
Shattering the Ephemeral Storage Cost Barrier for Data-Intensive
Serverless Workflows

Shyam Jesalpura∗
University of Edinburgh
s.jesalpura@gmail.com

Dmitrii Ustiugov∗
NTU Singapore

dmitrii.ustiugov@ntu.edu.sg

Michal Baczun
Bloomberg

baczunm@gmail.com

Bora A. Malper
Stripe

bora@boramalper.org

Rustem Feyzkhanov
Instrumental

ryfeus@gmail.com

Edouard Bugnion
EPFL

edouard.bugnion@epfl.ch

Marios Kogias
Imperial College London
m.kogias@imperial.ac.uk

Boris Grot
University of Edinburgh
boris.grot@ed.ac.uk

Abstract
Serverless computing enables developers to deploy applications
as workflows of functions that invoke one another, with cloud
providers handling autoscaling and routing. However, serverless
platforms lack efficient mechanisms for cross-function data trans-
fers, which hinders the performance of data-intensive applications.
Current solutions rely on intermediary services like AWS S3 or
ElastiCache(EC), leading to significant cost inefficiencies—storage
costs can account for 24-99% of the total execution bill.

Zipline addresses this challenge with a fast, API-compatible data
communication method enabling direct function-to-function trans-
fers. Zipline buffers data in the sender function’s memory and trans-
mits only the references to the dynamically selected receiver, which
pulls the data directly from the sender’s memory. While eliminating
the need for intermediary services, it also integrates seamlessly
with existing autoscaling infrastructure, preserving function invo-
cation semantics while significantly reducing costs and latency. In a
vHive/Knative prototype on AWS EC2, Zipline achieves 2-5× lower
costs & 1.3-3.4× faster execution times compared to S3. Against
EC, Zipline cuts costs by 17-772× while improving performance by
2-5%. Zipline demonstrates a cost-effective and high-performance
solution for data-intensive serverless applications.

1 Introduction
Serverless functions are stateless and ephemeral, requiring inter-
function communication to pass intermediate state. Typically, a
producer function invokes consumer functions, passing data inputs.
However, the consumer instances are dynamically assigned by
the cloud provider’s load balancer and autoscaler, making direct
communication challenging. Data transfers can be substantial, often
tens of MBs, as seen in applications like video analytics [21, 22, 46,
47], data analytics [41, 44, 45], and ML [26].

The common programming model for data communication is
object-centric, using an intermediate external servicewith a put()/get()
interface. This service can be a storage service (e.g., AWS S3, Google
Cloud Storage) or an in-memory cache (e.g., AWS ElastiCache). The
producer stores the data, invokes the consumer, which then re-
trieves the data from storage. This indirection via storage services
introduces latency and additional costs.

∗Both authors contributed equally to this research.

Researchers have proposed solutions to improve serverless com-
munication efficiency. Some seek to improve the performance of
storage-based transfers using tiered storage, such as combining
an in-memory cache layer (e.g., EC) with a cold storage layer (e.g.,
S3) [37, 40, 46, 51]. While tiered storage can improve performance
over a single storage layer (or cost over a single in-memory cache
layer), the disadvantages of through-storage indirection remain.

We find that serverless architectures using through-storage trans-
fers, such as AWS S3 or multi-tier services, incur prohibitively high
costs for storing transmitted data. Even with perfect garbage collec-
tion, intermediate bookkeeping costs dominate execution costs for
data-intensive applications. For instance, in a MapReduce shuffle
phase, data transmission via S3 and EC can account for 70% to over
99% of total processing costs.

By studying the production traces from Azure Functions [46], we
make the following key observation: 75% of data objects transmitted
across functions must be buffered for only 30 seconds or less. In
contrast, a function instance’s lifetime (e.g., theminimumkeep-alive
period of an idle instance before serverless infrastructure tears it
down) spans to manyminutes [6, 48]. Hence, the function instances’
lifetime significantly exceeds the transmitted data’s lifetime.

We exploit the disparity between the data and instances’ lifetimes
and introduce Zipline 1 (ZL), a serverless communication substrate
that allows direct communication between two function instances
in a manner that is flexible and compatible with the autoscaling
infrastructure used by cloud providers. ZL preserves the existing
API and invocation semantics of serverless functions while avoiding
the need for intermediate storage for arbitrarily-sized data transfers.
At the heart of ZL is an explicit separation of the control plane
used for function invocation, which is tightly integrated with the
autoscaling infrastructure, from the data transfer itself. In simplest
terms, with ZL, the producer function buffers the data that needs
to be transferred in its memory and sends a reference to the data
inlinedwith the invocation to the consumer function. The consumer
then directly pulls the data from the producer’s memory. More
concretely, ZL defines a short-lived namespace of objects with
the same lifetime as the function instance. Subsequent function
instances can access this namespace through references that do not
expose the underlying infrastructure to the user code.

1We plan to release the Zipline’s source code by the time of publication.

1



SESAME’25, March 31st, 2025, Rotterdam, Netherlands S. Jesalpura, D. Ustiugov, M. Baczun, B. Malper, R. Feyzkhanov, E. Bugnion, M. Kogias, and B. Grot

Invoke 
functions

Function instance

Activator

Autoscaler

Queue 
Proxy (QP)

Request new 
instances

Update the load balancer

Choose instance to 
forward invocations to

Forward invocations

Report per-instance utilization
Serverless autoscaling infrastructure

Fn

Figure 1: Operation of serverless autoscaling infrastructure.

ZL naturally supports a variety of inter-function communica-
tion patterns, including producer-consumer, scatter (map), gather
(reduce), and broadcast. Compared to through-storage transfers,
ZL avoids high-latency data copies to and from a storage layer and
the associated monetary cost of storage usage. Critically, ZL is fully
compatible with the autoscaling infrastructure and requires mini-
mal modifications at the endpoints of the existing control plane.

