing of the

performance of an arbitrary serverless setting by offering access to Containerd and

Kubernetes logs with high-precision timestamps or by collecting custom metrics. vHive

also includes the client software to evaluate the response time of the deployed serverless

functions in different scenarios, varying the mix of functions and the load. Finally, vHive

lets the users experiment with several modes for cold function invocations, including

loading from a snapshot or booting a new VM from a root filesystem.

4.3 Serverless Latency and Memory Footprint Charac-

terization

In this section, we use vHive to analyze latency characteristics and memory access

patterns of serverless functions, deployed in Firecracker MicroVM instances with

snapshot support [5].

4.3.1 Evaluation Methodology

Similarly to prior work [64], we focus on the evaluation of a single worker server. The

existing distributed serverless stack contributes little, e.g., less than 30ms as shown
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by AWS [19], to the overall end-to-end latency, as compared to many hundreds of

milliseconds of the worker-related latency that we demonstrate below. Prior work

measured the cold-start delay as the time between starting to load a VM from a snapshot

to the time the instance executes the first instruction of the user-provided code of the

function [64]. As the metric for our cold-start delay measurements, we choose the

latency that includes not only the critical path of the VM restoration but the entire cold

function invocation latency on a single worker. The measurements capture the latency

from the moment a worker receives a function invocation request to the moment when

the worker is ready to send the function’s response back to the load balancer. This

latency includes both the control-plane delays (including interactions with Containerd

and Firecracker hypervisor) and data-plane time that is gRPC request processing and

actual function execution.

Our experiments aim to closely model the workloads as in a modern serverless

environment. First, we adopt a number of functions, listed in Table 5.1, from a represen-

tative serverless benchmark suite called FunctionBench [86, 87]. Second, to simulate

the low invocation frequency of serverless functions in production [133], the host OS’

page cache is flushed before each invocation of a cold function.

To evaluate the cold-start start delay in a serverless platform similar to AWS Lambda,

we augment the vHive-CRI orchestrator to act as a MicroManager in AWS [19]. In

this implementation, the vHive-CRI orchestrator not only implements the control

plane but also acts as a data plane software router that forwards incoming function

invocations to the appropriate function instance and waits for its response over a

persistent gRPC connection. Note that in this setting, the worker infrastructure does not

include the Queue-Proxy containers so that the data plane resembles per-function gRPC

connections. Without a loss of generality, this work assumes the fastest possible storage

for the snapshots that is a local SSD, which yields the lowest possible cold-start latency

compared to a local HDD or disaggregated storage. §5.3.1 provides further details of

the platform as well as the host and the guest setup.

To study the memory access patterns of serverless functions, we trace the guest

memory addresses that a function instance accesses between the point when the vHive-

CRI orchestrator starts to load a VM from a snapshot and the moment when the

orchestrator receives a response from the function. As Firecracker lazily populates the

guest memory, first memory access to each page from the hypervisor or the guest raises

a page fault in the host that can be traced. We use Linux userfaultfd feature [99] that

allows a userspace process to inspect the addresses and serve the page faults on behalf
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of the host OS.

4.3.2 Quantifying Cold-Start Delays

We start by evaluating the cold-start latency of each function under study and compare

it to the invocation latency of the warm function instance. Recall that a warm instance is

memory-resident and does not experience any cold-start delay when invoked. To obtain

a detailed cold-start latency breakdown, we instrument the vHive-CRI orchestrator and

invoke each function 10 times. To model a cold invocation, we flush the host OS page

caches after each measurement.

Figure 4.2 shows the latency for the cold and warm invocations for each function. As

expected, when a function instance remains warm (i.e., stays in memory), the instance

delivers a very low invocation latency. By contrast, we find that a cold invocation from

a snapshot takes one to two orders of magnitude longer than a warm invocation, which

indicates that even with state-of-the-art snapshotting, cold-start delays are a major pain

point for functions.

To investigate the performance difference, we examine the end-to-end cold invoca-

tion latency breakdown. First, the vHive-CRI orchestrator spawns a new Firecracker

process and restores the virtual machine monitor (VMM) state as well as the state of the

emulated network and block devices – the Load VMM latency component. After that,

the orchestrator resumes the loaded function instance’s virtual CPUs and restores the

persistent gRPC connection to the gRPC server inside the VM. We name this latency

component as Connection restoration. These two latency components are universal

across all functions as they are part of the serverless infrastructure. Finally, we measure

the actual function invocation processing time, referred to as Function processing.

The per-function latency breakdown is also plotted in Figure 4.2. We observe that

the first two universal components, namely Load VMM and Connection restoration,

take 156-317 ms. Meanwhile, the actual function processing takes much longer (95%

longer on average) for cold invocations as compared to warm invocations of the same

functions, reaching into 100s of milliseconds even for functions like helloworld and

pyaes that take only a few milliseconds to execute when warm.

The state-of-the-art snapshotting techniques rely on lazy paging to eliminate the

population of guest memory from the critical path of VM restoration (§2.4.1). A

consequence of this design is that each page touched by a function must be faulted

in at the first access, resulting in thousands of page faults during a single invocation



4.3. SERVERLESS LATENCY AND MEMORY FOOTPRINT CHARACTERIZATION49

Figure 4.3: Guest memory pages contiguity.

of a function. Page faults are processed serially because the faulting thread is halted

until the OS brings the memory page from disk and installs it into the virtual address

space by setting up the memory mappings in the process page table. In this case, the

performance of the guest significantly depends on the disk latency as the OS needs to

bring the missing pages from the guest memory file.

We also study the contiguity of the faulted pages, with the results depicted in Fig. 4.3.

We find that function instances tend to access pages that are located in non-adjacent

locations inside the guest memory. This lack of spatial locality significantly increases

disk access time, and thus page fault delays, because sparse accesses to disk cannot

benefit from the host OS’s run-ahead prefetching. Fig. 4.3 shows that the average length

of the contiguous regions of the guest-physical memory is around 2-3 pages for all

functions except lr training that shows contiguity of up to 5 pages.

4.3.3 Function Memory Footprint & Working Set

The above analysis demonstrates the benefits of keeping functions warm, because cold

function invocations significantly increase the end-to-end function invocation latency.

In this subsection, we show that despite the advantages of warm functions, keeping

many functions warm is wasteful in terms of memory capacity.

We first investigate the fraction of a function instance’s memory footprint that is

related to the actual function invocation. First, we measure the total footprint of a

booted VM after the first function invocation is complete using the Linux ps command,

since a VM appears as a regular process in the host OS. This footprint includes the

hypervisor and the emulated layer overhead (around 3MB [19]), the memory pages
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Figure 4.4: Memory footprint of function instances after one invocation.

that are accessed during the VM’s boot process, function initialization, and the actual

invocation processing. Second, for a VM that is loaded from a snapshot, we trace the

pages, using Linux userfaultfd [99], that are accessed only during the invocation

processing, i.e., from the moment the VM is loaded to the moment when the vHive-CRI

orchestrator receives the response from the function. Unlike the first measurement, this

footprint relates only to the invocation processing.

Figure 4.4 (the blue bars) shows the memory footprint of a single freshly-booted

function instance. We observe that, for all functions, their memory footprint reaches

100-200MB. Thus, assuming that a serverless provider co-locates thousands of different

functions instances on the same host and disallows memory sharing for security reasons

(as is the case in practice [19]), the aggregate footprint of function instances will reach

into hundreds of gigabytes.

Figure 4.4 also plots the footprint of the function instances loaded from a snapshot

after the first invocation (red bars). We observe that, in this case, the functions’ working

sets span 8-99MB (24MB on average), which is 3-39%, and 9% on average of their

memory footprint after booting. The reason why the memory footprint of a function

booted from scratch is much higher than the one loaded from a snapshot is that starting

an instance by booting requires many steps: booting a VM, starting up the Containerd’s

agents [131] as well as user-defined function initialization. This complex boot procedure

engages much more logic (e.g., guest OS and userspace code) than just processing the

actual function invocation, which naturally affects the former’s memory footprint.
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Despite the fact that, when loaded from a snapshot, the memory footprint of a

function instance is relatively compact, the total memory footprint for thousands of such

functions would still comprise tens of GBs. While potentially affordable memory-wise,

we note that keeping this much state in memory is wasteful given the low invocation

frequency of many functions (§2.2). Moreover, such a high memory commitment would

preclude co-locating memory-intensive workloads on nodes running serverless jobs,

thus limiting a cloud operator’s ability to take advantage of idle resources. We thus

conclude that while functions loaded from a snapshot present an opportunity in terms of

their small memory footprint, by itself, they are not a solution to the memory problem.

4.3.4 Guest Memory Pages Reuse

After establishing that the working sets of serverless functions booted from a snapshot

are compact, we study how the working set of a given function changes across invo-

cations. Our hypothesis is that the stateless nature of serverless functions results in a

stable working set across invocations.

User and guest kernel code pages account for a large fraction of functions’ foot-

print. This code belongs either to the underlying infrastructure or the actual function

implementation. Providers deploy additional control-plane services inside a function’s

sandbox and use general-purpose communication fabric (e.g., gRPC) to connect func-

tions to the vHive-CRI orchestrator [19, 131]. The gRPC framework uses the standard

TCP network protocol, similarly to AWS Lambda [19], that adds the guest OS’s network

stack to the instance footprint. Using the helloworld function, we estimate that this

infrastructure overhead accounts for up to 8MB of a function’s guest-memory footprint

and is stable across function invocations.

We observe that functions naturally use the same set of memory pages while

processing different inputs. For example, when rotating different images or evaluating

different customer reviews, functions use the same calls to the same libraries and rely

on the same functionality inside the guest kernel, e.g., the networking stack. Moreover,

the functions engage the same functionality that is a part of the provider’s infrastructure,

e.g., the Containerd’s agents inside a VM [131]. Finally, we observe that even when a

function’s code performs a dynamic allocation, the guest OS buddy allocator is likely to

make the same or similar allocation decisions. These decisions are based on the state

of its internal structures (i.e., lists of free memory regions), which is the same across

invocations being loaded from the same VM snapshot. Hence, the lack of concurrency



52 CHAPTER 4. VHIVE FRAMEWORK FOR SERVERLESS SYSTEMS RESEARCH

Figure 4.5: Number of pages that are unique or same across invocations with different

inputs. The numbers above the bars correspond to uniquely accessed pages.

and non-determinism inside the user code of the functions that we study results in a

similar guest physical memory layout.

We validate our hypothesis about the working sets by studying the guest memory

pages that are accessed when a function is invoked with different inputs. Fig. 4.5

demonstrates that the majority of pages accessed by all studied functions are the same

across invocations with different inputs. For 7 out of 10 functions, more than 97% of

the memory pages are identical across invocations. For image rotate, json serdes,

lr training, and video processing, reuse is lower because these functions have

large inputs (photos, JSON files, training datasets, and videos, respectively) that are

1-10MB in size. Nonetheless, even for these three functions, over 76% of memory

pages are the same across invocations.

4.3.5 Summary

We have shown that invocation latencies of cold functions may exceed those of warm

functions by one to two orders of magnitude, even when using state-of-the-art VM

snapshots for rapid restoration of cold functions. We found that the primary reason

for these elevated latencies is that the existing snapshotting mechanisms populate the

guest memory on-demand, thus incurring thousands of page faults during function

invocation. These page faults are served one-by-one by reading non-contiguous pages
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from a snapshot file on disk. The resulting disk accesses have little contiguity and

induce significant delays in processing of these page faults, thus slowing down VM

restoration from a snapshot.

