Domain-Specialized Cache Management for Graph Analytics

Priyank Faldu, Boris Grot Jeff Diamon

Jeff Diamond

This research is partially supported by a grant from Oracle Labs.

Cache management in the age of big data

Variety of application domains

Data Analytics

Graph Analytics

Machine Learning

Working set size much larger than typical SPEC benchmarks - Vastly different cache access patterns across domains

Cache management in the age of big data

Variety of application domains

Data Analytics

Graph Analytics

Machine Learning

Working set size much larger than typical SPEC benchmarks - Vastly different cache access patterns across domains

Yet, cache management mechanisms are "domain-agnostic" - Assumption: one size fits all

A case for domain-specialized cache management

Domain-agnostic techniques for graph analytics

SHiP-MEM Hawkeye Leeway

Domain-agnostic techniques for graph analytics

Domain-agnostic techniques for graph analytics

SHiP-MEM Hawkeye Leeway

Domain-agnostic techniques for graph analytics

SHiP-MEM Hawkeye Leeway

Domain-agnostic techniques for graph analytics

SHiP-MEM Hawkeye Leeway

I-15% geomean slowdown

Outline

Performance of domain-agnostic cache management

- Graph analytics
- GRASP: domain-specialized cache management
 - Software-guided reuse-prediction
 - Hardware-enforced cache management
- Performance evaluation

Applications of graph analytics

Extract meaningful information out of complex many-to-many relationships among objects

- **Community Analysis**
 - Identify customers with similar interests

Applications of graph analytics

Extract meaningful information out of complex many-to-many relationships among objects

- **Community Analysis**
 - Identify customers with similar interests
- **Connectivity Analysis**
 - Find weakness in a network
- Path Analysis

- Route optimization for distribution and supply chain
- **Centrality Analysis**
 - Most influential people and information in social media
- And many others ...

Real-world graphs & power-law degree distribution

Small fraction of vertices have high connectivity – hot vertices

Large fraction of vertices have low connectivity – cold vertices

Prevalent in many domains – e.g., Twitter user-follower graph

Real-world graphs & power-law degree distribution

Small fraction of vertices have high connectivity – hot vertices

Large fraction of vertices have low connectivity – cold vertices

Prevalent in many domains – e.g., Twitter user-follower graph

Real-world graphs & power-law degree distribution

Small fraction of vertices have high connectivity – hot vertices

Large fraction of vertices have low connectivity – cold vertices

Prevalent in many domains – e.g., Twitter user-follower graph

Donald Trump

~72M

Real-world graphs & power-law degree distribution

Small fraction of vertices have high connectivity – hot vertices

Large fraction of vertices have low connectivity – cold vertices

Prevalent in many domains – e.g., Twitter user-follower graph

Donald Trump

How does connectivity influence cache locality?

A canonical example of graph analytics

Computes property for a vertex based on its neighbors' properties

Vertex Properties

A canonical example of graph analytics

A canonical example of graph analytics

Computes property for a vertex based on its neighbors' properties

Cache Accesses in Time

A canonical example of graph analytics

Computes property for a vertex based on its neighbors' properties

Cache Accesses in Time

A canonical example of graph analytics

Computes property for a vertex based on its neighbors' properties

Cache Accesses in Time

A canonical example of graph analytics

A canonical example of graph analytics

A canonical example of graph analytics

A canonical example of graph analytics

Computes property for a vertex based on its neighbors' properties

Key observation: vertex reuse is proportional to its degree

A canonical example of graph analytics

A canonical example of graph analytics

Computes property for a vertex based on its neighbors' properties

Key observation: vertex reuse is proportional to its degree

Hot vertices \rightarrow Small footprint + High reuse

Domain-agnostic techniques rely on purely hardware mechanisms

Domain-agnostic techniques rely on purely hardware mechanisms

Domain-agnostic techniques rely on purely hardware mechanisms

Vertex Properties

Example Graph P_0 V_0 V P Vo **V**3 V_2 V_2 P_2 Hot V_3 P_3 V_5 V_4 V_4 P_4 Hot V_5 P_5 Reason 1 Irregular Accesses

Domain-agnostic techniques rely on purely hardware mechanisms

Vertex Properties Example Graph P_0 V_0 V P V₀ **V**₂ V_3 V_2 P_2 Hot V_3 P_3 V_5 V_4 V_4 P_4 Hot V_5 P_5 Reason 1 Irregular Accesses Reason **2** Long Reuse Distances V_0 P₅ V_4 ۷_۶ P. V P₄ ٧, ٧, P₄ Cache Accesses in Time

P₄

Domain-agnostic techniques rely on purely hardware mechanisms

Vertex Properties Example Graph P_0 V_0 V P Vo **V**2 P_2 V_2 Hot P_3 V_3 V_5 V_4 V_4 P_4 Hot V_5 P_5 Reason 1 Irregular Accesses Reason **2** Long Reuse Distances

Idea: Leverage domain-knowledge for reuse prediction

Proposal: GRASP – a software-hardware co-design

Software aids hardware in identifying hot vertices

Hardware preferentially caches hot vertices

Outline

Performance of domain-agnostic cache management

- Graph analytics
- GRASP: domain-specialized cache management
 - Software-guided reuse-prediction
 - Hardware-enforced cache management
- Performance evaluation