We prototype ZL in Knative [3], by extending its queue-proxy
components with ZL support. We evaluate our proposal by de-
ploying a ZL-enabled vHive cluster in AWS EC2. Using real-world
applications, we show that ZL delivers 2-5× lower cost and superior
performance versus transfers via S3 storage (i.e., cheapest among
existing solutions) and EC in-memory cache (i.e., fastest among
prior works) for all the above communication patterns in serverless.

The main contributions of our work are as follows:
• We demonstrate that through-storage communication incurs
high costs, making up 24-99% of total expenses for data-intensive
serverless applications.
• We observe that function instances live significantly longer than
the data they transmit, suggesting the use of instance memory for
buffering the transmissions.
• We introduce ZL, which separates control and data paths, al-
lowing direct data transfer from producer to consumer memory,
supporting various communication patterns and compatible with
autoscaling.
• We show ZL’s efficiency and cost-effectiveness, outperforming
S3 by 1.3-3.4× with 2-5× cost savings, and surpassing EC by 2-5%
while reducing costs by 17-772×.

2 Background and Motivation
Below we describe the modern serverless cloud architectures and
programming models for data-intensive applications and evaluate
the associated performance and cost overheads.

2.1 Serverless Computing and Autoscaling
The serverless paradigm divides responsibilities between the pro-
grammer and the infrastructure. The programming model uses
functions as the core abstraction and function instances as units
of scaling. Developers can deploy applications without managing
system configuration or cloud resources, as the serverless infras-
tructure automatically adjusts the number of function instances
based on traffic.

We describe the serverless autoscaling infrastructure (Fig. 1)
using the Knative [3] terminology. The autoscaling infrastructure

aims to achieve two objectives: (1) respond to load changes by
spawning new function instances when the load increases and
shutting down idle instances when the load drops, and (2) minimize
queuing latency by balancing the load across active instances.

Instance scaling and load-balancing decisions rely on utilization
metrics from active function instances, gathered by the queue-proxy
component, which forwards incoming requests and reports metrics
to the autoscaler. The autoscaler monitors the load and implements
the scaling policy. To balance the load, serverless clouds use a load
balancer (referred to as the activator in Knative) to steer requests
to instances. If no active instances are available or all are busy, the
activator requests new instances from the autoscaler, which then
spawns new instances while the activator buffers the requests. Once
the instances are up, the activator directs the requests to them.

Together, the queue proxy, autoscaler, and load balancer enable
serverless function autoscaling, ensuring scalability for developers
and resource efficiency for cloud providers.

2.2 Data-Intensive Applications in Serverless
Data-intensive applications are prevalent in today’s serverless clouds [21,
22, 26, 41, 44–47]. These applications require rapid state commu-
nication between processing stages (i.e., functions) in a workflow.
Typically, serverless functions handle single stages (e.g., map and
reduce) with instances managing individual state pieces [21, 28, 29].
This allows developers to leverage available compute resources
without managing autoscaling or resource allocation.

The challenge lies in enabling fast state communication (referred
to as objects) across functions while maintaining serverless benefits
like elasticity and cost-efficiency. Direct communication via tradi-
tional POSIX APIs (e.g., sockets) could offer high performance but
would require custom autoscaling and data-partitioning solutions,
negating serverless advantages. Instead, existing data-intensive
serverless applications use storage services (e.g., cloud storage or in-
memory cache) for object transfers via put()/get()APIs [20, 46].2
We term these methods as through-storage transfers.

2.3 Through-Storage Transfers and Their Cost
Through-storage communication in serverless architectures incurs
performance and financial overhead. The financial cost includes
charges for each Get()/Put() operation and the storage lease cost,
proportional to the duration and size of data stored remotely.

Prior research has explored cost-performance trade-offs in stor-
age solutions for data-intensive serverless applications. These in-
clude using conventional storage for cost efficiency, in-memory
cache for high performance, or multi-tier systems combining both.
For example, Locus [45] utilizes AWS ElastiCache (EC) for shuffling
and S3 for cold storage. Solutions like Pocket [29] and SONIC [37]
adopt control-plane mechanisms to dynamically multiplex storage
tiers based on application needs. Other systems, such as Faa$T [46],
Cloudburst [51], and OFC [40], employ key-value stores for dis-
tributed caching. These approaches introduce direct storage costs
(operations and leases) and indirect computational costs due to
storage latency impacting function execution time.

2Small data objects can be passed inline, such as AWS Lambda’s support for objects
smaller than 256KB and 6MB for asynchronous and synchronous invocations, respec-
tively. However, through-storage transfers are more common in practice.

2



Shattering the Ephemeral Storage Cost Barrier for Data-Intensive Serverless Workflows SESAME’25, March 31st, 2025, Rotterdam, Netherlands

Application-StorageType

E
xe

cu
tio

n 
co

st

0%

50%

100%

VID
-S

3

VID
-E

C

SET-S
3

SET-E
C

MR-S
3

MR-E
C

Storage Compute

Figure 2: The cost breakdown for real-world data-intensive
multi-function applications (§5.0.5), namely Video Ana-
lytics (VID), Stacking Ensemble Training (SET), and Map-
Reduce (MR), when performing data transfers through AWS
S3 and ElastiCache (EC). The numbers show the cost values
in (in𝑈𝑆𝐷 × 10−6) for compute and storage expenses.

1 Sec
5 Sec

30 Sec
5 Min

1 Hour
1 Day

Save-to-Retrieve Time

0.00
0.25
0.50
0.75
1.00

CD
F

Figure 3: CDFs of the time duration between saving a data
object in storage and its last retrieval, based on Azure Blob
Traces [46]. Note the logarithmic scale on the horizontal axis.