We have further shown that function instances restored from a snapshot have com-

pact working sets of guest memory pages, spanning just 24MB, on average. Moreover,

these working sets are stable across different invocations of the same function; indeed,

the function instances access predominantly the same memory pages even when invoked

with different inputs.

4.4 Related Work

Researchers release a number of benchmarks for serverless platforms. vHive adopts

dockerized benchmarks from FunctionBench that provides a diverse set of Python

benchmarks [86, 87]. ServerlessBench contains a number of multi-function benchmarks,

focusing on function composition patterns [152]. Researchers and practitioners release

a range of systems that combine the FaaS programming model and autoscaling [32, 6,

7, 81, 94]. Most of these platforms, however, rely on Docker or language sandboxes for

isolating the untrusted user-provided function code that is often considered insufficiently

secure in public cloud deployments [40, 133]. Kata Containers [10] and gVisor [75]

provide virtualized runtimes that are CRI-compliant but do not provide a toolchain

for functions deployment and end-to-end evaluation and do not support snapshotting.

Compared to these systems, vHive is a open-source serverless experimentation platform

– representative of the production serverless platforms, like AWS Lambda [33] – that

uses latest virtualization, snapshotting, and cluster orchestration technologies combined

with a framework for functions deployment and benchmarking.

4.5 Conclusion

Optimizing cold-start delays is key to improving serverless clients experience while

maintaining serverless computing affordable. To understand the root cause of the long

cold-start delays, we build vHive, an open-source full-stack framework for serverless ex-

perimentation, which integrates components from the leading serverless cloud providers

in a single complete and representative platform. Our analysis identifies that the root

cause for high cold-start delays is that the state-of-the-art solutions populate the guest

memory on demand when restoring a function instance from a snapshot. This results in



54 CHAPTER 4. VHIVE FRAMEWORK FOR SERVERLESS SYSTEMS RESEARCH

thousands of page faults, which must be served serially and significantly slow down a

function invocation. We further find that functions exhibit a small working set of the

guest memory pages that remains stable across different function invocations.



Chapter 5

Record-and-Prefetch Snapshots

In this chapter, we leverage the insights from the studies in the previous chapter (§4)

and introduce Record-and-Prefetch (REAP) snapshots, a lightweight mechanism that

reduces these delays.

5.1 Introduction

In the previous chapter (§4), we characterize a state-of-the-art snapshot-based serverless

infrastructure available in the vHive framework, based on industry-leading Containerd

orchestration framework and Firecracker hypervisor technologies. We find that the

execution time of a function started from a snapshot is 95% higher, on average, than

when the same function is memory-resident. We show that the high latency is attributable

to frequent page faults as the function’s state is brought from disk into guest memory

one page at a time. Our analysis further reveals that functions access the same stable

working set of pages across different invocations of the same function.

Leveraging the observations above, we introduce Record-and-Prefetch (REAP) – a

light-weight software mechanism for serverless hosts that exploits recurrence in the

memory working set of functions to reduce cold-start latency. Upon the first invocation

of a function, REAP records a trace of guest-physical pages and stores the copies of

these pages in a small working set file. On each subsequent invocation, REAP uses the

recorded trace to proactively prefetch the entire function working set with a single disk

read and eagerly installs it into the guest’s memory space. REAP is implemented entirely

in userspace, using the existing Linux user-level page fault handling mechanism [99].

Our evaluation shows that REAP eliminates 97% of the pages faults, on average, and

reduces the cold-start latency of serverless functions by an average of 3.7⇥.

55
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We summarize our contributions as following:

• We present REAP, a record-and-prefetch mechanism that eagerly installs the set

of pages used by a function from a pre-recorded trace. REAP speeds up function

cold start time by 3.7⇥, on average, without introducing memory overheads or

memory sharing across function instances.

• We implement REAP entirely in userspace with minimal changes to the Fire-

cracker hypervisor and no modifications to the kernel. REAP is independent

of the underlying serverless infrastructure and can be trivially integrated with

other serverless frameworks and hypervisors, e.g., Kata Containers [10] and

gVisor [75].

5.2 REAP: Record-and-Prefetch

The compact and stable working set of a function’s guest memory pages, which instances

of the given function access across invocations of the function, provides an excellent

opportunity to slash cold-start delays by prefetching.

Based on this insight, we introduce Record-and-Prefetch (REAP), a light-weight

software mechanism inside the vHive-CRI orchestrator to accelerate function invocation

times in serverless infrastructures. REAP records a function’s working set upon the

first invocation of a function from a snapshot and replays the record to accelerate load

times of subsequent cold invocations of the function by eliminating the majority of

guest memory page faults. The rest of the section details the design of REAP.

5.2.1 REAP Design Overview

Given an existing function snapshot, REAP operates in two phases. During the record

phase, REAP traces and inspects the page faults that a function instance triggers when

accessing pages in the guest memory, identifying the positions of these pages in the

backing guest memory file (Fig. 5.1a). After a function invocation is complete, REAP

creates two files, namely the working set (WS) file) that contains a copy of all accessed

guest memory pages in a contiguous compact chunk and the trace file that contains

the offsets of the original pages inside the guest memory file. The contiguous compact

WS file can be rapidly brought into physical memory in a single read operation, which

greatly reduces disk and system-level overheads in the snapshot baseline that requires

many disparate accesses to pages scattered across the guest memory file on disk.
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Figure 5.1: REAP’s two-phase operation.

After the completion of the record phase, all future invocations of the function enjoy

accelerated load times as REAP’s prefetch phase eagerly populates the guest memory

from the WS file before launching the function instance (Fig. 5.1b). Upon an arrival of

a new invocation, REAP fetches the entire WS file from disk into a temporary buffer in

the orchestrator’s memory and eagerly installs the pages into the function instance’s

guest memory region. REAP also populates the page table of the instance in the host

OS. As a result, when the instance is loaded, the function executes without triggering

page faults to the stable memory working set. Page faults to uniquely-accessed pages in

a given invocation are handled by REAP on demand.
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5.2.2 Implementation

REAP adheres to the following design principles, which facilitate adoption and deploy-

ment in a cloud setting: i) REAP is agnostic to user codebase; ii) REAP is independent of

the underlying serverless infrastructure; iii) REAP is implemented entirely in userspace

without kernel modifications; iv) REAP works efficiently in a highly multi-tenant

serverless environment.

We implement REAP as a part of the vHive-CRI orchestrator that controls the lifecy-

cle of all function instances. For each function, the vHive-CRI orchestrator tracks active

function instances and performs the necessary bookkeeping, including maintaining

the snapshot files and working set records. To accommodate the highly-concurrent

serverless environment with many function instances executing simultaneously, it is a

fully parallel implementation with a dedicated monitor thread for each function instance.

Each monitor thread records or prefetches the working set pages and also serves page

faults that are raised by the corresponding instance. In our prototype, the monitor

threads are implemented as lightweight goroutines, which are scheduled by the Go

runtime.

To implement the monitor, we use the Linux userfaultfd feature that allows a

userspace program to handle page faults on behalf of the OS. In Linux, a target process

can register a virtual memory region in anonymous memory and request a user-fault file

descriptor, which can be passed to a monitor running as a separate thread or process. The

monitor polls for page fault events that the OS forwards to the user-fault file descriptor.

Upon a page fault, the monitor installs the contents of the page that triggered the page

fault. The monitor is free to retrieve page contents from any appropriate source, such as

a file located on a local disk or from the network. Furthermore, the monitor can install

any number of pages before waking up the target process. Thanks to these features, the

monitor can support both local and remote snapshot storage, and can eagerly install the

content of the entire WS file at once.

Upon each function invocation for which there is no warm instance available, the

vHive-CRI orchestrator launches the monitor thread in one of two modes: record, if no

WS file is available for this instance, or prefetch, if a corresponding WS file exists.

5.2.2.1 Record Phase

The goal of the monitor during the record phase is to capture the memory working

set for functions instantiated from snapshots. Before loading the VMM state from a
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snapshot, the hypervisor maps the guest memory file as an anonymous virtual memory

region and requests a user-fault file descriptor from the host OS, passing this descriptor

over a socket to the monitor thread of the vHive-CRI orchestrator. Then, the hypervisor

restores the VMM and emulated devices’ state and resume the virtual CPUs of the

newly loaded function instance that can start processing the function invocation.

Every first access to a guest memory page raises a page fault that needs to be

handled and recorded by the monitor. The monitor maps the guest memory file as a

regular virtual memory region in the monitor’s virtual address space and polls (using the

epoll system call) for the host kernel to forward the page fault events, triggered by the

instance. Upon receiving a page fault event, the monitor reads a control message from

the user-fault file descriptor that contains the description of the page fault, including

the address in the virtual address space of the target function instance. The monitor

translates this virtual address into an offset that corresponds to the page location in the

guest memory file. While serving the page faults, the monitor records the offsets of the

working set pages in the trace file.

We augment the Firecracker hypervisor to inject the first page fault of each instance

to the first byte of the instance’s guest memory. Doing so allows file offsets for all

of the following page faults to be derived by subtracting the virtual address of the

first page fault. Using the file offset of the missing page, the monitor locates the page

in the guest memory file and installs the page into the guest memory region of the

instance by issuing an ioctl system call to the host kernel, which also updates the

extended page tables of the target function instance. After the vHive-CRI orchestrator

receives a response from the function, indicating that the function invocation processing

has completed, the monitor copies the recorded working set pages, using the offsets

recorded in the trace file, into a separate WS file (§4.3.3).

Note that the record phase increases the function invocation time as compared to the

baseline snapshots due to userspace page fault handling. As such, REAP penalizes the

first function invocation to benefit subsequent invocations. We quantify the recording

overheads in §5.3.4.

5.2.2.2 Prefetch Phase

For every subsequent function invocation, the vHive-CRI orchestrator spawns a dedi-

cated monitor thread that uses the WS file to prefetch the working set memory pages

from disk into a buffer in the monitor’s memory with a single read system call. Then,

the monitor eagerly and proactively installs the pages into the guest memory through a
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sequence of ioctl calls, following which it wakes up the target function instance with

another ioctl call.

As in the record phase, the monitor maps the guest memory file during every

subsequent cold function invocation. After installing all the working set pages from the

WS file, the monitor keeps polling for page faults to pages that are missing from the

stable working set and installs them on demand, as in the record phase. Since the WS

file captures the majority of pages that a function instance accesses during an invocation,

only a small number of page faults needs to be served by the monitor on demand.

5.2.2.3 Disk Bandwidth Considerations

REAP’s efficiency depends entirely on the performance of the prefetch phase and,

specifically, how fast the vHive-CRI orchestrator can retrieve the working set pages

from disk. Although a single commodity SSD can deliver up to 1-3 GB/s of read

bandwidth, SSD throughput varies considerably depending on disk access patterns. An

SSD can deliver high bandwidth with one large multi-megabyte read request, or with

>10 4KB requests issued concurrently. For example, on our platform (§6.5), with a

standard Linux fio IO benchmark [105] that issues a single 4KB read request, the

SSD can deliver only 32MB/s, whereas issuing 16 4KB requests can increase the SSD

throughput to 360MB/s. While concurrent reads deliver much higher bandwidth than

a single 4KB read, the achieved bandwidth is still considerably below the peak of

850MB/s of our Intel SATA3 SSD.

We find that REAP achieves close to the peak SSD read throughput (533-850MB/s)

by fetching the WS file in a single >8MB read operation that bypasses the host OS’

page cache (i.e., the WS file needs to be opened with the O DIRECT flag).