GRASP: Software-guided reuse-prediction

Task: Let software aid hardware in identifying hot vertices

GRASP: Software-guided reuse-prediction

Task: Let software aid hardware in identifying hot vertices

Challenge: Non-trivial due to sparse distribution of hot vertices in memory Vertex Properties

GRASP: Software-guided reuse-prediction

Task: Let software aid hardware in identifying hot vertices

Challenge: Non-trivial due to sparse distribution of hot vertices in memory Vertex Properties

Idea: Leverage prior graph reordering optimization

Optimization: skew-aware graph reordering

Vertices are ordered in memory based on their assigned IDs

Changing vertex order to improve cache locality [IISWC'19]

HPCA'20

Vertices are ordered in memory based on their assigned IDs

Changing vertex order to improve cache locality [IISWC'19]

Original Vertex Order

HPCA'20

Vertices are ordered in memory based on their assigned IDs

Changing vertex order to improve cache locality [IISWC'19]

Original Vertex Order

HPCA'20

Vertices are ordered in memory based on their assigned IDs

Changing vertex order to improve cache locality [IISWC'19]

Original Vertex Order

New Vertex Order

HPCA'20

Vertices are ordered in memory based on their assigned IDs

Changing vertex order to improve cache locality [IISWC'19]

Easy to communicate the region boudary to hardware

GRASP: Region-based lightweight interface

Hot Vertices Cold Vertices 1 Preprocessing: Software applies skew-aware reordering

Hot

Vertices

Cold

Vertices

ics

GRASP: Region-based lightweight interface

HPCA'20

Region

Start

Architecturally exposed configuration registers

Preprocessing:
Software applies
skew-aware
reordering

GRASP: Region-based lightweight interface

 Preprocessing: Software applies skew-aware reordering

2 Initialization:Software populatesconfiguration registers

GRASP: Region-based lightweight interface

GRASP: Region-based lightweight interface

GRASP: Region-based lightweight interface

Software involvement is limited to initialization

GRASP: Reuse prediction at runtime

GRASP: Reuse prediction at runtime

Prediction is entirely done in hardware

Outline

Performance of domain-agnostic cache management

- Graph analytics
- GRASP: domain-specialized cache management
 - Software-guided reuse-prediction
 - Hardware-enforced cache management
- Performance evaluation

GRASP: Hardware-enforced cache management

Task: Preferentially cache hot vertices

Challenge: LLC capacity is limited - Not all hot vertices can fit

GRASP: Hardware-enforced cache management

HPCA'20

GRASP: Hardware-enforced cache management

HPCA'20

Requirement: Keep cache management flexible

HPCA'20

HPCA'20

HPCA'20

HPCA'20

HPCA'20

HPCA'20

GRASP: Preferential but flexible cache management

GRASP: Preferential but flexible cache management

GRASP is simple!

Software

- Off the shelf skew-aware reordering optimization
- Compatible with multiple skew-aware reordering techniques

GRASP is simple!

Software

- Off the shelf skew-aware reordering optimization
- Compatible with multiple skew-aware reordering techniques

Lightweight Interface

- Software configures a pair of registers at initialization
- No software dependency after initialization

GRASP is simple!

Software

- Off the shelf skew-aware reordering optimization
- Compatible with multiple skew-aware reordering techniques

Lightweight Interface

- Software configures a pair of registers at initialization
- No software dependency after initialization

Hardware

- Lightweight address comparison logic to infer the reuse hint
- Trivial policy changes
- Minimal modifications to cache structure no additional metadata

GRASP is simple!

Software

- Off the shelf skew-aware reordering optimization
- Compatible with multiple skew-aware reordering techniques

Lightweight Interface

- Software configures a pair of registers at initialization
- No software dependency after initialization

Hardware

- Lightweight address comparison logic to infer the reuse hint
- Trivial policy changes
- Minimal modifications to cache structure no additional metadata

Accelerating graph analytics at minimal cost

Outline

Performance of domain-agnostic cache management

- Graph analytics
- GRASP: domain-specialized cache management
 - Software-guided reuse-prediction
 - Hardware-enforced cache management

Performance evaluation

Evaluation methodology

Evaluated 25 benchmarks (5 applications x 5 graph datasets)

- Graph applications from the Ligra framework [PPoPP'I3]
- Graph datasets are 0.3GB 8GB in Compressed Sparse Row (CSR) format

Datasets are reordered using DBG [IISWC'19]

- Degree-Based Grouping is state-of-the-art skew-aware reordering

Evaluated on the Sniper simulator [TACO'14]

- 8 Out of Order cores
- I6MB shared LLC (2MB per core)

Domain-agnostic techniques vs GRASP

SHiP-MEM Hawkeye Leeway

Domain-agnostic techniques vs GRASP

SHiP-MEM Hawkeye Leeway GRASP

Domain-agnostic techniques vs GRASP

More results in paper

Evaluation of pinning-based techniques

Evaluation of GRASP on low-/no-skew graph datasets

Evaluation of GRASP on top of other reordering schemes

... and more

HPCA'20

Key take away: one size does NOT fit all

Look beyond domain-agnostic cache management

HPCA'20

Thank You

Priyank Faldu

Source code https://github.com/faldupriyank

Personal website www.faldupriyank.com

I am on the job market