Even with the cheapest storage solutions, data-intensive server-
less applications often face disproportionate storage costs. Using
AWS pricing models, we estimate the cost of buffering data in S3
and EC under conservative assumptions: immediate deallocation
after retrieval and no overprovisioning. However, practical con-
straints—like S3’s minimum expiration time of one day and EC’s
1 GB metering minimum—result in higher real-world costs. Fig. 2
illustrates that storage accounts for 24–70% and 94–99% of overall
costs when using S3 and EC, respectively.

These findings demonstrate that through-storage architectures
are economically impractical for data-intensive applications. While
multi-tier systems narrow the performance gap between in-memory
and cloud storage, the latter remains the cost-optimal but slowest
tier, contributing significantly to both cost and tail latency, as high-
lighted in prior studies [53].

3 Zipline Communication
3.1 Design Insights
We exploit three insights enabling a serverless communication
model, which, in the common case, obviates the need for through-
storage transfers.

Our first insight is to separate control (function invocation) and
data (transfer) paths without impacting the autoscaling infrastruc-
ture. The challenge is doing sowithout resorting to a storage service,
which is what curent through-storage transfers rely on. We address
this challenge with the help of the second insight.

Activator & 
Autoscaler

PI CJ

Buffered 
object

Producer() instance I Consumer() instance J

Pull object?

Forward invocations?Invoke consumers?

Figure 4: Zipline architecture overview.

API Call Description
rsp := invoke(URL, obj) Invoke a function
ref := put(obj, N) Buffer an object locally
obj := get(ref) Fetch a remote object

Table 1: Zipline API description.

The second insight is that the data transferred between instances
are ephemeral, with lifetimes on the order of a few seconds. Us-
ing the Azure Blob Traces [46], we analyze the time between an
object produced by one function and its last retrieval by another
function of the same application. Fig. 3 shows that 75% of the data
objects transferred across functions are consumed within 30 sec-
onds. Hence, the data lifetime is much shorter than the keep-alive
period of serverless functions (which is typically in the order of
minutes to maximize the likelihood of a warm invocation [6, 48]).

Based on the above, we draw one final insight: instead of using
a storage service to communicate data across function instances, a
producer instance can simply buffer the data in its own memory
and have the consumer instance pull from it. We note that most
language runtimes require buffering the transmitted object in a
memory buffer before calling the Put() API of the storage service,
so the system only needs to provide a way to pass a pointer to
that buffer to the target consumer instance. This insight forms the
foundation for Zipline, presented next.

3.2 Design Overview
We introduce Zipline (ZL), a serverless-native data communication
fabric that meets all five serverless communication requirements:
high performance, compliance with existing serverless function
invocation semantics, compatibility with autoscaling, and standard
data-transfer APIs.

Following the insights from Sec. 3.1, ZL separates function invo-
cation into control and data planes. The control plane, unchanged,
matches the existing serverless architecture (Fig. 1), allowing au-
toscaling to balance loads by directing invocations to the least-
loaded instances. It carries only control messages. The data plane
handles object transfers. In essence, a producer function instance in
ZL buffers data in its memory and sends a reference to the consumer
function(s). The consumer(s) then pull the data directly from the
producer’s memory. This replaces push-based data transfers with a
pull-based approach after the control plane has made its decisions.

Fig. 4 illustrates ZL operation. Consider two serverless functions,
a producer and a consumer, each with multiple instances. The
producer invokes the consumer function, passing a data object as
an argument. Unlike existing systems, in ZL, consumer function
invocations go to the activator separately from their corresponding

3



SESAME’25, March 31st, 2025, Rotterdam, Netherlands S. Jesalpura, D. Ustiugov, M. Baczun, B. Malper, R. Feyzkhanov, E. Bugnion, M. Kogias, and B. Grot

objects 1 , which remain buffered at the source. The activator,
after consulting the autoscaler, selects a consumer instance and
forwards the invocation 2 . Upon receiving the invocation, the
consumer instance pulls the object from the producer instance 3
using the reference in the invocation message.

3.2.1 Zipline Programming Model. The ZL programming model
features a minimalist yet expressive API (Table 1) that supports
essential communication patterns: invoking a function, scattering
and broadcasting objects to multiple consumers, and gathering out-
puts from several functions. The API is compatible with production
cloud APIs like AWS Lambda and S3’s Boto3 [12].

ZL supports both blocking and non-blocking interfaces. The
invoke() call invokes a function by its URL, passing a binary data
object obj by value, with the object buffered at the producer side
until the consumer instance pulls it. For non-blocking transfers,
ZL uses put() and get() calls, similar to a key-value store inter-
face. The producer can finish the invocation before the consumer
retrieves the object.

ZL introduces references as first-class primitives to decouple
function invocation and data transfer. When put() is called, the
runtime returns a reference to the object, which the consumer can
retrieve using get(). Each reference is associated with a specified
number of retrievals N and includes a ZL ID to uniquely identify
objects within the same workflow.

This model allows seamless porting of serverless applications,
such as those for AWS Lambda or Knative, with corresponding
wrapper functions. We implemented ZL SDKs for Python and
Golang and deployed them in a Knative cluster to demonstrate
the API’s portability.

3.2.2 Zipline Semantics & Error Handling . Modern serverless plat-
forms like AWS Lambda and Azure Functions provide at-most-once
invocation semantics [23, 31, 32], ensuring an invocation executes
no more than once, even in case of failures.3 Providers expose run-
time errors to user logic for handling [13, 14, 16, 39]. Error handling
varies based on function composition, either as direct chains or
asynchronous workflows managed by orchestrators like AWS Step
Functions [11] or Azure Durable Functions [38]. Failures may re-
quire re-executing several functions, necessitating the user to pass
context throughout the workflow.