5.2.3 Discussion

REAP adheres to the design principles set out in §5.2.2. We implement REAP entirely

in userspace as a part of the vHive-CRI orchestrator. It is written in 4.5K Golang LoC,

including tests and benchmarks, and is loosely integrated with the industry-standard

Containerd framework [4, 50, 131] via gRPC. The implementation does not require

any changes to host or guest OS kernel. We add less than 200 LoC to Firecracker’s

Rust codebase, not including two publicly available Rust crates that we used, to register

a Firecracker VM’s guest memory with userfaultfd and to delegate page faults

handling to the vHive-CRI orchestrator. Finally, the orchestrator follows a purely
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parallel implementation by spanning a lightweight monitor thread (goroutine) per

function instance.

5.3 Evaluation

In this section, we describe the platform setup, including the host and the guest setups,

and present REAP evaluation results. In our experiments, we follow the methodology

that is described in §4.3.1, unless specified otherwise.

5.3.1 Evaluation Platform

We conduct our experiments on a 2⇥24-core Intel Xeon E5-2680 v3, 256GB RAM,

Intel 200GB SATA3 SSD, running Ubuntu 18.04 Linux with kernel 4.15. We fix the

CPU frequency at 2.5GHz to enable predictable and reproducible latency measurements.

We disallow memory sharing among all function instances and disable swapping to

disk, as suggested by AWS Lambda production guidelines [19, 15].

We use a collection of nine Python-based functions (Table 5.1) from the representa-

tive FunctionBench [86, 87] suite.1 We also evaluate a simple helloworld function.

The root filesystems for all functions are generated automatically by Containerd, using

Linux device mapper functionality as used by Docker [60], from Linux Alpine OCI

(Docker) images.2 Functions with large inputs (namely image rotate, json serdes,

lr training, video processing) retrieve their inputs from an S3 server [115] de-

ployed on the same host.

We optimize virtual machines for minimum cold-start delays, similar to a production

serverless setup, as in [19, 85]. The VMs run a guest OS kernel 4.14 without modules.

Each VM instance has a single vCPU. We boot VM instances with 256MB guest

memory, which is the minimum amount to boot all the functions in our study.

5.3.2 Understanding REAP Optimizations

We start by evaluating the cold-start latency of the helloworld function, whose short

user-level execution time is useful for understanding serverless framework overheads.

In addition to evaluating the baseline Firecracker snapshots and REAP as presented
1We omitted the microbenchmarks, MapReduce and Feature Generation because they require a

distributed coordinator.
2The only exception is video processing that uses a Debian image due to a problem with OpenCV

installation on Alpine Linux.



62 CHAPTER 5. RECORD-AND-PREFETCH SNAPSHOTS

Table 5.1: Serverless functions adopted from FunctionBench.

Name Description

helloworld Minimal function

chameleon HTML table rendering

pyaes Text encryption with an AES block-cipher

image rotate JPEG image rotation

json serdes JSON serialization and de-serialization

lr serving Review analysis, serving (logistic regr., Scikit)

cnn serving Image classification (CNN, TensorFlow)

rnn serving Names sequence generation (RNN, PyTorch)

lr training Review analysis, training (logistic regr., Scikit)

video processing Applies gray-scale effect (OpenCV)

in §6.3, we also study two additional design points that help justify REAP’s design

decisions. Specifically, we consider the following configurations.

Vanilla snapshots: This is the baseline configuration, which restores the VMM and

the emulation layer in 50ms, then spends 182ms processing the function invocation

(Fig. 5.2) that takes just 1ms for for a warm instance (Fig. 4.2). The large processing

delay is directly attributed to the handling of page faults in the critical path of function

execution. As helloworld’s working set is around 8MB, one can infer that vanilla

snapshotting is only able to utilize 43MB/s of SSD bandwidth, i.e., <5% of the peak

bandwidth on our platform.

Parallel Page Fault handling: This design (labeled “Parallel PFs” in Fig. 5.2)

parallelizes page fault processing. It does so by using the trace file specifying the

offsets of the pages comprising the stable working set, and deploys goroutines to

bring in the associated pages, in parallel, from the guest memory file. For this and all

the following configurations, we make 16 hardware threads available to vHive-CRI

goroutines, managed by the Go runtime. Note that this configuration does not use the

WS file.

We observe that parallelizing page faults reduces function invocation time by 1.9⇥
(to 118ms) by overlapping I/O processing and exploiting SSD’s internal parallelism.

Repeating the same calculation as for the baseline, we identify that the orchestrator uses

only 130MB/s of SSD bandwidth, which is 15% of the maximum. This design point

underlines that achieving high read bandwidth from the SSD is key to efficient page

fault processing, and that lowering software overheads by itself is insufficient.
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Figure 5.2: REAP optimization steps.

WS file: This design leverages the WS file (Sec 5.2.1), which enables fetching the

entire stable memory working set of a function with a single IO read operation. The

difference between this design point and REAP is that the former reads into the OS

page cache (which is the default behavior in Linux), whereas REAP bypasses the page

cache (§5.2.2.3). From the figure, one can see that fetching the pages from the WS file

can be performed in 29ms, 3.1⇥ faster than through parallel page-sized reads (“Parallel

PFs” bar in Fig 5.2). This design point utilizes 275MB/s of SSD bandwidth.

REAP: The last bar shows the performance of the actual REAP design, as described

in Sec 5.2.2.3, that fetches the working set pages from the WS file and bypasses the OS

page cache. As the figure shows, retrieving the working set pages is accelerated by 2⇥
(to 15ms) over the “WS File” design point that does not bypass the page cache. This

highlights that while it’s essential to optimize for disk bandwidth, software overheads

also cannot be ignored. In this final configuration, REAP achieves 533MB/s of SSD

bandwidth, which is within 37% of the 850MB/s peak of our SSD.

5.3.3 REAP on FunctionBench

Fig. 5.3 compares the cold-start delays of all the functions that we study with the baseline

Firecracker snapshots and REAP prefetching. With REAP, all functions’ invocations

become 1.04-9.7⇥ faster (3.7⇥ on average). The fraction of time for restoring the

connection from the orchestrator to the function’s gRPC server shrinks by 45⇥, on

average to a mere 4-7ms thanks to the stable working set for this core functionality that

is prefetched by REAP.
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Figure 5.3: Cold-start delay with baseline snapshots (left bars) and REAP (right bars).

Although we find that REAP efficiently accelerates the actual function processing,

functions with a large number of pages missing from the recorded working set benefit

less from REAP. The function processing latency is reduced by 4.6⇥, on average,

for all functions except video processing. During the REAP record phase, the

video processing function takes a video fragment of a different aspect ratio than in

the prefetch phase that, as we suspect, changes the way OpenCV performs dynamic

memory allocation (e.g., uses buffers of different sizes), resulting in a different guest

physical memory layout and, hence, different working sets. The orchestrator has to serve

the missing pages one-by-one as page faults arise. However, the end-to-end cold-start

delay for video processing is nonetheless reduced as the longer function processing

time is offset by faster re-connection to the function. We highlight, however, that

functions with large inputs or control-flow that differs substantially across invocations

may benefit less from REAP.

We repeat the same experiment in the presence of the invocation traffic to 20 warm,

i.e., memory resident, functions and observe that the obtained data is within 5% of

Fig. 5.3 results. Also, we measure the efficacy of REAP on the same server but store the

snapshots on a 2TB Western Digital WD2000F9YZ SATA3 7200 RPM HDD, instead

of the SSD, and observed a 5.4⇥ speed-up (not shown in the figure), on average, with

REAP over baseline snapshotting.

5.3.4 REAP Record Phase

REAP incurs a one-time overhead for recording the trace and the WS files. Upon the

first invocation of a function, this one-time overhead increases the end-to-end function

invocation time by 15-87% (28% on average). Since most functions that we study

have small dynamic inputs, they exhibit relatively small overheads of 12-34%, with
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Figure 5.4: Average instance cold-start delay while sweeping the number of the concur-

rently loading instances.

image rotate being an outlier with a performance degradation of 87%.

Because of the high speedups provided by REAP on all subsequent invocations of a

function, and because the vast majority of functions execute multiple times [133], we

conclude that REAP’s one-time record overhead is easily amortized.

5.3.5 REAP Scalability

We demonstrate that REAP orchestrator retains its efficiency in the face of higher

load. Specifically, we measure the average time that an instance takes to load from a

snapshot and serve one function invocation when multiple independent functions arrive

concurrently. We use the the helloworld function and consider up to 64 concurrent

independent function arrivals. Fig. 5.4 shows the result of the study, comparing REAP

to the baseline snapshots.

Concurrently loading function instances should be able to take advantage of the

multi-core CPU and abundant SSD bandwidth (48 logical cores and 850MB/s peak

measured SSD bandwidth in our platform). Thus, we expect that as the degree of

concurrency increases, the average per-instance latency will not significantly increase

thanks to the available parallelism. Indeed, REAP’s cold invocation latency stays

relatively low, increasing from 70ms to 185ms when the number of concurrent function

arrivals goes from 1 to 8. By contrast, the baseline’s per-instance invocation time shows

a near-linear growth with the number of concurrently-arriving functions. We measure

that the SSD throughput that the baseline instances are able to collectively extract is

limited to mere 32MB/s for a single instance and 81MB/s for 64 concurrent instances.3

3We compute the SSD throughput per instance as the working set size divided by the average loading
time.
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Compared to the baseline, REAP is able to achieve 118-493MB/s, which explains its

lower latency and better scalability. Starting from the concurrency degree of 16, REAP

becomes disk-bandwidth bound and its scalability is diminished.

5.4 Discussion

5.4.1 REAP’s Efficiency and Mispredictions

REAP’s efficiency depends on how quickly the orchestrator can retrieve the guest

memory pages from the snapshot storage and the percentage of the retrieved but unused

pages. If the snapshots are located in a remote storage service (e.g., S3 or EBS),

the retrieval speed depends on the amount of data to be moved and the latency and

bandwidth of the network between the host and the service as well as the latency and

bandwidth of the service’s internal disks.

REAP reduces both the network and the disk bottlenecks by proactively moving

a minimal amount of state. However, REAP may fetch a modest number of pages

that are not accessed during processing of some invocations. Our analysis shows that

the fraction of mispredicted pages during a cold invocation is close to the “Unique”

pages metric, shown in Fig. 4.5, which is 3-39%. These mispredictions have no impact

on system correctness. The cost of these mispredictions is a modest increase in SSD

bandwidth usage, proportionate to the fraction of the mispredicted pages.

5.4.2 Applicability to Real-World Functions

Although REAP is applicable to the vast majority of functions, some functions may not

benefit from REAP. For these functions, the additional working set and trace files may

not be justified. Prior work shows that 90% of Azure functions are invoked less than

once per minute, making these functions the primary target for REAP [133]. Functions

that are invoked very rarely (e.g., 3.5% of functions are invoked less frequently than

once per week) or more frequently than once per minute (and thus remaining warm)

are unlikely to benefit from snapshot-based solutions. Also, REAP is ill-suited for the

functions where the first invocation is not representative of future invocations although

we do not observe such behavior in our studies. In this pathological case, the orchestrator

can easily detect low working set pages usage and either repeat REAP’s record phase

or fall back to vanilla Firecracker snapshots for future invocations. For detection, the
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orchestrator could monitor the number of page faults that occur after the working set

pages are installed, comparing this number to the number of pages in the working set.

5.4.3 Applicability to Other Isolation Technologies

We prototype REAP in Firecracker hypervisor but this approach seamlessly extends

to other isolation technologies, such as container, language [147, 135], unikernel [43,

88, 102, 106], and gVisor [75, 64] based virtualization. Fundamentally, REAP requires

guest memory to be managed as a set of virtual memory regions (or objects) on the host,

which is the case for all of the aforementioned technologies. In this case, guest memory

management can be offloaded to a monitor process via the userfaultfd mechanism,

similarly to our prototype in Firecracker. However, we expect the technologies with

simpler memory management, such as regular virtual machines that usually feature

just one guest memory region, to benefit more from the REAP technique than the

technologies with more complex memory management, e.g., language sandboxes. For

example, Du et al. [64] show that a gVisor MicroVM (which is effectively a Golang-

based language sandbox) exhibits a significant overhead upon a cold start, which is

attributable to de-serialization of the snapshot state that is required before the guest

memory file can be mapped into the main memory of the host.

5.4.4 Security Concerns

Similar to other snapshot techniques, spawning virtual machine clones from the same

VM snapshot with REAP has implications for overall platform’s security. In a naive

snapshotting implementation, these VM clones may have an identical state for random

number generators (i.e., poor entropy) and the same guest physical memory layout.

The former problem may be addressed at the system level with hardware support for

random number generation albeit the user-level random number generation libraries

may remain vulnerable [3, 68]. The latter problem may lead to compromised ASLR,

allowing the attacker to obtain the information about the guest memory layout. One

mitigation strategy could be periodic re-generation of a snapshot (as well as the working

set file and the trace file, for REAP). Alternatively, similarly to prior work on after-fork

memory layout randomization [101], the orchestrator can dynamically re-randomize

the guest memory placement while loading the VM’s working set from the snapshot in

the record phase of REAP. This would require modifying the guest page tables, with

the hypervisor support, according to the new guest memory layout.
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5.5 Related Work

5.5.1 Virtual Machine Snapshots

Originally, VM snapshots have been introduced for live migration before serverless

computing emerged [46, 118]. The Potemkin project propose flash VM cloning to

accelerate VM instantiation with copy-on-write memory sharing [145]. Snowflock

extends the idea of VM cloning to instantiating VMs across entire clusters, relying on

lazy guest memory loading to avoid large transfers of guest memory contents across

network [95]. To minimize the time spent in serving the series of lazy page faults during

guest memory loading, the researchers explore a variety of working set prediction and

prefetching techniques [154, 153, 156, 91]. These techniques rely on profiling of the

memory accesses after the moment a checkpoint was taken and inspecting the locality

characteristics of the guest OS’ virtual address space. Compared to these techniques,

our work shows that serverless functions do not require complex working set estimation

algorithms: it is sufficient to capture the pages that are accessed from the moment

the vHive-CRI orchestrator forwards the invocation request to the function until the

orchestrators receives the response from that function. Moreover, we find that extensive

profiling may significantly bloat the captured working set, hence slowing down loading

of future function instances, due to the guest OS activity that is not related to function

processing.

5.5.2 Serverless Cold-Start Optimizations

Researchers have identified the problem of slow VM boot times, proposing solutions

across the software stack to address it. Firecracker [19] and Cloud Hypervisor [2] use

a specialized VMM that includes only the necessary functionality to run serverless

workloads, while still running functions inside a full-blown, albeit minimal, Linux

guest OS. Dune [38] implements process-level virtualization. Unikernels [43, 88, 102,

106] leverage programming language techniques to aggressively perform dead code

elimination and create function-specific VM images, but sacrifice generality. Finally,

language sandboxes, e.g. Cloudflare Workers [52] and Faasm [135], avoid the hardware

virtualization costs and offer language level isolation through techniques such as V8

isolates [144] and WebAssembly [17]. Such approaches reduce the start-up costs, but

limit the function implementation language choices while providing weaker isolation

guarantees than VMs. REAP targets serverless workloads but remains agnostic to the
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hypervisor and the software that runs inside the VM.

Caching is another approach to reduce start-up latency. Several proposals investigate

the idea of keeping pre-warmed, pre-initialized execution environments in memory and

ready to process requests. Zygote [58] was introduced to accelerate the instantiation

of Java applications by forking pre-initialized processes. The zygote idea has been

used for serverless platforms in SOCK [121], while SAND [20] allows the reuse of pre-

initialized sandboxes across function invocations. These proposals, though, trade-off

low memory utilization for better function invocation latencies. REAP is able to deliver

low invocation latencies without occupying extra memory resources when function

instances are idle.

Prior work uses VM snapshots for cold-start latency reduction, although snap-

shots have been initially introduced for live migration and VM cloning before server-

less computing emerged [46, 95, 118]. Both Firecracker [19, 5] and gVisor with its

checkpoint-restore functionality [75] support snapshotting. The state-of-the-art snap-

shotting solution, called Catalyzer, improves on gVisor’s VM offering three design

options for fast VM restoration [64]. Besides the ”cold-boot” optimization discussed in

§2.4.1, Catalyzer also proposes ”warm-boot” and ”sfork” optimizations that provide

further performance improvements but require memory sharing across different VMs.

In a production serverless deployment, memory sharing is considered insecure and is

generally disallowed [19, 15].

Replayable execution aims to minimize the memory footprint and skip the lengthy

code generation of the language-based sandboxes by taking a snapshot after thousands

of function invocations, exploiting a similar observation as this work – that functions

use a small number of memory pages when processing a function invocation [147].

However, when loading a new instance, their design relies on lazy paging similar to

other snapshotting techniques [5, 64]. In contrast, our work shows that the working set

of the guest memory pages of virtualization-based sandboxes can be captured during the

very first invocation, and that all future invocations can be accelerated by prefetching

the stable memory working set into the guest memory.

5.6 Conclusion

Serverless functions exhibit a small working set of the guest memory pages that remains

stable across different function invocations. Based on this insight, we present the REAP

orchestrator that records a function’s working set of pages, upon the first invocation
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of the function, and speeds up all further invocations of the same function by eagerly

prefetching the working set of the function into the guest memory of a newly loaded

function instance.



Chapter 6

Expedited Data Transfers

In this chapter, we address the second performance problem we identify in §3 related to

data communication across different functions. After analyzing the state-of-the-art data

transfer methods, we describe Expedited Data Transfers (XDT), a serverless-native API-

preserving fabric, which enables direct memory-to-memory data transfers obviating the

need for using external, serverful services for data passing.

6.1 Introduction

Serverless computing is expressive enough to support various applications such as

video encoding [130, 70], compilation [89, 69] and machine learning [83], each of

which consists of several functions connected in a workflow. However, the stateless

and ephemeral nature of function instances mandates that functions communicate

any intermediate and ephemeral state across the different functions that comprise the

application logic. Inter-function communication generally happens when one function,

the producer, invokes one or more consumer functions in the workflow and passes

inputs to them. Crucially, the instances of the consumer functions are not known by

the producer at invocation time because they are picked by the cloud provider’s load

balancer and autoscaler components on demand. Also, for many serverless applications,

the amount of data communicated across function instances can be large, measuring

10s of MBs or more; examples include video analytics [70, 69, 130, 129], map-reduce

style and database analytics [125, 117, 124], and ML training [83].

As described in §2, cross-function communication can happen in one of two ways.

The first is by inlining the data inside function invocation requests. Because invocation

requests traverse the cloud provider’s autoscaling infrastructure (i.e, the request control

71
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plane), providers limit the maximum size of inlined data to hundreds of KBs or a

few MBs to mitigate the impact of large payloads on the forwarding logic along the

request/response’s path [26, 74]. The second inter-function communication approach

is via an intermediate storage service (e.g., AWS S3 or Google Cloud Storage), which

requires the producer function to first store the data, then invoke the consumer, and

subsequently have the consumer retrieve the data from storage. The indirection through

a storage layer overcomes the payload size limitation of inline transfers, but introduces

significant latency overheads and adds cost for the storage.

Researchers have identified the problem of efficient serverless communication and

have proposed several solutions. Some seek to improve the performance of storage-

based transfers through the use of tiered storage, such as combining an in-memory

storage layer (e.g., Redis) with a cold storage layer (e.g., S3) [103, 136, 129, 116].

While tiered storage can somewhat improve performance over a single storage layer,

the general disadvantages of through-storage indirection remain. Others try to enable

direct function-to-function communication, but do so in a way that is incompatible with

the existing autoscaling infrastructure and may pose security risks [142, 150].

Our work focuses on the problem of seamless, high-performance serverless commu-

nication that is non-disruptive with existing serverless infrastructure. To that end, we

introduce Expedited Data Transfers (XDT), a serverless communication substrate that

allows direct communication between two function instances in a manner that is secure,

flexible and compatible with the autoscaling infrastructure used by cloud providers.

At the heart of XDT is an explicit separation of the control plane used for function

invocation, which is tightly integrated with the autoscaling infrastructure, from the data

transfer itself. In simplest terms, with XDT, the producer function buffers the data that

needs to be transferred in its memory and transfers a secure reference to the data inline

with the invocation to the consumer function. The consumer then directly pulls the data

from the producer’s memory.

More concretely, XDT defines a short-lived namespace of objects with the same life-

time as the function instance. This namespace can be accessed by subsequent function

instances through secure references that do not expose the underlying infrastructure to

the user code. XDT exploits the insight that the lifetime of individual function instances

as controlled by the keep-alive policies, implemented to keep function instances active

to reduce the chance of cold starts, exceeds the lifetime of intermediate state required

across function invocations.

XDT naturally supports a variety of inter-function communication patterns, includ-
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ing producer-consumer, scatter (map), gather (reduce), and broadcast. By requiring

only minimal modifications at the end-points of the existing function invocation control

plane, XDT is fully compatible with the deployed autoscaling infrastructure. Moreover,

unlike inline transfers, XDT is not limited to small transfer sizes. And unlike through-

storage transfers, XDT avoids high-latency data copies to and from a storage layer and

the associated financial cost of storage usage.

We prototype XDT in vHive/Knative [143] by extending Knative queue-proxy com-

ponents with XDT support. The XDT-enabled queue proxies buffer to-be-transmitted

objects at the producer side until one of the consumer function instances (chosen by the

Knative autoscaling infrastructure) pulls the object, passing it to the consumer function’s

user code. Since we are unable to modify the proprietary components of a commercial

cloud, we evaluate our proposal by deploying a XDT-enabled Knative cluster on an

AWS EC2 node with fast access to AWS S3. Using a set of microbenchmarks, we show

that XDT delivers superior performance versus through-storage transfers via S3 for all

of the aforementioned communication patterns in serverless computing.

The main contributions of our work are as follows:

• We show that existing inter-function communication methods fall short of server-

less demands for high performance and low cost. The most general serverless

communication approach, through-storage transfers, carries latency and band-

width overheads of 4.3⇥ for objects of 100KB versus inline transfers, which are

limited in size to at most few MBs.

• We introduce XDT, which uses control/data separation to pass a secure object

reference to a consumer function instance as part of an invocation request, and

delegates to the consumer pulling the data from the producer’s memory. XDT sup-

ports a variety of inter-function communication patterns and is fully compatible

with serverless autoscaling infrastructure.

• We demonstrate that XDT is flexible and fast with 1.8-12.3⇥ lower latency and

higher effective bandwidth versus through-storage transfers with S3 on AWS.

Evaluation of XDT with three real-world serverless applications shows 1.14-

2.71⇥ end-to-end speedups.