ZL handles failures similarly. In a two-function workflow, the life-
time of a ZL object is tied to the producer instance. If the producer
shuts down, all its objects are de-allocated immediately. For block-
ing invocations (invoke()), the producer waits for the consumer’s
response and may re-invoke if an error occurs. For non-blocking
invocations, a ZL transfer may fail if the producer instance is ter-
minated before the consumer retrieves the object. The consumer
receives an error on get() and must re-invoke the workflow from
the producer. The consumer should forward this error to the orches-
trator or driver function to re-invoke the producer with the original
arguments. For instance, AWS Step Functions allows defining cus-
tom fallback functions for error handling [14]. Providers could
enhance ZL error handling by backing up non-retrieved objects to
cloud storage before instance shutdown, converting ZL references

3Users can achieve at-least-once semantics by combining at-most-once primitives with
retry logic. Prior work also demonstrates constructing exactly-once semantics [32].

Figure 5: Zipline operation in a one producer one consumer
scenario (only the request path is shown). Dashed arrows
show the control plane, solid lines show the data plane, and
the thick solid lines show data streaming in the data plane.

to storage service keys. The consumer would first attempt a regular
ZL retrieval, followed by a storage service retrieval if needed. If ZL
errors persist, the infrastructure can disable ZL for those functions.

In summary, ZL complies with at-most-once semantics and can
be extended to at-least-once semantics using existing serverless
infrastructure with minimal modifications.

4 Implementation
We prototype Zipline (ZL) in vHive [54]using the Knative model [3].

4.1 Zipline Prototype in vHive/Knative
4.1.1 ZL Software Development Kit (SDK). ZL uses an SDK to
bridge user logic with provider components for data transfer. At
the producer side, the SDK splits the invocation request into a con-
trol message and an object (the data). It creates a ZL reference,
an encrypted string containing the pod’s IP address and a unique
object key, and adds it to the gRPC request header. This encryption
ensures IP addresses remain hidden from user code.

At the consumer side, the SDK reconstructs the original request
by combining the control message and the retrieved object, then
invokes the consumer function as with the standard serverless API.

4.1.2 Control and Data Planes. ZL uses gRPC [2] for the control
plane and for the data plane, we choose the high-performance
Cap’n Proto [1] RPC fabric. This fabric runs directly on top of TCP,
delivering higher performance when compared to gRPC, whose
performance is limited by HTTP compatibility.

4.1.3 Provider Components Extension. Weextend the Knative queue
proxy (QP) for object buffering (§2.1). QP is an auxiliary per-function
provider container deployed in the same pod as the function server.
The added logic increases the QP memory footprint by 2MB.

4



Shattering the Ephemeral Storage Cost Barrier for Data-Intensive Serverless Workflows SESAME’25, March 31st, 2025, Rotterdam, Netherlands

4.2 Zipline Operation
4.2.1 ZL invoke() Operation. Fig. 5 illustrates the ZL request
path during an invoke() call: 1 The caller function invokes the
SDK. 2 The SDK splits the request into a ZL object and a control
plane message containing the object reference. 3 The SDK sends
the control message to the activator and 4 stores the object in
a buffer for the consumer’s QP (QPcon). 5 The activator selects
the consumer instance and forwards the control message to the
consumer’s QP (QPcon). 6 QPcon decrypts the reference, extracts
the IP address and object key, and requests the data from the pro-
ducer’s SDK via Cap’n Proto RPC. 7 The producer’s SDK sends
the data to QPcon and deallocates the object. 8 QPcon forwards
the object to the SDK, which reconstructs the original request, and
9 invokes the function handler. If the response is small, it follows
the reverse control plane path through the QPs and the activator.

4.2.2 ZL get() / put() Operation. While invoke() is synchro-
nous, ZL’s put() and get() are asynchronous. The key difference
is that put() returns a ZL reference for the object, which the pro-
ducer can pass to any function within the same user domain. The
consumer retrieves the object by calling get() with the reference,
prompting the SDK to fetch the object via a Cap’n Proto RPC re-
quest directly from the producer instance. The same technique is
used for large responses, where the consumer sends a reference
and the producer fetches the object.

4.2.3 ZL Flow Control. Cap’n Proto RPC, built on TCP, inherently
supports flow control, requiring no changes to ZL logic. If transmit-
ted objects exceed available buffers, transfers pause, causing the
user code to block in the ZL API call.

5 Methodology
5.0.1 Evaluation Platform. We evaluate Zipline (ZL) on a cluster
of AWS EC2 m5.16xlarge instances in ‘us-west-1‘, ensuring low
access time to AWS S3 similar to [29, 37, 57]. Each instance features
a 64 core Intel Xeon Platinum 8000 series 3 processor, 256GB RAM,
and a 20Gb/s NIC. Pods are scheduled to ensure all data transfers
occur over the network, with each function placed on a separate
EC2 node. All experiments emulate a stable serverless workflow
with no cold starts.

5.0.2 Measurement. Unless specified otherwise, we report average
end-to-end latency based on 10 measurements. For microbench-
marks, which do not have any computational overheads except
network processing, we calculate effective bandwidth by dividing
the transferred object size by the measured end-to-end latency.

5.0.3 Baseline and ZL Configurations. Our baseline employs two
storage options for through-storage communication, representing
the performance and cost extremes of multi-tier ephemeral stor-
age [29, 37, 45, 46, 51]. The first is AWS S3, the most economical but
slowest option. The second is ElastiCache (EC), a high-performance
in-memory store, priced over 100× more than S3. We use EC in
on-demand mode, which is four times cheaper than its serverless
mode [8]. Prior studies [28, 29] highlight EC’s superior performance
for inter-function communication at a premium cost. For EC, we

configure a single-node Redis cache of type cache.m6g.16xlarge
with 64 vCPUs and a 25 Gb/s NIC, costing $4.7 per hour.

5.0.4 Microbenchmarks. We implementmicrobenchmarks inGolang
to evaluate common serverless data transfer patterns (§3.2.1): producer-
consumer (1-1), scatter, gather, and broadcast. Each pattern involves
varying numbers of producer and consumer function instances,
transferring one or more objects between them. Hereafter, a pro-
ducer (consumer) refers to a producer (consumer) function instance.

5.0.5 Real-World Workloads. We use three data-intensive applica-
tions from the vSwarm suite [5]. Each workload consists of multiple
functions deployed with Knative Serving [4], using a blocking inter-
face for inter-function communication. We modify the workloads
to support ZL alongside S3 and ElastiCache (EC) baselines using the
same communication API: invoke(), get(), and put() (§3.2.1).

The workloads demonstrate various communication patterns.
Video Analytics (VID) involves 1-1 and scatter patterns with func-
tions for video streaming, frame decoding, and object recognition.
The frame decoder invokes the object recognition function for sev-
eral frames in a scatter pattern. Stacking Ensemble Training (SET) is
a distributed ML training application utilizing broadcast and gather
patterns. The initial function broadcasts the training dataset to
parallel training tasks, and the final function gathers and reconciles
the trained models. MapReduce (MR) implements the Aggregation
Query from the AMPLab Big Data Benchmark [43], with the gather
pattern being crucial during the data-intensive shuffling phase be-
tween mapper and reducer functions.

5.0.6 Cost Model. We estimate the cost of executing the studied
applications from the developer’s perspective using AWS pricing
models [8–10]. The cost of a function invocation includes a fixed
fee, a fee based on the processing time and maximum memory
footprint (assumed to be 512MB), and storage costs for data trans-
fer. Storage costs are calculated on a GB/month basis for AWS S3 [9]
and GB/hour for on-demand AWS EC [8]. We assume ephemeral
storage de-allocates data immediately after the last retrieval, al-
though in practice, services like AWS S3 do not support expiration
times below one day as of 2024.

6 Evaluation
We compare Zipline (ZL) to through-storage transfers based on
AWS S3 and ElastiCache (EC). We first study the performance of
the communication mechanisms on microbenchmarks featuring
1-1, gather, scatter, and broadcast patterns. We then assess the
performance and cost of real-world serverless applications in cloud.

6.1 Microbenchmarks
6.1.1 Producer-Consumer Communication. We focus on the 1-1
(producer-consumer) pattern to study the latency characteristics of
the communication methods.

Fig. 6 shows the median and 99th percentile latencies for S3,
EC, and ZL transfers for 10KB and 10MB objects. For 10KB objects,
EC offers significantly lower latency than S3, with median and
tail latencies reduced by 89% and 92%, respectively. ZL further
improves on EC, reducing median and tail latencies by 12% and 10%.
For 10MB objects, EC reduces median and tail latencies by 87% and

5



SESAME’25, March 31st, 2025, Rotterdam, Netherlands S. Jesalpura, D. Ustiugov, M. Baczun, B. Malper, R. Feyzkhanov, E. Bugnion, M. Kogias, and B. Grot

(a) Latency CDFs for 10KB obj.(b) Latency CDFs for 10MB obj.

Figure 6: Transfer latency CDFs for S3, ElastiCache (EC) and
ZL in the 1-1workflow. Note the log scale on the latency axis.

(a) 10KB object transfers

(b) 10MB object transfers

Figure 7: Transfer latency of the scatter, gather, and broadcast
patterns with the fan degrees of 4 and 16. Note that both
subfigures use a log scale for latency, but the scales differ.

90% compared to S3, while ZL achieves 45% and 34% lower latencies
than EC. ZL’s advantage comes from avoiding intermediate writes
and reads, which are more pronounced with larger objects.

6.1.2 Collective Communication. We evaluate the latency and ef-
fective bandwidth4 of collective communication patterns (gather,
scatter, broadcast) for fan-in and fan-out degrees of 4 and 16, using
10KB and 10MB transfer sizes.

Fig. 7a shows results for 10KB transfers. EC outperforms S3, with
9.2-11.0× lower latency at a fan degree of 4 and 7.8-10.8× lower at a
fan degree of 16. ZL matches or exceeds EC, achieving up to 1.16×
lower latency.

For 10MB transfers (Fig. 7b), EC maintains its advantage over S3
with up to 7.7× lower latency. ZL further improves on EC, delivering
1.2-1.9× lower latency. ZL also achieves higher effective bandwidth.
For 10MB transfers with a fan degree of 32, ZL reaches 16.4Gb/s
(82% of NIC peak bandwidth), compared to EC’s 14.0Gb/s (70%) and
S3’s 5.5Gb/s (28%).

4calculated as the size of the transferred objects divided by the end- to-end transfer
time.

(a) Video Analytics

(b) Stacking Ensemble Training

(c) MapReduce

Figure 8: Latency breakdown of real-world workloads, de-
ployed in Zipline, ElastiCache (EC) and S3 based systems.

S3 ElastiCache(EC) ZL
App Comp. Stor. Total Comp. Stor. Total Total (comp.)
VID 37 18 55 14 913 928 17
SET 95 30 125 69 1104 1172 70
MR 180 416 595 125 99667 99792 129

Table 2: Cost estimation (in 𝑈𝑆𝐷 × 10−6) for compute and
storage spending when executing a single invocation for S3,
EC, and ZL based configurations based on AWS Lambda [10],
AWS S3 [9], and AWS EC [8] prices as of 1/1/2023.