6.2 Serverless Communication Requirements

We now list the requirements for an ideal inter-function data communication method.
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1. High performance: low latency and high bandwidth across a full range of transfer

sizes.

2. Seamless integration with autoscaling: inter-function communication should work

naturally with the existing autoscaling infrastructure.

3. API compatibility: the communication method should require no or minimal changes

to the user code and should support both passing-by-value and passing-by-reference

APIs.

4. Security: must keep sensitive provider information, including IP addresses of function

instances and the underlying topology, hidden from untrusted user code.

As discussed in Section 2.4.2, existing inter-function communication methods are

unable to meet all of these requirements, prompting an alternative solution, which we

introduce next.

6.3 Expedited Data Transfers (XDT)

6.3.1 Design Insights

We exploit three insights that lead us to the design presented below. The first insight

concerns control/data separation. Inline transfers in today’s serverless clouds transfer

the data along with the function invocation message, which results in the inlined object

traversing the entire control plane of the function invocation and forces providers to

impose strict limitations on maximum size of inlined objects.

A better communication method would separate the control (function invocation)

from the data transfer. Doing so would naturally unburden the control plane without

impacting the functioning of the autoscaling infrastructure. The challenge is doing so

without resorting to a storage service, which is what existing through-storage transfers

rely on. We address this challenge with the help of the second insight.

The second insight is that the data that need to be transferred between instances are

ephemeral, with lifetimes on the order of a few seconds [90, 89]. Hence, the data lifetime

is much shorter than the keep-alive period of serverless functions, which is typically in

the order of minutes, to increase the likelihood of using warm invocations [19, 133].

Based on the above, we make one final insight: instead of using a storage service to

communicate data across function instances, a producer (upstream) instance can simply

buffer the data in its own memory and have the consumer (downstream) instance pull

from it. This insight forms the foundation for XDT, presented next.
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Figure 6.1: XDT architecture overview.

6.3.2 Design Overview

We introduce Expedited Data Transfers (XDT), a serverless-native high-performance

data communication fabric that meets all four of serverless communication require-

ments (§6.2): high performance, compatibility with autoscaling, standard API for

transferring data in serverless, and security.

Following the insights developed in §6.3.1, XDT splits the function invocation plane

into a control and data planes. Crucially, the control plane is unchanged, matching the

existing serverless architecture (Fig. 2.1), thus allowing the autoscaling infrastructure

to take the load balancing decisions for each incoming invocation by steering the

invocation to the least-loaded instances of a function. The control plane carries only

the function invocation control messages, i.e., RPCs. The data plane is responsible for

transferring the objects.

In simplest terms, a producer function instance in XDT buffers the data to be com-

municated to one or more consumer functions in its own memory and transfers a secure

reference to the data inline with the invocation to the consumer function(s). The con-

sumer(s) then directly pull the data from the producer’s memory. XDT fundamentally

replaces push-based data transfers, in which the producer pushes the data through the

activator or through a storage layer, with a pull-based approach, whereby the consumer

pulls the data directly after the control plane has made its decisions.

Fig. 6.1 describes XDT operation. Let us assume two serverless functions, a

producer and a consumer, each of which may have any number of instances at any

point in time. As in the case with existing communication methods, the producer logic

invokes the consumer function while passing a data object as an argument. However, in

contrast to the existing systems (§2.3), in XDT, consumer function invocations travel to

the activator separately from their corresponding objects 1 , which remain buffered

at their source. After contacting the autoscaler as needed, the activator chooses the
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API Call Description

rsp := invoke(URL, obj) Invoke a function

ref := put(obj, N) Buffer an object locally

obj := get(ref) Fetch a remote object

Table 6.1: XDT API description.

instance of the consumer function, to which the activator forwards the invocation for

processing 2 . Once the invocation arrives at the target instance, the instance can pull

the object from the producer instance 3 , using the secure reference enclosed in the

invocation message.

6.3.2.1 XDT Programming Model

The XDT programming model features a minimalist yet expressive API (Table 6.1)

that supports all three essential communication patterns, namely invoking a function

(synchronously or asynchronously via a queue service, e.g., AWS SQS), scattering and

broadcasting objects to several consumers, and gathering the output of several functions.

The XDT API is fully compatible with the API supported by production clouds, such as

AWS Lambda and S3’s Boto3 [28].

The blocking call, invoke(), invokes a function by its URL, passing a binary data

object obj by value. Upon invocation, the API of the XDT SDK is responsible for

buffering the object at the producer side until the consumer function instance, chosen

by the autoscaling infrastructure, pulls it. In this case, the consumer function starts

processing after the object is transferred to the consumer instance.

Next, XDT supports the standard non-blocking (asynchronous) interface, which is

similar to a common key-value store interface like in AWS S3 [28], namely get() and

put() calls. In contrast to using a storage service, with XDT, the sender instance of

the producer function can finish the invocation before one of the consumer instances

retrieves the transmitted object. To de-couple the function invocation and the data

transfer interfaces, XDT introduces XDT references as a first-class primitive. When the

producer function calls put(), the runtime returns an XDT reference to a specific object

while retaining an immutable copy of the object.1 When the consumer needs to read

this object, it calls get() that pulls the object from the remote server. Each reference is

1Note that during non-blocking transfers, the producer function’s user code allocates the object, with
the XDT SDK only holding references to it.
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associated with a user-specified number of retrievals N of that object, which complete

before the object can be de-allocated at the producer instance. From a user perspective,

references are just opaque hashes that do not expose any information regarding the

underlying provider infrastructure, and that can be neither generated nor manipulated

by user code.

The above programming model allows to seamlessly port serverless applications,

e.g., those implemented for AWS Lambda or Knative serverless platforms, with a set

of the corresponding wrapper functions. To demonstrate the API’s portability, we

implemented XDT SDKs for applications written in Python and Golang and deployed

in a Knative cluster.

6.3.2.2 XDT Semantics & Error Handling

Function invocations in modern serverless offerings, like AWS Lambda and Azure

Functions, by default, provide the at-most-once semantics [71, 93, 96], i.e., a function

invocation may execute not more than once even in the presence of a failure.2 Hence,

the provider is responsible for exposing the runtime errors to the user logic to handle

them [30, 29, 114, 42]. Error handling logic may vary based on the function composition

method. The user can compose the functions as a direct chain (e.g., the producer makes

a blocking call to the consumer) or chain the functions in an asynchronous workflow.

In the latter case, an orchestrator invokes the functions within the workflow. The

orchestrator can be provider-based (e.g., AWS Step Functions [27] and Azure Durable

Functions [112]) or a third function that drives other functions. To handle some failures,

re-execution of several functions, i.e., a sub-workflow, may be required. In this case,

the first function of the sub-workflow must be re-invoked with the same arguments as

the original invocation. In this case, the user is responsible to pass the first function’s

context throughout the sub-workflow down to the function that can detect its failure.

Handling of XDT-related failures follows the same approach. We describe an

XDT failure scenario in a two-function workflow with one producer function and one

consumer function, which can be recursively generalized to an arbitrary workflow.

Crucially, the lifetime of an XDT object is connected to the lifetime of the producer

instance, thus a shutdown of a producer instance leads to immediate de-allocation of all

the objects, retrievals of which have not started.

2The user can construct primitives with at-least-once semantics by combining primitives with at-most-
once semantics and re-try logic. Prior work also shows constructing primitives with the exactly-once
semantics [96].
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For blocking invocations, i.e., the ones invoked with the invoke() API call, the

producer instance stays alive waiting for the response from the consumer, and may

decide to re-invoke the consumer invocation if the previous invocation returns an error.

For the non-blocking invocations, an XDT transfer may fail if the producer instance

is killed (e.g., due to exceeding the maximum invocation processing time) before the

transmitted object is retrieved by a consumer instance. For example, it is possible that

the producer function returns success before the transfer is complete, which is followed

by the instance shutdown. However, in this case, the consumer function receives the

corresponding error when executing XDT get(). We show that the invocation of

the consumer can follow the at-least-once semantics approach. To guarantee correct

execution of the entire workflow, the consumer needs to re-invoke the workflow starting

from the producer function. Hence, the user code in the consumer function should

forward this error to the corresponding entity (i.e., the orchestrator or the driver function)

that can re-invoke the producer with the same, original arguments. For example, if AWS

Step Functions orchestrator is used, the user can define a custom fallback function to

handle a particular error code [30].

6.4 Implementation

We prototype XDT in vHive [143], an open-source framework for serverless experi-

mentation that is representative of production clouds. vHive features the Knative pro-

gramming model [11] where a function is deployed as a containerized HTTP server’s

handler (further referred to as function server), which is triggered upon receiving an

HTTP request, i.e., RPC, sent to a URL assigned to the function by Knative. Each

function instance runs in a separate Kubernetes pod atop a worker host (bare-metal or

virtualized) in a serverless cluster.

6.4.1 XDT Prototype in vHive/Knative

We start by describing the implementation of the different software layers of the

prototype, required to support blocking function invocations with XDT, followed by a

discussion of support for the non-blocking XDT API.
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6.4.1.1 XDT Software Development Kit (SDK)

XDT relies on an SDK to implement the API, bridging the user logic and the provider

components that perform the transfer. At the producer instance’s side, the SDK splits the

original invocation request into two messages, namely a control message and an object,

which comprises the transferred data. The SDK creates and adds an XDT reference to

the gRPC request as an HTTP header. The reference comprises an encrypted string,

containing the IP address of the pod where instance’s function server is running, and

the object key, which is unique for that pod. Encryption prevents the user code from

obtaining the IP addresses of function instances.

At the consumer instance’s side, the SDK reconstructs the original request, joining

the control message and the object (after the latter has been pulled), before invoking the

consumer function in the same way as with the vanilla serverless API.

6.4.1.2 Control and Data Planes

XDT extensively uses gRPC [8] both for the control and the dataplane to leverage the

benefits of HTTP/2. Given that the XDT control plane messages are short, the control

plane communicates over single-shot gRPC requests. In contrast, the dataplane needs

to transfer large messages, for which it uses gRPC streaming. For streaming, we select

the chunk size of 64KB based on the available performance guidelines [1]. We chose

gRPC due to its support for a wide range of programming languages, high performance

and full compatibility with the HTTP/2 protocol.

6.4.1.3 Provider Components Extension

XDT requires the following logic inside the provider’s infrastructure. We extend the

Knative queue proxy (QP)for object buffering (§2.3). QP is a minimal auxiliary provider

container, written in Golang. It is deployed per function instance and shares the pod

with the function server. The added logic increases the QP memory footprint by 2MB.

We also extend the QPs with two pools of pre-allocated memory buffers: one

for buffering the outbound data (transferred from the corresponding function server),

another for buffering the inbound data (the one arriving from other functions). Upon

receiving an XDT transfer request from the producer function, the QP assigns one of the

buffers from its pre-allocated pool to service the transfer. Once the transfer is finished,

the corresponding buffer is returned back to the pool. A similar mechanism is used for

buffering the inbound data.
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Figure 6.2: XDT operation in a single producer single consumer scenario (only the

request path is shown). The dashed arrows show the control plane, the solid lines show

the data plane, and the thick solid lines show data streaming in the data plane.

Because a QP, being a minimal provider container, might be online long before the

function server during a cold start, we deploy the following performance optimization.

We let the QP retrieve the object on behalf of the consumer function server, instead of

the consumer SDK, to overlap retrieving the request with booting the function instance.

6.4.2 XDT Operation

6.4.2.1 XDT invoke() Operation

Fig. 6.2 shows the request path in the XDT infrastructure following an invoke() call.

1 when the caller function needs to call another function it invokes the SDK. 2 the

SDK splits the request into two parts, the XDT object and the control plane message

that carries the reference to the object. 3 the SDK sends the control message to the

activator and 4 streams the object into a buffer inside the producer’s QP (QPprod). 5

the activator chooses the instance of the consumer and forwards the control message to

the consumer’s QP (QPcon). 6 QPcon extracts the reference from the header, decrypts

the reference to extract IP address and the object key, and requests the data by sending a

gRPC streaming request to the QPprod, requesting the data by the object key. 7 QPprod

sends the data to the QPcon and de-allocates the chunks of the object when they are

dispatched. 8 QPcon forwards the object to the SDK 9 that reconstructs the original
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request, and invokes the function handler. If the response is small, it follows the reverse

control plane path through the two QPs and the activator.

We consider two alternative mechanisms for streaming the data from the producer

function server via the two QPs to the consumer function server. One mechanism is store-

and-forward (SF) streaming, in which each of the communicating components buffer the

entire object before forwarding it to the component next in the chain. Although simple

in implementation, the SF approach uses memory inefficiently, requiring deep buffers

in each of the components. Another mechanism is cut-through (CT) streaming, which

allows the chunks of a transmitted object to travel from the first to the last component

without waiting for the entire object to be buffered in a single component. The CT

approach is more memory-efficient, allowing shallow buffering in the components,

albeit demanding a flow control for the entire entire chain of components.

6.4.2.2 XDT get() / put() Operation

Whereas invoke() is a synchronous call, the two other calls of the XDT API – put()

and get() – are asynchronous. While the operation of put() and get() is similar

to invoke(), there are a few important differences. The first difference is that put()

returns an XDT reference for the object to the user logic. The producer function may

pass this reference, like any other string field, to any function that belongs to the same

user. Once the consumer function calls get() using the delegated reference, the SDK

retrieves the object by sending a streaming gRPC request directly to the producer

instance (i.e., to a gRPC server inside the SDK), using the IP address and the key in the

reference.

The asynchronous get()/put() API can be used not only for invocations but also

for large responses as well. The response path follows the control plan path in the

reverse order and is used only with small (inline) replies, i.e., <6MB in AWS Lambda.

In the case of a large reply, the XDT-enabled consumer creates a reference to the

response object through a put() call and includes the reference in the response. Upon

receiving the response, the producer can retrieve the response payload through a get()

call.

6.4.3 Flow Control

The XDT design relies on the availability of pre-allocated buffers in both QPprod and

QPcon components to offer high performance data transfers. If buffers are unavailable,
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the system needs to engage a flow control mechanism to pace the sending components

before the downstream buffers free up. Fortunately, gRPC streaming works on top of

TCP and can rely on its flow control without any changes to the XDT logic, which only

needs to buffer and forward the object’s chunks along the component chain. Hence, if

the number of transmitted objects exceeds the number of available buffers, the following

transfers are paused, resulting in the user code blocking in the corresponding XDT API

call.

6.5 Methodology

6.5.1 Evaluation Platform

Due to the close-source nature of commercial cloud infrastructure, we prototype and

evaluate XDT in Knative [11]. We deploy a Knative cluster that features XDT-enabled

queue-proxy containers on an AWS EC2 node, similarly to prior work [90, 103, 150],

thus ensuring low access time to AWS S3. We use a single bare-metal m5.metal

instance in the ‘us-west-1‘ availability zone, to evaluate the baseline and the XDT-

enabled serverless settings. This instance features Intel Xeon Platinum 8175 3.1GHz

with 96 SMT cores, 384GB RAM, EBS storage, and a 25Gb/s NIC.

Using the vHive experimentation framework [143], we set up Knative 0.23 in a

single-node Kubernetes 1.20 cluster [13], running all deployed functions, Knative au-

toscaling components, and Istio ingress [9] on a single physical node. In all experiments,

we emulate a stable serverless workflow where enough active instances are present at

all times – i.e., there are no cold start delays during the measurements. We achieve this

by deploying functions with a fixed number of instances.

6.5.2 The vHive Measurement Framework

We employ the vHive measurement methodology [16], which supports both end-to-end

benchmarking and detailed latency tracing, using OpenTelemetry [14] distributed trac-

ing modules for traces collection and Zipkin [18] for latency breakdown visualization

and analysis.

The vHive framework features a service, called invoker, that injects requests in a

common format for all of the studied workloads and waits for the responses from the

corresponding workflows, reporting the end-to-end delays. The user code of workloads
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is annotated with OpenTelemetry calls, which report various delays to a trace collector

Zipkin server, including the internal overheads of Knative serverless infrastructure.

Unless specified otherwise, we report average end-to-end latency computed from 10

measurements. For microbenchmarks, which do not have any computational overheads

except network processing, we report effective bandwidth of a data transfer as the size

of the transferred object size divided by the measured end-to-end latency.

6.5.3 Baseline and XDT Configurations

Our baseline is the through-storage communication approach, which is unencumbered

by transfer size limitations inherent in inline transfers. We use AWS S3 for this purpose,

which matches the baseline configuration used in prior work [89, 90, 150, 125, 83].

Unless specified otherwise, we configure XDT queue proxies to use the cut-through

streaming method while featuring enough buffers to avoid producer-side contention;

namely, up to 32 1MB buffers for invoke() and up to 40 5MB buffers for get()/put().

6.5.4 Microbenchmarks

We use a number of microbenchmarks, implemented in Golang 1.16, each of which eval-

uates one of the data transfer patterns commonly used in serverless computing (§6.3.2.1),

namely producer-consumer (1-1), scatter, gather, and broadcast. All these patterns

comprise various numbers of instances of the producer and the consumer functions

communicating one or more objects from the former to the latter. From here on, by

saying a producer (consumer), we mean a producer (consumer) function instance.

6.5.5 Real-World Workloads

Similarly to prior work [103, 90, 129, 89], we deploy and run three real-world data-

intensive workloads widely used in serverless computing. Each workload is comprised

of multiple functions, deployed with Knative Serving [12], that call each other using

the blocking interface, i.e., a caller function waits for the callee to respond. Each of

the workloads uses one or more data transfer patterns to communicate across functions.

Both XDT and the S3-based baseline use the same communication API: invoke(),

get() and put() (§6.3.2.1).

We configure the workloads to exploit maximum compute parallelism in each work-

flow. For example, in video analytics, the video decoder function invokes the recognizer
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function for each frame concurrently, leveraging as many parallel recognizer function

instances as necessary. All workloads are containerized, ported to vHive/Knative, and

will be released by the time of publication.

Note that our applications are distributed with function invocations running concur-

rently, e.g., the mapper and reducer invocations in the MapReduce benchmark. Hence,

when inspecting the latency breakdown of their workflows with Zipkin, the critical

path of its execution might be different for different configurations. For instance, if

the critical path goes through a communication-dominant path in the baseline, then the

critical path, and hence its latency breakdown, may change with XDT. We observe this

behavior for the Stacking Ensemble Training and MapReduce workloads.

Video Analytics: This application is composed of three functions: the video streamer,

frames decoder, and object recognizer, similarly to the setup in prior work [130]. This

workload execution time depends on the efficiency of the scatter and the 1-1 patterns

execution. The video streamer, implemented in Golang, sends a 2-second 30fps 1080p

video fragment, originally residing in memory of the video streamer function, to the

frames decoder. The decoder, implemented in Python 3, decodes all frames from the

received video fragment, invoking the object recognizer function for every 5-th decoded

frame. The invocations to the recognizer are sent in parallel, allowing Knative to

forward each of them to a separate function instance without queuing. Finally, the

recognizer, implemented in Python 3, pre-processes the received frame and performs

inference, using a pre-trained SqueezeNet 1.1 model [82, 126]. In all configurations,

function invocations are performed via the invoke() API.

Stacking Ensemble Training: This is a distributed training application, implemented

in Python 3. It fits the serverless programming model well due to its speed, low memory

footprint, and low computational complexity [61, 59, 127]. This workload’s execution is

highly dependent on the efficiency of the broadcast and gather communication patterns.

The workload consists of 4 functions, namely the driver, the trainer, the reducer,

and the meta-trainer. The driver orchestrates the entire workflow, by, first, saving a

synthetically generated training dataset to AWS S3, via put(), and makes 16 concurrent

invocations to the trainer function, resulting in 16 models trained in parallel, each on its

own function instance. Each of these instances retrieve the dataset, via get(), which

is equivalent to the driver broadcasting the dataset to these instances. Each trainer

instance, then, performs model training with one of the four algorithms (linear SVR,

lasso, K-nearest neighbors, and RandomForest), saving the trained model, via put().
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Once the driver receives responses for all the trainer invocations, it invokes the reducer

that retrieves the trained models, in the gather pattern, via get(), and saves a joint

model as a single object, via put(). Finally, the driver invokes the meta-trainer that

retrieves the joint model and finishes the stacking ensemble’s training by training the

second-level (meta) model, saving it, via put(), followed by the driver retrieving the

final model, via get().

MapReduce: This is a workload whose execution time can be dominated by the

data shuffling phase between the mapper and the reducer jobs in a modern serverless

setting [89, 125]. This workload features a Python implementation of Aggregation

Query from the representative AMPLab Big Data Benchmark [123] 1node dataset.

We scale this dataset down to 2% of the original size to model a large-scale setup,

shuffling many small (<100KB) files from mappers to reducers, on a single AWS EC2

node. This model is conservative because the large-scale setup would have the same

processing time, per input line, with more time spent data shuffling due to the larger

data set. Empirically, we found that 40 mappers and 10 reducers is a balanced compute

and shuffling configuration for the baseline system that shuffles data via S3.

The workload comprises three functions, namely the driver, the mapper, and the

reducer. First, the driver invokes the mapper function once for each of the 40 input files

in parallel. The mapper function fetches its input file from AWS S3 and produces one

file per reducer, clustering its output by the sourceIP field. The mapper, then, saves its

output via put(). After all mappers return their responses to the driver, it invokes the

reducer function 10 times, each of which retrieves one file per mapper invocation, via

get(). The final output of the query is written by the reducers to S3 in parallel.

6.6 Evaluation

We evaluate XDT in three steps. First, we conduct two sensitivity studies to find a best-

performing configuration. Second, we study XDT scalability in various communication

scenarios using microbenchmarks while measuring latency and bandwidth. Finally, we

evaluate XDT against the baseline on three real-world serverless applications.
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(a) Latency (lower is better) (b) Bandwidth (higher is better)

Figure 6.3: Average latency and effective bandwidth of the 1-1 workflow, sweeping the

transferred object size.

6.6.1 XDT Sensitivity Studies

The implementation of XDT leaves a few design choices for empirical evaluation,

namely the choice of the streaming mechanism – store-and-forward (SF) vs. cut-

through (CT) – as well as the depth of the XDT buffers in the queue proxies. Both

choices are important for supporting the invoke() API efficiently. We study the latency

and effective bandwidth of invoke() in the single producer-consumer scenario (1-1)

while varying the streaming mechanism and QP buffer depth.

6.6.1.1 The Streaming Mechanism

We start by investigating the efficiency of the SF and CT streaming mechanisms. Fig. 6.3

shows the latency and effective bandwidth of XDT configurations using SF and CT

streaming, varying the size of the transferred objects from 10KB to 100MB. Next, we

compare these results to the configurations that use AWS S3 and inline transfers.