6.2 Real-World Workloads
Next, we study three data-intensive applications (§5.0.5), presenting
their end-to-end latency along with a detailed breakdown (Fig. 8)
and estimating the associated cost (Table 2) of executing a request.

6.2.1 Performance Analysis.
Video Analytics (VID). The workload spends 39% and 5% of its
execution time transferring the video fragment and the frames
in the S3-based and EC-based configurations, respectively. With
ZL, this fraction decreases to 4%, reducing the overall processing
time by 36% and 2% vs. the S3 and EC baselines, respectively. This
speedup comes from 9.5× and 1.2× faster transmission of video and
frames, respectively.

6



Shattering the Ephemeral Storage Cost Barrier for Data-Intensive Serverless Workflows SESAME’25, March 31st, 2025, Rotterdam, Netherlands

Stacking Ensemble Training (SET). SET spends 76% and 14% of
execution time in communication in the S3-based and EC-based
configuration, respectively. The largest fraction of data communica-
tion is the gather trained models latency component, accounting for
34% and 4% of the overall execution time in the S3-based and EC-
based configurations, respectively. Using ZL decreases the gather
fraction to 3% of the end-to-end latency, driving the communication
fraction down to 12%. Thus, ZL delivers a 3.4× speedup over the S3
baseline and 1.05× vs. EC.
MapReduce (MR). The workload shows 70% and 62% of execution
time spent in communication for the S3 and EC configurations
respectively. Moreover, 40% of the overall time in S3 baseline is
spent retrieving the original input from S3 and writing back the
results to S3, which we do not optimize with ZL. The rest, i.e., 30%
of time, are subject to ZL optimization. ZL delivers 1.26× overall
speedup over the S3 baseline and 1.05× over EC. ZL’s speedup is
due to a significant decrease in data shuffling, namely mapper-put
and the reducer-get phases, which are reduced by 23.4× and 4.8×,
respectively, compared to the S3 baseline, and by 30% and 55%,
respectively, compared to EC.

6.2.2 Cost Analysis.
A single invocation processed in a ZL-enabled system lowers the
cost by 2-5× and 56×, compared to S3 based configurations. With
EC, the cost reduction is 56× in the case of VID, 17× for SET, and
772× for MR. This large cost reduction associated with MR is due to
the large amount of ephemeral data transferred during the shuffle
phase, making through-storage transfers particularly expensive.

7 Related Work
Prior works [29, 37, 45, 46, 51] explore ephemeral storage services
for high-performance transfers at reasonable costs. However, as
shown in §2.3, even the cheapest tier (e.g., AWS S3) can significantly
impact the overall cost of data-intensive serverless applications.
Other studies [19, 27, 40, 46, 49, 50, 55] propose extending serverless
with a distributed shared memory tier to pass references instead of
data objects. Unlike these, Zipline transmits immutable data objects,
simplifying data consistency. YuanRong [18], a Huawei system, also
passes data by references but lacks implementation details.

Other works [42, 52, 56, 57] explore connection-based communi-
cation for serverless applications, aiding in porting microservices
and monoliths but difficult to apopt in serverless-native applica-
tions [20, 46] as these optimizations conflict with the core serverless
principle of transparent autoscaling by the cloud provider, as they
require reconfiguring workflow topology when scaling instances. In
contrast, Zipline uses an object-centric get()/put() API, ensuring
compatibility with existing cloud autoscaling infrastructure.

Similar to Zipline, prior works propose separating control and
data planes to avoid bottlenecks and enhance performance. Crab [30]
and Prism [24] reduce load on L4 and L7 load balancers, respec-
tively. Dataflower [34] and FUYAO [35] use asynchronous transfers
to decouple data from the control plane.

Zipline achieves high-performance transfers without relying on
function instance co-location or data locality, distinguishing it from
prior works. SAND [7] uses a hierarchical messaging bus for co-
located function communication. FaaSFlow [33], Sledge [36], and
Wukong [17] leverage locality for faster serverless multi-function

execution. Nightcore [25] exchanges messages via OS pipes for co-
located functions. However, commercial systems like AWS Lambda
avoid function co-location to prevent hotspots [6, 15], favoring
statistical multiplexing across a large server fleet.

8 Conclusion
The cost and performance of data-intensive serverless applications
depend on efficient inter-function data transfers. Current methods
fall short of these demands. We introduce Zipline (ZL), a high-speed,
API-preserving direct function-to-function communication method
that integrates with existing autoscaling infrastructure. ZL uses
control/data separation and references to provide low latency and
high bandwidth. A prototype ZL reduces the cost of end-to-end
applications by 2-5× and accelerates real-world serverless applica-
tions by 1.3-3.4×. Compared to through-cache transfers, ZL cuts
costs by 17-772× while achieving speedups of 2-5%.

References
[1] Cap’n Proto. Available at https://capnproto.org.
[2] gRPC: A High-Performance, Open Source Universal RPC Framework. Available

at https://grpc.io.
[3] Knative. Available at https://knative.dev.
[4] Knative Serving. Available at https://knative.dev/docs/serving.
[5] vSwarm - Serverless Benchmarking Suite. Available at https://github.com/vhive-

serverless/vSwarm/tree/main/benchmarks.
[6] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker: Lightweight
Virtualization for Serverless Applications. In Proceedings of the 17th Symposium
on Networked Systems Design and Implementation (NSDI), pages 419–434, 2020.

[7] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards High-Performance
Serverless Computing. In Proceedings of the 2018 USENIX Annual Technical
Conference (ATC), pages 923–935, 2018.

[8] Amazon. Amazon ElastiCache Pricing. Available at https://aws.amazon.com/ela
sticache/pricing.