We observe that both XDT configurations exhibit significantly lower latency and

higher bandwidth than the configuration that uses S3. The gap between XDT and S3

grows when increasing the object size. The SF configuration delivers 3.2⇥ and 5.6⇥
lower latency when transferring 10KB and 100MB objects, respectively, yielding up

to 306MB/s effective bandwidth vs. 117MB/s peak S3 configuration bandwidth. This

demonstrates better bandwidth scaling of XDT with the size of the object, compared to

S3.

Compared to SF, the cut-through streaming optimization accelerates XDT by 1.1⇥
for 10KB objects and 2.8⇥ for 100MB objects, yielding 3.6-15.7⇥ lower latency
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Figure 6.4: Average latency of XDT invoke() for objects of various size, as a function

of queue proxy (QP) buffer depth.

than with AWS S3. With a 100MB object, the XDT-CT is able to deliver 855MB/s

bandwidth, which is within 13% of the bandwidth of vanilla gRPC streaming between

two endpoints, communicating over a localhost interface. This result highlights the

efficiency of the XDT-CT design, which we use in all further experiments referring to it

simply as XDT.

Compared to XDT, inline transfers are 1.9-3.8⇥ faster and have higher effective

bandwidth. However, inline transfers impose a strict limitation on the maximum transfer

size of <4MB in the gRPC/Knative setup and <6MB in AWS Lambda [26]. In contrast,

XDT is not encumbered by object size limitations and supports large object transfers

efficiently. Due to limitation on maximum object size for inline transfers, the rest of the

evaluation does not consider this option. However, we note that for workloads that only

transfer small objects and are limited to the 1-1 and scatter communication patterns,

inline transfers represent a superior choice.

6.6.1.2 Memory Requirements for XDT

Next, we evaluate the added memory overhead for blocking XDT transfers, as non-

blocking transfers do not require extra bookkeeping (§6.3.2.1). Fig. 6.4 shows the

average transfer latency for three object sizes, namely 1MB, 10MB, and 100MB. We

vary the buffer depth from 64KB, which holds a single object chunk, to 4MB, which

holds 64 chunks per buffer.

Increasing the buffer size leads to a small decrease in the latency, leading us to

conclude that the sensitivity of the XDT design to buffer depth is small. For instance,

transferring 1MB object with the buffer sizes of 64KB and 4MB is performed in 15ms

and 16ms, respectively. The latency gap for transferring a 100MB object is slightly
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(a) Latency CDFs for 1MB objects. (b) Median and tail latency, sweeping the object

size.

Figure 6.5: Transfer latency cumulative distribution functions (CDFs), median and tail

(99-th percentile) latencies for S3 and XDT in the 1-1 workflow.

larger, with 270ms for a 64KB buffer size and 243ms for a 4MB buffer.

Based on the obtained results, we configure XDT to use 1MB buffers in further

experiments, as this size yields low latency for larger transfers, e.g., 250ms for a 100MB

object, while imposing a relatively small memory overhead.

6.6.2 Microbenchmarks

This subsection further quantifies the latency and effective bandwidth characteristics of

XDT in common communication scenarios (§6.5.4): 1-1, gather, scatter, and broadcast.

6.6.2.1 Transfer Latency

Latency is a key metric for interactive, user-facing cloud services. We study the latency

characteristics as a function of the transferred object size in the 1-1 producer-consumer

scenario (Fig. 6.5).

Fig. 6.5a shows the latency cumulative distribution functions (CDFs) for XDT and

AWS S3 transferring 1MB objects. We observe that XDT exhibits significantly lower

median and tail (99-th percentile) latency, i.e., by 8.9⇥ and 6.5⇥ respectively, when

compared to the configuration that uses S3. This indicates that the XDT architecture,

and our implementation of it, is well-suited to latency-critical workloads, which are

common in cloud.

Fig. 6.5b shows the average and the tail latencies of the two configurations while

varying the size of the transferred objects. We notice that XDT consistently shows lower
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(a) Latency (lower is better) (b) Bandwidth (higher is better)

Figure 6.6: Average latency and effective bandwidth of the gather workflow.

median and tail latencies, by 6.0-14.2⇥ and 6.5-13.0⇥ respectively, in comparison to

S3.

6.6.2.2 Gather Communication Pattern

Gather, or reduce, is essential for applications with functions whose input is the output

of several other functions and use the put()/get() API. We explore the latency and

effective bandwidth of such transfers, sweeping the number of producers, i.e., the gather

degree, from 1 to 32.

Fig. 6.6a shows the average latency of XDT and S3-based configurations while

transferring small (10KB) and large (10MB) objects. For small objects, XDT achieves

5.6-9.3⇥ lower latency compared to S3. XDT delivers effective bandwidth of up

to 11.8MB/s vs. S3’s peak of 2.1MB/s, as shown in Fig. 6.6b. For large object

transfers, XDT delivers 8.2-12.3⇥ lower latency, compared to S3, and provides effective

bandwidth of up to 2175MB/s vs 230MB/s for S3.

6.6.2.3 Scatter Communication Pattern

Scatter, or map, is important when functions have a large fan-out of calls to other

functions, passing the objects via the invoke() and the put()/get() APIs. We study

the latency and effective bandwidth of these transfers (fig. 6.7), varying the number of

consumers, i.e., the scatter degree, from 1 to 32.

Fig. 6.7a demonstrates the latency characteristics of XDT and S3-based systems

in the scatter scenario. We observe that for small object transfers, XDT consistently

shows 1.8-3.7⇥ lower latency over the S3-based baseline. XDT delivers 0.5-3.6MB/s of
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(a) Latency (lower is better) (b) Bandwidth (higher is better)

Figure 6.7: Average latency and effective bandwidth characteristics of the scatter work-

flow.

effective bandwidth vs. 0.1-2.1MB/s for the S3-based system, as depicted in Fig. 6.6b.

For large transfers, XDT delivers 10.9-11.6⇥ speedups for the low 1-4 scatter degree

and more modest 2.4-4.9⇥ speedups for the higher scatter degree of 8-16. For the

scatter degree of 32, XDT matches the performance of the S3-based configuration,

indicating a performance bottleneck in our prototype that requires investigation.

6.6.2.4 Broadcast Communication Pattern

Broadcast support is required for functions that distribute the same data among many

consumers, via a single put() call followed by multiple get() calls with the same S3

key or XDT reference. We investigate the performance characteristics of the XDT and

S3-based systems, sweeping the size of the transferred objects.

Fig. 6.8 demonstrates the latency and effective bandwidth characteristics of the XDT

and S3-based configurations. For both small and large objects, XDT delivers 2.6-6.3⇥
lower latency. The effective bandwidth of XDT is particularly high when transferring

large objects, reaching 3331MB/s vs. peak 590MB/s delivered by S3.

6.6.3 Real-World Workloads

Next, we study three data-intensive applications (§6.5.5) and present their end-to-end

latency along with a detailed breakdown of the sources of latency. After that, we

present the estimation of cost reductions brought by XDT for developers of serverless

applications.
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(a) Latency (lower is better) (b) Bandwidth (higher is better)

Figure 6.8: Average latency and effective bandwidth characteristics of the broadcast

workflow.

6.6.3.1 Workload Performance Evaluation

Video Analytics spends 30% of its execution time in transferring the video fragment

and the frames in the S3-based configuration. With XDT, this fraction decreases to

19%, yielding the overall speedup of 1.14⇥ over the baseline. This speedup comes from

1.7⇥ and 1.6⇥ faster transmission of video and frames, respectively.

Stacking Ensemble Training spends 63% of execution time in data communication

in the S3-based baseline. The largest fractions of data communication are the gather

trained models and the meta-trainer put phases, accounting for 39% and 9% of the

overall execution time. Using XDT allows to decrease both of these fractions to 12%

and 3%, respectively, driving the overall data communication fraction down to 23%.

Thus, XDT delivers a 2.71⇥ speedup over the S3 baseline.

MapReduce shows 63% of execution time spent in communication for the S3

baseline. Moreover, 28% of the overall time is spent retrieving the original input from

S3 and writing back the results to S3, which we do not optimize with XDT. The rest, i.e.,

33% of time, are subject to XDT optimization. XDT allows to achieve 1.42⇥ overall

speedup vs. the S3-baseline. Note, however, that we plot the latency breakdown of the

critical path across a highly parallel job, i.e., the longest-running mapper and reducer

invocations. XDT’s speedup is achieved due to a significant decrease in data shuffling,

namely mapper-put and the reducer-get phases, which are sped-up by 3.9⇥ and 2.0⇥
respectively.
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(a) Video Analytics. (b) Stacking Ens. Training. (c) MapReduce.

Figure 6.9: Latency breakdown of real-world workloads, deployed in XDT and S3-based

systems.

6.6.3.2 Workload Cost Estimation for Developers

From the application developer perspective, the cost of executing a single invocation of

a data-intensive serverless application consists of following two categories. The first

fraction of the cost is a sum of processing time ⇥ function memory footprint

product of each function invoked. For example, AWS Lambda charges application

developers for GB ⇥ seconds while processing an invocation and a small fixed fee

per invocation [25]. The second category is the storage cost, billed in GB/month as for

AWS S3 [23].

Table 6.2 shows the costs associated with executing a single invocation of the

three real-world applications we study. Using XDT instead of a storage service al-

lows significant cost savings for developers, by reducing the processing time due to

faster data transfers and removing the need for storage while passing ephemeral data

across functions. For all three workloads, XDT reduces the invocation processing cost

proportionally to cross-function communication phase acceleration in each function

(§6.6.3.1). The overall cost of executing Video Analytics and Stacking Ensemble

Training workloads is decreased by 43% and 51%, respectively, as both processing and
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S3 storage XDT Cost diff.
Workloads Compute Storage Total Compute
Video analytics 53 23 76 43 43%
Stacking Ens. Training 159 41 200 98 51%
MapReduce 362 823 1185 241 80%

Table 6.2: Cost estimation (in USDx106) of executing a single invocation for an S3 stor-

age based configuration vs. a configuration that uses XDT for data transfers, assuming

AWS Lambda [25] and AWS S3 [23] pricing models.

communication becomes faster. Executing the MapReduce workload is particularly

cheaper with XDT than for the baseline configuration, by 80%, due to the large amount

of ephemeral data passed from the mapper function invocations to the reducer function

invocations in the baseline storage-based configuration. With XDT, these ephemeral

data can be passed directly between the instances of the mapper and reducer functions,

imposing much lower costs.

6.7 Discussion

Prior work [90, 125, 103, 135, 136] considers a number of ephemeral storage service

designs, aiming to provide high-performance transfers without imposing a large cost.

Hence, some works [90, 125, 136, 116, 129] feature a multi-tier design where the first

tier comprises a fast, but pricey, in-memory store while the second tier is slow and

cost-optimized. To reduce the cost of the pricey in-memory tier, some proposals [90,

103, 116] employ machine-learning techniques in the control plane for intelligent object

allocation, increasing the complexity of serverless infrastructure. Another line of work

employs direct inter-function communication approaches [150, 142] – by exposing the

IP addresses of function instances to the user code – that increases the attack surface

and places the burden of load balancing and scaling on the user.

With XDT, it is possible to obviate the need for ephemeral storage and achieve the

performance of an in-memory data store – the peak storage performance configuration

– at the cost that is negligible compared to storage. By design, the XDT data-plane’s

performance is equivalent to a single direct data transfer initiated by the consumer side.