[9] Amazon. Amazon S3 Pricing. Available at https://aws.amazon.com/s3/pricing.
[10] Amazon. AWS Lambda Pricing. Available at https://aws.amazon.com/lambda/pr

icing.
[11] Amazon. AWS Step Functions. Available at https://aws.amazon.com/step-

functions.
[12] Amazon. Boto3 documentation. Available at https://boto3.amazonaws.com/v1/d

ocumentation/api/latest/index.html.
[13] Amazon. Error Handling and Automatic Retries in AWS Lambda. Available at

https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html.
[14] Amazon. Error Handling in Step Functions. Available at https://docs.aws.amazo

n.com/step-functions/latest/dg/concepts-error-handling.html.
[15] Bharathan Balaji, Christopher Kakovitch, and Balakrishnan Narayanaswamy.

FirePlace: Placing Firecraker Virtual Machines with Hindsight Imitation. Pro-
ceedings of the 34th Workshop on Machine Learning for Systems at NeurIPS 2020, 3,
2021.

[16] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, Christopher S. Meiklejohn, and Xiangfeng Zhu. Netherite: Efficient
Execution of Serverless Workflows. Proc. VLDB Endow., 15(8):1591–1604, 2022.

[17] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo Wu, and Yue
Cheng. Wukong: A Scalable and Locality-enhanced Framework for Serverless Par-
allel Computing. In Proceedings of the 2020 ACM Symposium on Cloud Computing
(SOCC), pages 1–15, 2020.

[18] Qiong Chen, Jianmin Qian, Yulin Che, Ziqi Lin, Jianfeng Wang, Jie Zhou, Licheng
Song, Yi Liang, Jie Wu, Wei Zheng, Wei Liu, Linfeng Li, Fangming Liu, and Kun
Tan. Yuanrong: A production general-purpose serverless system for distributed
applications in the cloud. In SIGCOMM Conference, pages 843–859, 2024.

[19] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen.
Serverless Computing on Heterogeneous Computers. In Proceedings of the 27th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXVII), pages 797–813, 2022.

[20] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger, Johannes
Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru Iosup. The state of
serverless applications: Collection, characterization, and community consensus.
IEEE Transactions on Software Engineering, 48(10), 2022.

7

https://capnproto.org
https://grpc.io
https://knative.dev
https://knative.dev/docs/serving
https://github.com/vhive-serverless/vSwarm/tree/main/benchmarks
https://github.com/vhive-serverless/vSwarm/tree/main/benchmarks
https://aws.amazon.com/elasticache/pricing
https://aws.amazon.com/elasticache/pricing
https://aws.amazon.com/s3/pricing
https://aws.amazon.com/lambda/pricing
https://aws.amazon.com/lambda/pricing
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html


SESAME’25, March 31st, 2025, Rotterdam, Netherlands S. Jesalpura, D. Ustiugov, M. Baczun, B. Malper, R. Feyzkhanov, E. Bugnion, M. Kogias, and B. Grot

[21] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. From Laptop to Lambda: Out-
sourcing Everyday Jobs to Thousands of Transient Functional Containers. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC), pages 475–488,
2019.

[22] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Balasubrama-
niam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads. In Proceedings of the 14th Symposium on Networked
Systems Design and Implementation (NSDI), pages 363–376, 2017.

[23] Armando Fox and Eric A. Brewer. Harvest, Yield and Scalable Tolerant Systems.
In Proceedings of The 7th Workshop on Hot Topics in Operating Systems (HotOS-VII),
pages 174–178, 1999.

[24] Yutaro Hayakawa,Michio Honda, Douglas Santry, and Lars Eggert. Prism: Proxies
without the Pain. In Proceedings of the 18th Symposium on Networked Systems
Design and Implementation (NSDI), pages 535–549, 2021.

[25] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and Scalable Serverless
Computing for Latency-Sensitive, Interactive Microservices. In Proceedings of the
26th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXVI), pages 152–166, 2021.

[26] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. Towards Demystifying Serverless
Machine Learning Training. In SIGMOD Conference, pages 857–871, 2021.

[27] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella, and Ion Stoica.
Jiffy: Elastic Far-Memory for Stateful Serverless Analytics. In Proceedings of the
2022 EuroSys Conference, pages 697–713, 2022.

[28] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. Understanding Ephemeral Storage for Serverless Analytics.
In Proceedings of the 2018 USENIX Annual Technical Conference (ATC), pages
789–794, 2018.

[29] Ana Klimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. Pocket: Elastic Ephemeral Storage for Serverless Analytics. In
Proceedings of the 13th Symposium onOperating SystemDesign and Implementation
(OSDI), pages 427–444, 2018.

[30] Marios Kogias, Rishabh Iyer, and Edouard Bugnion. Bypassing the Load Balancer
without Regrets. In Proceedings of the 2020 ACM Symposium on Cloud Computing
(SOCC), pages 193–207, 2020.

[31] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard Bugnion.
R2P2: Making RPCs First-Class Datacenter Citizens. In Proceedings of the 2019
USENIX Annual Technical Conference (ATC), pages 863–880, 2019.

[32] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John K. Ouster-
hout. Implementing Linearizability at Large Scale and Low Latency. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP), pages 71–86,
2015.

[33] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and
Minyi Guo. FaaSFlow: Enable Efficient Workflow Execution for Function-as-
a-Service. In Proceedings of the 27th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXVII),
pages 782–796, 2022.

[34] Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi Guo.
Dataflower: Exploiting the data-flow paradigm for serverless workflow orches-
tration. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-XXIX), 2024.