While prior work shows [90, 89, 125] that the usage of storage can be prohibitively

expensive due to its pricey in-memory tier. In contrast, the cost of transmitting an object
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over XDT is equivalent to the cost of 1MB bookkeeping per concurrent blocking transfer

(§6.6.1.2) for the duration of the transfer; and the data transferred via the non-blocking

API requires no extra bookkeeping at all (§6.3.2.1). Moreover, both performance and

cost of XDT scales naturally with the number of instances that perform XDT transfers

at any moment of time.

6.8 Related Work

XDT separates the control and data paths for inter-function communication and lever-

ages a pull-based approach to scale transmission bandwidth by avoiding centralized

bottlenecks. The idea of control and data plane separation is widely applied in the

areas of software-defined networks and storage. Crab [92] and Prism [79] follow a

similar separation to reduce the load on L4 and L7 load balancers, respectively. De-

los [37] leverages a similar idea when solving virtual consensus in replicated systems,

by separating the VirtualLog control plane from Loglets, which are pluggable data plane

implementations).

Prior works [135, 149, 136, 116] consider extending serverless with a distributed

shared memory (DSM) tier and pass references over the DSM around instead of data

objects. In contrast to these proposals, the data objects transmitted via XDT are

immutable, avoiding the complexity of supporting data consistency models.

Our work speeds up serverless application execution by rapidly moving data to

compute. Alternatively, Shredder [155] suggests running compute operations directly

at the storage tier. SAND [20] accelerates data communication proposing a hierar-

chical messaging bus, which also relies on serverless function instances co-location.

Kayak [151] and Bhardwaj et al. [39] investigate the balance between moving data vs.

moving compute, suggesting hybrid schemes to combine both. Despite the potential ef-

ficiency gains, today’s commercial systems, e.g., AWS Lambda, tend to avoid serverless

function co-location, as such policies may lead to hotspots [19, 36], instead relying on

statistical multiplexing across the server fleet. Other works [72, 133] propose keep-alive

policies to minimize the number of cold function invocations.

6.9 Conclusion

In modern serverless clouds, data-intensive applications’ performance, which heavily

depends on several functions communicating in a workflow, suffers from significant
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communication delays. We show that serverless communication methods used in

production clouds and optimizations proposed by researchers fall short of serverless

communication demands. In response, we introduce XDT, a high-speed API-preserving

communication method that integrates seamlessly with the existing autoscaling infras-

tructure that underpins cloud deployments. XDT leverages control/data separation and

secure references to provide low latency and high bandwidth in a variety of commu-

nication scenarios. A vHive-based XDT prototype accelerates real-world serverless

applications by 1.14-2.71⇥ over a production baseline.





Chapter 7

Conclusions and Future Work

This dissertation has shown that data movement is the key problem that limits the

performance of today’s serverless cloud architecture, due to its fundamental separation

of compute and data management. To address this problem, we propose a data-centric

architecture that unlocks fast, resource-efficient serverless clouds. Our work takes a

holistic approach, embodying a comprehensive performance analysis that quantifies

the data-movement problem, identifies the underlying cloud infrastructure subsystems

that limit overall performance, and proposes two steps that implement the proposed

data-centric serverless cloud architecture.

To analyze the performance of state-of-the-art commercial clouds, we propose a

performance analysis methodology and build an open-source serverless benchmarking

framework, called STeLLAR. STeLLAR enables accurate performance characterization

of serverless deployments. STeLLAR is provider-agnostic and highly configurable,

allowing the analysis of both end-to-end and per-component performance with minimal

instrumentation effort. Using STeLLAR, we study three leading serverless clouds

and reveal that data movement significantly reduces the overall performance of a

modern serverless cloud. In particular, we identify that the long cold-start delays of

launching new function instances and slow cross-function communication limit the

overall performance.

To enable further performance analysis, we introduce an open-source full-stack

framework called vHive, which integrates cutting-edge production technologies from

the leading serverless providers in a complete, representative platform. To demonstrate

vHive’s utility, we further study the breakdown of cold-start latencies and pinpoint the

root cause of the slow cold starts. We identify that this performance overhead occurs

because of a long series of page faults, arising due to lazy paging in the host operating

97
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system. We also find that serverless functions operate over stable memory working sets

across function invocations.

Using the insights obtained from the studies with vHive, we construct REAP, a light-

weight record-and-prefetch mechanism, that captures the locations of each function’s

working-set memory pages in storage at the first function invocation and prefetches

them into memory upon all following invocations of the same function. As a result,

REAP allows to eliminate most of page faults upon a cold start and achieve significant

speedups.

Finally, we address the data communication bottleneck by proposing an API-

preserving serverless-native XDT fabric. XDT enables direct function-to-function

transfers, where a trusted component of the sender function buffers the payload in

its memory and sends a secure reference to the receiver, which is picked by the load

balancer and autoscaler based on the current load. Using the reference, the receiver

instance pulls the transmitted data directly from sender’s memory. Effectively, XDT

allows to achieve the performance of an in-memory transfer without imposing additional

costs, as in the case of using a storage service.

Driven by the insights obtained with STeLLAR and vHive, the REAP snapshots and

the XDT communication method pave the way for a high-performance and resource-

efficient data-centric serverless cloud architecture, which co-designs serverless au-

toscaling capabilities and careful data management. In comparison to prior art, REAP

demonstrates that low-latency cold starts may be achieved with conventional virtualiza-

tion technologies, like AWS Firecracker, without compromising security like with the

solutions that rely on memory sharing. Compared to the state-of-the-art cloud systems

that require the developers to compose their applications out of serverless functions and

traditional, ”serverful” storage services for ephemeral data transfers, XDT allows to

develop data-intensive applications in a pure serverless manner – without using any

external services and the associated costs.

7.1 Future Directions

The serverless paradigm introduced a new programming model for cloud computing,

starting the fundamental shift in cloud architecture. This thesis identifies and addresses

the performance problems of state-of-the-art serverless systems, making serverless

clouds more reactive to traffic changes and adding fast communication support for



7.1. FUTURE DIRECTIONS 99

data-intensive applications. However, making serverless clouds energy-efficient leaves

many system design challenges, providing opportunities for future research in cloud

programming models, hardware acceleration, and data-locality optimizations.

7.1.1 Revisiting the programming model

Currently, developers structure their applications manually, by experimenting and adjust-

ing the data-flow graph of their application based on the empirical data they collect. This

task is onerous due to several reasons. First, modern cloud architecture is distributed

and features a deep software stack. Second, the bulk of the stack, both serverless and

classic Backend-as-a-Service infrastructure, is obscured from the service developers

that have little visibility into the characteristics of their applications that matter for

achieving predictable performance. Finally, the providers have no visibility into the

code of the microservices and serverless functions that comprise the applications as well

as the workload characteristics (e.g., bursty traffic), complicating timely autoscaling

and cloud resources provisioning. It is necessary to devise a programming model and

an optimizing compiler techniques for decomposing an application into a data-flow

graph of autoscaling components (e.g., serverless functions and other services), and

scheduling mechanisms to enable cloud application programming with performance

guarantees.

7.1.2 Hardware offloads

To date, serverless software stack runs entirely on CPUs, leading to poor performance

and large energy footprints. For example, monitoring and balancing load of cloud

resources upon every serverless function invocation wastes a lot of CPU cycles. Another

type of overhead lies in moving data, such function images or MicroVM snapshots

from disaggregated storage to the target hosts when spawning new function instances.

Offloading these operations to in-network processing units, smart NICs, RDMA, and

in-CPU data streaming accelerators, some of which are already available in a modern

datacenter, promises significant performance and energy gains. To support this shift, it

is paramount to devise novel abstractions for exposing the capabilities of this hardware

to cloud infrastructure and the user code inside serverless functions, while retaining the

monitoring capabilities and providing high security as in today’s CPU-only clouds. It

is important to develop new hardware primitives and programming model extensions,

enabling a high-performance and energy-efficient system design.
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7.1.3 Data locality aware scheduling

Modern serverless schedulers make no assumptions on data locality, placing functions

independently from the location of their input data origin and disregarding the data

dependencies across functions. There are three types of data in the context of serverless

computing: function images used for instances initialization, input data ingested into

a serverless application, and the ephemeral data transmitted across functions. It is

key to explore the possibility of extracting this application-specific information at

runtime or providing programming interfaces to communicate necessary information

from the application programmers to the serverless scheduler. Using this information,

serverless scheduler can implement intelligent policies and mechanisms, minimizing

data movement while timely adjusting the amount of allocated resources and balancing

the load across the system.
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[38] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David Mazières,

and Christos Kozyrakis. Dune: Safe User-level Access to Privileged CPU

Features. In Proceedings of the 10th Symposium on Operating System Design

and Implementation (OSDI), pages 335–348, 2012.

[39] Ankit Bhardwaj, Chinmay Kulkarni, and Ryan Stutsman. Adaptive Placement

for In-memory Storage Functions. In Proceedings of the 2020 USENIX Annual

Technical Conference (ATC), pages 127–141, 2020.

[40] Ricardo Bianchini. Serverless in seattle: Toward making serverless the future of

the cloud. Available at https://acmsocc.github.io/2020/keynotes.html.

[41] Marc Brooker, Adrian Costin Catangiu, Mike Danilov, Alexander Graf, Colm

MacCárthaigh, and Andrei Sandu. Restoring Uniqueness in MicroVM Snapshots.

CoRR, abs/2102.12892, 2021.

[42] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor

McMahon, and Christopher S. Meiklejohn. Serverless Workflows with Durable

Functions and Netherite. CoRR, abs/2103.00033, 2021.

[43] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and

Jonathan Appavoo. SEUSS: skip redundant paths to make serverless fast. In

Proceedings of the 2020 EuroSys Conference, pages 32:1–32:15, 2020.

[44] Michael J. Cafarella, David J. DeWitt, Vijay Gadepally, Jeremy Kepner, Christos

Kozyrakis, Tim Kraska, Michael Stonebraker, and Matei Zaharia. DBOS: A

Proposal for a Data-Centric Operating System. CoRR, abs/2007.11112, 2020.

[45] CBINSIGHTS. Why serverless computing is the fastest-growing cloud

services segment. Available at https://www.cbinsights.com/research/

serverless-cloud-computing.

[46] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,

Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migration of Virtual

Machines. In Proceedings of the 2nd Symposium on Networked Systems Design

and Implementation (NSDI), 2005.

[47] Cloud Native Computing Foundation. CRI-O: Lightweight container runtime for

kubernetes. Available at https://cri-o.io.

https://acmsocc.github.io/2020/keynotes.html
https://www.cbinsights.com/research/serverless-cloud-computing
https://www.cbinsights.com/research/serverless-cloud-computing
https://cri-o.io


Bibliography 105

[48] Cloudflare Blog. It’s Go Time on Linux. Available at https://blog.

cloudflare.com/its-go-time-on-linux.

[49] ComputerWeekly.com. Storage: How Tail Latency Impacts Customer-facing

Applications. Available at https://www.computerweekly.com/opinion/

Storage-How-tail-latency-impacts-customer-facing-applications.

[50] Containerd. An Industry-Standard Container Runtime with an Emphasis on

Simplicity, Robustness and Portability. Available at https://containerd.io.

[51] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and

Torsten Hoefler. SeBS: A Serverless Benchmark Suite for Function-as-a-Service

Computing. CoRR, abs/2012.14132, 2020.

[52] CouldFlare. Cloudflare workers. Available at https://workers.cloudflare.

com/.

[53] Alexandros Daglis, D. Ustiugov, Stanko Novaković, Edouard Bugnion, Babak
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