[35] Guowei Liu, Laiping Zhao, Yiming Li, Zhaolin Duan, Sheng Chen, Yitao Hu,
Zhiyuan Su, and Wenyu Qu. Fuyao: Dpu-enabled direct data transfer for server-
less computing. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-
XXIX), 2024.

[36] Xiaosu Lyu, Ludmila Cherkasova, Robert C. Aitken, Gabriel Parmer, and Timothy
Wood. Towards Efficient Processing of Latency-Sensitive Serverless DAGs at the
Edge. In Proceedings of the 5th International Workshop on Edge Systems, Analytics
and Networking (EdgeSys), pages 49–54, 2022.

[37] Ashraf Mahgoub, Karthick Shankar, SubrataMitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. SONIC: Application-aware Data Passing for Chained Server-
less Applications. In Proceedings of the 2021 USENIX Annual Technical Conference
(ATC), pages 285–301, 2021.

[38] Microsoft. What are Durable Functions? Available at https://aws.amazon.com/s
tep-functions.

[39] Mikhail Shilkov. Making Sense of Azure Durable Functions. Available at https:
//mikhail.io/2018/12/making-sense-of-azure-durable-functions.

[40] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hagi-
mont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. OFC: An Oppor-
tunistic Caching System for FaaS Platforms. In Proceedings of the 2021 EuroSys
Conference, pages 228–244, 2021.

[41] Ingo Müller, Renato Marroquin, and Gustavo Alonso. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In SIGMOD
Conference, pages 115–130, 2020.

[42] Anna Maria Nestorov, Josep Lluís Berral, Claudia Misale, Chen Wang, David
Carrera, and Alaa Youssef. Floki: A Proactive Data Forwarding System for Direct
Inter-Function Communication for Serverless Workflows. In Proceedings of the
8th International Workshop on Container Technologies and Container Clouds (WoC),
pages 13–18, 2022.

[43] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt,
Samuel Madden, and Michael Stonebraker. A Comparison of Approaches to
Large-Scale Data Analysis. In SIGMOD Conference, pages 165–178, 2009.

[44] Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Madden.
Starling: A Scalable Query Engine on Cloud Functions. In SIGMOD Conference,
pages 131–141, 2020.

[45] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, Fast and Slow: Scal-
able Analytics on Serverless Infrastructure. In Proceedings of the 16th Symposium
on Networked Systems Design and Implementation (NSDI), pages 193–206, 2019.

[46] Francisco Romero, Gohar Irfan Chaudhry, Iñigo Goiri, Pragna Gopa, Paul Ba-
tum, Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo
Bianchini. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
In Proceedings of the 2021 ACM Symposium on Cloud Computing (SOCC), pages
122–137, 2021.

[47] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis.
Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video Ana-
lytics Pipelines. In Carlo Curino, Georgia Koutrika, and Ravi Netravali, editors,
Proceedings of the 2021 ACM Symposium on Cloud Computing (SOCC), pages 1–17,
2021.

[48] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the Wild: Characterizing and Optimizing the Serverless
Workload at a Large Cloud Provider. In Proceedings of the 2020 USENIX Annual
Technical Conference (ATC), pages 205–218, 2020.

[49] Simon Shillaker and Peter R. Pietzuch. Faasm: Lightweight Isolation for Efficient
Stateful Serverless Computing. In Proceedings of the 2020 USENIXAnnual Technical
Conference (ATC), pages 419–433, 2020.

[50] Qi Shixiong, Monis Leslie, Zeng Ziteng, Wang Ian-chin, and Ramakrishnan K.
K. Spright: Extracting the server from serverless computing! high-performance
ebpf-based event-driven, shared-memory processing. In SIGCOMM Conference,
pages 780–794, 2022.

[51] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. Cloudburst: State-
ful Functions-as-a-Service. Proc. VLDB Endow., 13(11):2438–2452, 2020.

[52] Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter. Particle:
Ephemeral Endpoints for Serverless Networking. In Proceedings of the 2020 ACM
Symposium on Cloud Computing (SOCC), pages 16–29, 2020.

[53] Dmitrii Ustiugov, Theodor Amariucai, and Boris Grot. Analyzing tail latency
in serverless clouds with stellar. In Proceedings of the 2021 IEEE International
Symposium on Workload Characterization (IISWC), 2021.

[54] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris
Grot. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XXVI), pages 559–572,
2021.

[55] Stephanie Wang, Benjamin Hindman, and Ion Stoica. In Reference to RPC: It’s
Time to Add Distributed Memory. In Proceedings of The 17th Workshop on Hot
Topics in Operating Systems (HotOS-XVIII), pages 191–198, 2021.

[56] Michael Wawrzoniak, Gianluca Moro, Rodrigo Bruno, Ana Klimovic, and Gus-
tavo Alonso. Off-the-shelf Data Analytics on Serverless. In Proceedings of the
Conference on Innovative Data Systems Research (CIDR), 2024.

[57] Michal Wawrzoniak, Ingo Müller, Gustavo Alonso, and Rodrigo Bruno. Boxer:
Data Analytics on Network-enabled Serverless Platforms. In Proceedings of the
11th Biennial Conference on Innovative Data Systems Research (CIDR), 2021.

8

https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions
https://mikhail.io/2018/12/making-sense-of-azure-durable-functions
https://mikhail.io/2018/12/making-sense-of-azure-durable-functions

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Computing and Autoscaling
	2.2 Data-Intensive Applications in Serverless 
	2.3 Through-Storage Transfers and Their Cost

	3 Zipline Communication
	3.1 Design Insights
	3.2 Design Overview

	4 Implementation
	4.1 Zipline Prototype in vHive/Knative
	4.2 Zipline Operation

	5 Methodology
	6 Evaluation
	6.1 Microbenchmarks
	6.2 Real-World Workloads

	7 Related Work
	8 Conclusion
	References

